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Abstract Symbolic finite automata and transducers augment classic automata and trans-
ducers with symbolic alphabets represented as parametric theories. This extension enables
to succinctly represent large and potentially infinite alphabets while preserving closure and
decidability properties. Extended symbolic finite automata and transducers further extend
these objects by allowing transitions to read consecutive input elements in a single step. In
this paper we study the properties of these models. In contrast to the case of finite alpha-
bets, we show how reading multiple symbols increases the expressiveness of the models,
which causes some closure properties to stop holding and most decision problems to become
undecidable. In particular we show how extended symbolic finite transducers are not closed
under composition, and the equivalence problem is undecidable for both extended sym-
bolic finite automata and transducers. We then introduce the subclass of Cartesian extended
symbolic finite transducers in which guards are limited to conjunctions of unary predicates
and we propose an equivalence algorithm for this subclass in the single-valued case. We
also present a heuristic algorithm for composing extended symbolic finite transducers that
works for many practical cases. Finally, we model real world programs with Cartesian
extended symbolic finite transducers and use the proposed algorithms to prove their cor-
rectness.
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1 Introduction

Finite automata have proven to be an effective tool in a wide range of applications, including
regular expression matching and network packet inspection [20]. Finite transducers extend
finite automata with outputs and can model functions from strings to strings such as natural
language transformations [16]. Due to their closure and decidability properties, these models
are widely used in practice, however their classic formulations suffer from the following
limitations:

1. the number of transitions “blows up” when dealing with large alphabets and the alphabet
can’t be infinite; and

2. transitions cannot express relations between symbols appearing at different positions in
the input.

Both these limitations arise when trying to reason about programs such as string coders.
These programs transform an input string in a given format into output strings in a different
format. String coders typically operate over very large alphabets (216 elements), and allow a
single output symbol to depend on several input symbols appearing at different positions.

To solve the first problem symbolic finite automata/transducers [22] or SFAs/SFTs extend
traditional automata and transducers by allowing transitions to be labelled with arbitrary
predicates in a specified theory (e.g. Presburger arithmetic over the integers). When such a
theory is decidable SFAs and SFTs enjoy the same properties of finite automata and trans-
ducers, such as closure under composition and decidability of equivalence (for single-valued
SFTs). In [22], symbolic transducers or STs (SFTs with registers), are proposed in order to
cope with the second problem above. STs can store values in registers and later compare such
values to other symbols, and are therefore able to express relations between symbols appear-
ing at different positions in the input. Unfortunately, this ability makes STs undecidable with
respect to most analysis problems, even emptiness.

Extended symbolic finite automata/transducers or ESFAs/ESFTs extend SFAs/SFTs with
the ability to read multiple adjacent input symbols in a single transition and combine their
values in the output [5,6]. Since these models are more expressive than SFAs/SFTs, but
less expressive than STs with registers, they are potential candidates for addressing the two
problems we presented above while retaining decidability. In this paper we study their formal
properties and show that unfortunately this increase expressiveness comes at a price. From
the point of view of analysis, the key operations that are desired are closure under Boolean
operations for ESFAs, and composition and equivalence for ESFTs.

Wefirst show that ESFAs are not closed under intersection and that equivalence and univer-
sality of ESFAs are both undecidable problems. The emptiness problem remains decidable.
In the case of ESFTs the situation is not brighter: ESFTs are not closed under composition
and the equivalence problem is undecidable.

Given these negative results we focus our attention on the sub-class of Cartesian ESFTs in
which the guards of the transitions are constrained to be conjunctions of unary predicates. The
main result of this paper is an algorithm for checking equivalence of single-valued Cartesian
ESFTs. This is a proper extension of the decidability result of equivalence of SFTs [22].
Given two ESFTs the algorithm works as follows: (1) It first expands each transition reading
k symbols into k separate transitions taking advantage of the fact that guards are conjunctions
of unary predicates; (2) it then computes the product of the two “expanded” ESFTs (this can
be done since all guards are unary); and finally (3) it tries to align transitions so that the
outputs of the two ESFTs are synchronized, and if this is not possible the two ESFTs are not
equivalent.
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We also propose a heuristic algorithm for composing ESFTs. The algorithmworks by first
converting ESFTs to STs, then composing the STs, and finally converting (when possible)
the result back into an ESFT using an algorithm for eliminating registers.

We present four applications of our models in different areas. In our main experiment
we use the proposed algorithms to prove the correctness of four real world string encoders
which can be modeled using ESFTs. We then sketch how ESFAs and ESFTs can be used in
the tasks of deep-packet inspection, transformation protocol headers, and can also be used
to analyze list manipulating programs that use deep pattern matching.

Contributions In summary, we offer the following contributions:

1. A study of the closure and decidability properties of ESFAs (Sect. 3);
2. A study of the equivalence problem for ESFTs (Sect. 4) where we show that:

– the equivalence of single-valued ESFTs is undecidable;
– the equivalence of single-valued Cartesian ESFTs is decidable;

3. A study of the composition problem for ESFTs (Sect. 5) that includes:

– a proof that ESFTs are not closed under composition;
– a heuristic algorithm for composing ESFTs;

4. A concrete application of the presented algorithms to the task of proving the correctness
of string encoders and decoders (Sect. 6).

We finally summarize previous work and conclude (Sects. 7 and 8).

2 Extended symbolic finite automata and transducers

2.1 Background

We assume a recursively enumerable (r.e.) background universe U with built-in function
and relation symbols. Definitions below are given with U as an implicit parameter. We use
λ-expressions for representing anonymous functions that we call λ-terms. A Boolean λ-term
λx .ϕ(x), where x is a variable of type σ is called a σ -predicate. Our notational conventions
are consistent with the definition of symbolic transducers [22]. The universe is multi-typed
with U τ denoting the sub-universe of elements of type τ . We write Σ for U σ and Γ for
U γ .

A label theory is given by a recursively enumerable set Ψ of formulas that is closed
under Boolean operations, substitution, equality and if-then-else terms. A label theory Ψ is
decidable when satisfiability for ϕ ∈ Ψ , IsSat(ϕ), is decidable.

For σ -predicates ϕ, we assume an effective witness functionW such that, if IsSat(ϕ) then
W(ϕ) ∈ [[ϕ]], where [[ϕ]] ⊆ U σ is the set of all values that satisfy ϕ; ϕ is valid, IsValid(ϕ),
when [[ϕ]] = U σ .

2.2 ESFAs and ESFTs

We are studying in this paper an extension of SFTs with where transitions are allowed to
consume more than one symbol, called extended SFTs or ESFTs. Originally, ESFTs were
introduced in [6] for the purposes of analyzing string encoders and decoders, where a semi-
decision procedure was provided for converting STs (SFTs with registers) into ESFTs.
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Definition 1 An extended symbolic finite transducer (ESFT ) with input type σ and output
type γ is a tuple A = (Q, q0, R),

– Q is a finite set of states;
– q0 ∈ Q is the initial state;
– R is a finite set of rules, R = 
 ∪ F , where

– 
 is a set of transitions r = (p, �, ϕ, f, q), denoted p
ϕ/ f−−→
�

q , where

p ∈ Q is the start state of r ;
� ≥ 1 is the lookahead of r ;
ϕ, the guard of r , is a σ�-predicate;
f , the output of r , is a (σ � → γ )-sequence;
q ∈ Q is the continuation state of r .

– F is a set of finalizers r = (p, �, ϕ, f ), denoted p
ϕ/ f−−→
�

•, with components as above

and where � may be 0.

The lookahead of A is the maximum of all lookaheads of rules in R. An ESFT where all the
rules have output [] is an Extended symbolic finite automaton (ESFA).

A finalizer is a rule without a continuation state. A finalizer with lookahead � is used when
the end of the input sequence has been reached with exactly � input elements remaining. A
finalizer is a generalization of a final state. In a classic setting, finalizers can be avoided by
adding a new symbol to the alphabet that is only used to mark the end of the input. In the
presence of arbitrary input types, this is not always possible without affecting the theory, e.g.,
when the input type is Z then that symbol would have to be outside Z.

In the remainder of the section let A = (Q, q0, R), R = 
 ∪ F , be a fixed ESFT with
input type σ and output type γ . The semantics of rules in R is as follows:

[[p ϕ/ f−−→
�

q]] def=
{
p

[a0,...,a�−1]/[[ f ]](a0,...,a�−1)−−−−−−−−−−−−−−−−→ q | (a0, . . . , a�−1) ∈ [[ϕ]]
}

Intuitively, a rule with lookahead � reads � adjacent input symbols s = [a0, . . . , a�−1] and
produces a sequence of output symbols f that is a function of the consumed input symbols.

Let [[R]] def= ⋃
r∈R[[r ]]. We write s1 × s2 for the concatenation of sequences s1 and s2.

Definition 2 For u ∈ Σ∗, v ∈ Γ ∗, q ∈ Q, q ′ ∈ Q ∪ {•}, define q u/v−−→→A q ′ as follows: there
exists n ≥ 0 and

{
pi

ui /vi−−−→ pi+1 | i ≤ n
}

⊆ [[R]] such that

u = u0 × u1 . . . un, v = v0 × v1 . . . vn, q = p0, q ′ = pn+1.

Let also q
[]/[]−−→→A q for all q ∈ QA.

Definition 3 The transduction of A, TA(u)
def= {v | q0 u/v−−→→ •}.

The following example illustrates typical (realistic) ESFTs over a label theory of linear
modular arithmetic. We use the following abbreviated notation for rules, by omitting explicit
λ’s. We write

p
ϕ(x̄)/[ f1(x̄),..., fk (x̄)]−−−−−−−−−−−−→

�
q for p

λx̄ .ϕ(x̄)/λx̄ .[ f1(x̄),..., fk (x̄)]−−−−−−−−−−−−−−−−→
�

q,

where ϕ and fi are terms whose free variables are among x̄ = (x0, . . . , x�−1).
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Example 1 The example illustrates the standard encoding Base64, that is used to transfer
binary data in textual format, e.g., in emails via the protocolMIME. The digits of the encoding
are chosen in the safe ASCII range of characters that remain unmodified during transport
over textual media. Assume that the input type and the output type are both byte, that is the
set of integers between 0 and 255. Base64encode is an ESFT with one state and four rules:

p
true/

[
�b72(x0)�, �(b10(x0)
4)|b74(x1)�, �(b30(x1)
2)|b76(x2)�, �b50(x2)�

]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

3
p

p
true/[]−−−→

0
• p

true/
[
�b72(x0)�, �b10(x0)
4�, ‘=’, ‘=’

]
−−−−−−−−−−−−−−−−−−−−−−−−→

1
•

p
true/

[
�b72(x0)�, �(b10(x0)
4)|b74(x1)�, �b30(x1)
2�, ‘=’

]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

2
•

where bmn (x) extracts bits m through n from x , e.g., b32(13) = 3, x |y is bitwise OR of x and
y, x 
 k is x shifted left by k bits, and �x� is the mapping

�x� def=
(
x ≤ 25 ? x + 65 :

(
x ≤ 51 ? x + 71 : (

x ≤ 61 ? x − 4 : (
x = 62 ? ‘+′ : ‘/′))))

of values between 0 and 63 into a standardized sequence of safe ASCII character codes. The
last two finalizers correspond to the cases when the length of the input sequence is not a
multiple of three. Observe that the length of the output sequence is always a multiple of four.
The character ‘=’ (61 in ASCII) is used as a padding character and it is not a Base64 digit.
i.e., ‘=’ is not in the range of �x�.

Base64decode in an ESFT that decodes a Base64 encoded sequence back into the original
byte sequence. Base64decode has also one state and four rules:

q

∧3
i=0 β64(xi )

/[
(�x0�
2)|b54(�x1�), (b30(�x1�)
4)|b52(�x2�), (b10(�x2�)
6)|�x3�

]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

4
q

q
true/[]−−−→

0
• q

β64(x0)∧β ′
64(x1)∧x2=‘=’∧x3=‘=’/

[
(�x0�
2)|b54(�x1�)

]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

4
•

q
β64(x0)∧β64(x1)∧β ′′

64(x2)∧x3=‘=’/
[
(�x0�
2)|b54(�x1�), (b30(�x1�)
4)|b52(�x2�)

]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

4
•

The function �y� is the inverse of �x�, i.e., ��x�� = x , for 0 ≤ x ≤ 63. The predicate β64(y)
is true iff y is a valid Base64 digit, i.e., y = �x� for some x , 0 ≤ x ≤ 63. The predicates
β ′
64(y) and β ′′

64(y) are restricted versions of β64(y). Unlike Base64encode, Base64decode
does not accept all input sequences of bytes, and sequences that do not correspond to any
encoding are rejected.1

The following subclass of ESFTs captures transductions that behave as partial functions
from Σ∗ to Γ ∗.

Definition 4 A function f : X → 2Y is single-valued if |f(x)| ≤ 1 for all x ∈ X . An ESFT
A is single-valued if TA is single-valued.

A sufficient condition for single-valuedness is determinism.Wedefineϕ�ψ , whereϕ is aσm-
predicate and ψ a σ n-predicate, as the σmax(m,n)-predicate λ(x1, . . . , xmax(m,n)).ϕ(x1, . . . ,
xm) ∧ ψ(x1, . . . , xn). We define equivalence of f and g modulo ϕ, f ≡ϕ g, as:
IsValid(λx̄ .(ϕ(x̄) ⇒ f (x̄) = g(x̄))).

1 For more information see http://www.rise4fun.com/Bek/tutorial/base64.
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Definition 5 A is deterministic if for all p
ϕ/ f−−→
�

q, p
ϕ′/ f ′
−−−→

�′ q ′ ∈ R:

(a) Assume q, q ′ ∈ Q. If IsSat(ϕ � ϕ′) then q = q ′, � = �′ and f ≡ϕ�ϕ′ f ′.
(b) Assume q = q ′ = •. If IsSat(ϕ � ϕ′) and � = �′ then f ≡ϕ�ϕ′ f ′.
(c) Assume q ∈ Q and q ′ = •. If IsSat(ϕ � ϕ′) then � > �′.

Intuitively, determinism means that no two rules may overlap. It follows from the def-
initions that if A is deterministic then A is single-valued. Both ESFTs in Example 1 are
deterministic.

The domain of a function f : X → 2Y is D(f) def= {x ∈ X | f(x) �= ∅} and for an
ESFT A, D(A)

def= D(TA). When A is single-valued, and u ∈ D(A), we treat A as a partial
function from Σ∗ to Γ ∗ and write A(u) for the value v such that TA(u) = {v}. For example,
Base64encode(Foo+) = Rm9v+ and Base64decode(QmFy+) = Bar+.

2.3 Cartesian ESFAs and ESFTs

We introduce a subclass of ESFTs that plays an important role in this paper. A binary relation
R over X is Cartesian over X if R is the Cartesian product R1 × R2 of some R1, R2 ⊆ X .
The definition is lifted to n-ary relations and σ n-predicates for n ≥ 2 in the obvious way. In
order to decide if a satisfiable σ n-predicate ϕ is Cartesian over σ , let (a0, . . . , an−1) = W(ϕ)

and perform the following validity check:

IsCartesian(ϕ)
def= ∀x̄ (ϕ(x̄) ⇔

∧
i<n

ϕ (a0, . . . , ai−1, xi , ai+1, . . . , an−1))

In other words, a σ n-predicate ϕ is Cartesian over σ if ϕ can be rewritten equivalently as a
conjunction of n independent σ -predicates.

Definition 6 An ESFT (ESFA) is Cartesian if all its guards are Cartesian.

Both ESFTs in Example 1 are Cartesian. Base64encode is trivially so, while the guards
of all rules of Base64decode are conjunctions of independent unary predicates. In contrast,
a predicate such as λ(x0, x1).x0 = x1 is not Cartesian.

Note that IsCartesian(ϕ) is decidable by using the decision procedure of the label theory.
Namely, decide unsatisfiability of ¬IsCartesian(ϕ).

Cartesian ESFAs capture exactly the class of SFA definable languages.

Theorem 1 (Cartesian ESFA = SFA) Cartesian ESFAs and SFAs are equivalent in expres-
siveness.

Proof The ⇐ direction is immediate. We prove the ⇒ direction. Given a Cartesian ESFA
A = (Q, q0, (
, F)) we construct and equivalent SFA A′. Without loss of generality we
assume that every rule r in 
 has lookahead 2 and every finalizer has lookahead 0. For every

rule r = p
ϕ(x1)∧ψ(x2)−−−−−−−→

2
q , the SFA A′ has a three states q, p, qr , and two rules p

ϕ(x1)−−−→ r ,

r
ψ(x2)−−−→ q . Finally, if A has a finalizer q

true−−→
0

•, the state q will be final in A′. ��

As a consequence Cartesian ESFAs enjoy all the properties of SFAs (regular languages) such
as boolean closures and decidability of equivalence.

123



Form Methods Syst Des (2015) 47:93–119 99

2.4 Monadic ESFAs and ESFTs

We say that a (quantifier free) formula is in monadic normal form orMNF if it is a Boolean
combination of unary formulas, where a unary formula is a formula with (at most) one free
variable. A formula is monadic if it has an equivalent MNF. A natural problem that arises is,
deciding whether a formula is monadic, and if so, constructing its MNF. For example, the
formula x < y over integers does not have an MNF while the formula x < ymod 2 has an
MNF (x < 0 ∧ ymod 2 = 0) ∨ (x < 1 ∧ ymod 2 = 1) that is also a DNF. Another MNF
of x < ymod 2 is x < 0 ∨ (x < 1 ∧ ymod 2 = 1) that is also a DNF but with semantically
overlapping disjuncts.

Definition 7 An ESFT (ESFA) is monadic if all its guards are monadic.

It is shown in [21] that if the label theory is decidable and a formula is monadic then its
MNF can be constructed effectively.

Theorem 2 Monadic ESFTs and Cartesian ESFTs are effectively equivalent. Moreover, this
holds also for the deterministic case.

Proof The⇐ direction is immediate because Cartesian ESFTs are a special case of monadic
ESFTs. For the direction ⇒, we first apply the procedure mondec from [21] to each guard φ

of the monadic ESFT to obtain an equivalent MNF of the guard, that we then rewrite into an

equivalent DNF
∨

i<n φi . Finally, we can replace each rule p
φ/ f−−→

�
q by the rules p

φi / f−−→
�

q ,

for i < n, where all φi are Cartesian. Determinism is clearly preserved, because all the new
rules have identical outputs so the conditions (a) and (b) of Definition 5 are trivially fulfilled.

��

3 Properties of extended symbolic finite automata

In this section we prove some basic properties of Extended Symbolic Finite Automata and
show how they drastically differ from SFAs and have properties similar to those of context
free grammars rather than regular languages.

First, we show how checking the emptiness of the intersection of two ESFA definable
languages is an undecidable problem.

Theorem 3 (Domain intersection) Given two ESFAs A and B with lookahead 2 over quan-
tifier free successor arithmetic and tuples, checking whether there exists an input accepted
by both A and B is undecidable.

Proof Recall that aMinskymachine has two registers r1 and r2 that can hold natural numbers
and a program that is a finite sequence of instructions. Each instruction is one of the following:
INCi (increment ri and continue with the next instruction); DECi (decrement ri if ri > 0
and continue with the next instruction); JZi ( j) (if ri = 0 then jump to the j’th instruction
else continue with the next instruction). The machine halts when the end of the program is
reached. Let M be a Minsky machine with program P . Let σ = N

3 represent the type of the
snapshot or configuration (program counter, r1, r2) of M .

Suppose π j : σ →N projects the j’th element of a k-tuple where 0 ≤ j < k. Construct
ESFAs A and B over σ as follows. Let ϕini be the σ -predicate λx .x = (0, 0, 0) stating that
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the program counter and both registers are 0. Let ϕfin be the final σ -predicate λx .π0(x) =
|P| ∧ π1(x) �= 0.

Let ϕstep be the σ 2-predicate λ(x, x ′).
∨

i<|P| ϕ
step
i where ϕ

step
i is the formula for the i’th

instruction. If the i’th instruction is INC1 then ϕ
step
i is

π0(x) = i ∧ π0(x
′) = i + 1 ∧ π1(x

′) = π1(x) + 1 ∧ π2(x
′) = π2(x)

If the i’th instruction is JZ1( j) then ϕ
step
i is

π0(x) = i ∧ π0(x
′) = Ite(π1(x) = 0, j, i + 1) ∧ π1(x

′) = π1(x) ∧ π2(x
′) = π2(x)

Similarly for the other cases. Thus, ϕstep encodes the valid step relation of M from current
configuration x to the next configuration x ′. Let

A =
(

{p0}, p0,
{
p0

ϕstep

−−→
2

p0, p0
true−−→
0

•})
, and

B =
(

{q0, q1}, q0,
{
q0

ϕini

−−→
1

q1, q1
ϕstep

−−→
2

q1, q1
ϕfin

−−→
1

•})
.

So α ∈ D(A)∩D(B) iff α is a valid computation of M , i.e., α[0] is the initial configuration,
α[i + 1] is a valid successor configuration of α[i] (this follows from A for all odd i < |α|
and from B for all even i < |α|), and α[|α| − 1] is a halting configuration.

It follows that D(A) ∩D(B) �= ∅ iff M halts on input (0, 0) with a non-zero output in r1.
The latter is an undecidable problem as an instance of Rice’s theorem. ��

Theorem 4 (Emptiness) Given an ESFA A it is decidable to determine whether it accepts
any input.

Proof Given A, we first remove all the transitions with unsatisfiable guards. Let’s call the
new ESFA A′. If A′ has a path from the initial state to •, then A is not empty. ��

Theorem 5 (Boolean properties) ESFAs are closed under union but not closed under inter-
section and complement.

Proof Given two ESFAs A1 = (Q1, q10 , R1) and A2 = (Q2, q20 , R2) over a sort σ we
construct an ESFA B over σ such that D(C) = D(A) ∪ D(B). C will have states Q =
Q1 ∪ Q2 ∪{q0} and initial state q0. The transition relation R of C is then defined as follows:

R = R1 ∪ R2 ∪
{
q0

ϕ−→
k

q | q10
ϕ−→
k

q ∈ R1 ∨ q20
ϕ−→
k

q ∈ R2

}

Asa consequenceofTheorems3 and4wehave thatESFAare not closedunder intersection.
Therefore, ESFAs cannot be closed under complement. ��

While checking the emptiness of an ESFA is a decidable problem, it is not possible to
decide whether an ESFA accepts every possible input. It follows that equivalence is also
undecidable.

Theorem 6 (Universality and Equivalence) Given an ESFA A over σ it is undecidable to
check whether A accepts all the sequences in σ ∗, and given two ESFAs A and B it is
undecidable to check whether A and B accept the same languages.
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Proof Let M be a Minsky machine with program P . Let σ = N
3 represent the type of the

snapshot or configuration (program counter, r1, r2) of M . Let ϕini, ϕfin and ϕstep be as in
Theorem 3.

We construct an ESFA AM that does not accept all the strings in σ ∗ iff M halts on input
(0, 0) with a non-zero output in r1. The latter is an undecidable problem as an instance of
Rice’s theorem.

Let

A =
(

{p0, p1}, p0,
{
p0

true−−→
1

p0, p0
¬ϕstep

−−−→
2

p1, p1
true−−→
1

p1, p1
true−−→
0

•
})

B =
(

{q0, q1}, q0,
{
q0

¬ϕini

−−−→
1

q1, q1
true−−→
1

q1, q1
true−−→
0

•
})

C =
(

{r0}, r0,
{
r0

true−−→
1

r0, r0
¬ϕfin

−−−→
1

•
})

D =
({

s0}, s0, {s0 true−−→
0

•
})

A accepts all the M configuration sequences in which one step is wrong, B all those that
starts with the wrong initial state, C all those that end in the wrong configuration, and D the
empty sequence. We define AM = A ∪ B ∪ C using Theorem 5. AM does not accept all the
inputs in σ ∗ iff M halts on input (0, 0) with a non-zero output in r1 (i.e. such sequence of
configuration wouldn’t be accepted by AM ). The undecidability of equivalence follows. ��

We finally show that longer a look-ahead adds expressiveness.

Theorem 7 For every k there exists an ESFAwith lookahead k+1 that cannot be represented
by any ESFAs with lookahead k.

Proof Consider the ESFA A over the theory of integers with one initial state q0 and one
final state q1. The ESFA A has only one transitions between q0 and q1 of lookahead k + 1
with the following predicate ψ(x1, · · · , xk+1) = x1 = x2 = · · · = xk+1. There doesn’t
exists an ESFA B with lookahead k equivalent to A. Let’s assume B exists by way of
contradiction. Since A only accepts strings of length k + 1, B can only have finitely many
paths from its initial state to any final state. Let’s assume w.l.o.g. that every path has length
2 and it has guards of the form ϕ1(x1 . . . xl) and ϕ2(xl+1 . . . xk+1). We now must have that
ψ(x1, . . . , xk+1) ≡ ∨

ϕ1(x1 . . . xl) ∧ ϕ2(xl+1 . . . xk+1). However the predicate ψ does not
admit such a representation. ��

4 Equivalence of extended symbolic finite transducers

While the general equivalence problem ofTA = TB is already undecidable for very restricted
classes of finite state transducers [10], the problem is decidable for SFTs in the single-valued
case.More generally, one-equality of transductions (defined next) is decidable for SFTs (over
decidable label theories). In this section we first show that equivalence of ESFTs is in general
undecidable, but it’s decidable for Cartesian ESFTs.

Definition 8 Functions f, g: X → 2Y are one-equal, f 1= g, if for all x ∈ X , if x ∈ D(f) ∩
D(g) then |f(x) ∪ g(x)| = 1. Let

f � g(x) def=
{
f(x) ∪ g(x), if x ∈ D(f) ∩ D(g);
∅, otherwise.
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Proposition 1 f 1= g iff f � g is single-valued.

Note that f 1= f iff f is single-valued. Thus, one-equality is a more refined notion than
single-valuedness, because an effective construction of A � B such that TA�B = TA � TB
may not always be feasible or even possible for some classes of transducers.

Definition 9 Functions f, g: X → 2Y are domain-equivalent if D(f) = D(g).

Definitions 8 and 9 are lifted to (E)SFTs. For domain-equivalent single-valued transducers
A and B, A

1= B implies equivalence of A and B (TA = TB ).

4.1 Equivalence of ESFTs is undecidable

We now show that one-equality of ESFTs over decidable label theories is undecidable in
general.

Theorem 8 (One-equality) One-equality of ESFTs with lookahead 2, over quantifier free
successor arithmetic and tuples is undecidable.

Proof We give a reduction from the domain intersection problem of Theorem 3. Let A1

and A2 be ESFAs with lookahead 2 over quantifier free successor arithmetic and tuples. We
construct ESFTs A′

i , for i ∈ {1, 2}, as follows:

A′
i =

(
QAi , q

0
Ai

,
Ai ∪
{
p

ϕ/[i]−−→
k

•
∣∣∣∣ p ϕ−→

k
• ∈ FAi

})

So TA′
i
(t) = {[i]} if t ∈ D(Ai ) and TA′

i
(t) = ∅ otherwise. Let f = TA′

1
� TA′

2
. So

– |f(t)| = 0 iff t /∈ D(A1) ∪ D(A2);
– |f(t)| = 1 iff t ∈ D(A1) ∪ D(A2) and t /∈ D(A1) ∩ D(A2);
– |f(t)| = 2 iff t ∈ D(A1) ∩ D(A2).

It follows that A′
1

1= A′
2 iff (by Proposition 1) f is single-valued iff D(A1) ∩ D(A2) = ∅.

Now use Theorem 3. ��

4.1.1 Equivalence symbolic finite transducers with look-back

In this section we briefly describe a model that is tightly related to ESFTs and for which
equivalence is also undecidable. Symbolic finite transducers with look-back k (k-SLTs) [2]
have a sliding window of size k that allows, in addition to the current input character, ref-
erences of up to k − 1 previous characters (using predicates of arity k). All the states of
an SLTs are final and are associated with a constant output. In [2] it is wrongly claimed
that equivalence of SLTs is decidable. We can prove using the same technique shown in
the proof of Theorem 8 that one-equality is also undecidable for SLTs. We do not for-
mally define SLTs here, but we briefly explain why the proof of Theorem 8 extends to
this model. We let σ = N

3 be the input sort and represent configurations of a Minsky
machine in the same way we discussed in the proof of Theorem 3. Unlike ESFTs, SLTs do
not consume k symbols at a time and can therefore read the same input character multiple
times using look-back. We can construct an SLT A that when reading each character in the
input uses the predicate ϕstep defined in Theorem 8 to check whether the current config-
uration of the Minsky machine follows from the previous one. Finally, the state following
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the accepting configuration outputs the constant a (every other state outputs ε). The SLT
A outputs ε on every run that is not an accepting one for the Minsky machine and a on
the accepting run (if it exists). We can now construct a simple SLT B with look-back 1
with one transition defined on the predicate true that always outputs ε. The two SLTs A
and B are one-equal iff the Minsky machine does not halt (i.e. the first SLT never outputs
a).

4.2 Equivalence of Cartesian ESFTs is decidable

This is the main decidability result of the paper and it extends the corresponding result

for SFTs [22, Theorem 1]. We use the following definitions. A transition, p
ϕ/ f−−→
�

q

where � > 1, ϕ is Cartesian and W(ϕ) = (a1, . . . , a�), is represented, given ϕi =
λx .ϕ(a1, . . . , ai−1, x, ai+1, . . . , a�), by the following path of split transitions,

p
ϕ1/ f−−→
1

p1
ϕ2/⊥−−−→
1

p2 . . . p�−1
ϕ�/⊥−−−→
1

q

where pi for 1 ≤ i < � are new temporary states, and the output f is postponed until all
input elements have been read. Let 
s

A denote such split view of 
A. Here we assume that
all finalizers have lookahead zero, since we do not assume ESFTs here to be deterministic.

Example 2 It is trivial to transform any ESFT into an equivalent (possibly nondeterministic)
form where all finalizers have zero lookahead. Consider the ESFT Base64encode in Exam-
ple 1. In the last two finalizers, replace • with a new state p1 and add the new finalizer

p1
true/[]−−−→

0
•.

Definition 10 Let A and B be Cartesian ESFTs with same input and output types and zero-
lookahead finalizers. The product of A and B is the following product ESFT A×B. The
initial state q0A×B of A×B is (q0A, q0B). The states and transitions of A×B are obtained as
the least fixed point of

(p, q) ∈ QA×B

p
ϕ/ f−−→
1

p′ ∈ 
s
A

q
ψ/g−−→
1

q ′ ∈ 
s
B

⎫⎪⎪⎬
⎪⎪⎭

IsSat(ϕ∧ψ)�⇒ (
p′, q ′) ∈ QA×B , (p, q)

ϕ∧ψ/( f,g)−−−−−−→
1

(
p′, q ′) ∈ 
A×B

Let FA×B be the set of all rules (p, q)
true/(v,w)−−−−−−→

0
• such that p

true/v−−−→
0

• ∈ FA, q
true/w−−−→

0
• ∈

FB , and (p, q) ∈ QA×B . Finally, remove from QA×B (and 
A×B ) all dead ends (non-initial
states from which • is not reachable).

We lift the definition of transductions to product ESFTs. A pair-state (p, q) ∈ QA×B is
aligned if all transitions from (p, q) have outputs ( f, g) such that f �= ⊥ and g �= ⊥. The

relation
/−→→A×B is defined analogously to ESFTs.

Lemma 1 (Product) For all aligned (p, q) ∈ QA×B, u ∈ Σ∗, v,w ∈ Γ ∗:

(p, q)
u/(v,w)−−−−→→A×B • ⇔ p

u/v−−→→A • ∧ q
u/w−−→→B •.

We define also, for all u ∈ Σ∗, TA×B(u)
def= {(v,w) | q0A×B

u/(v,w)−−−−→→ •} and D(A×B)
def=

D(TA×B). Lemma 1 implies that D(A×B) = D(A) ∩ D(B) and A � 1= B iff there exists u
and v �= w such that (v,w) ∈ TA×B(u).
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Next we prove an alignment lemma that allows us to either effectively eliminate all non-
aligned pair-states from A×B without affecting TA×B or else to establish that A � 1= B. A
product ESFT is aligned if all pair-states in it are aligned.

Lemma 2 (Alignment) If A
1= B then there exists an aligned product ESFT that is equivalent

to A×B. Moreover, there is an effective procedure that either constructs it or else proves that
A � 1= B, if the label theory is decidable.

Proof The product A×B is incrementally transformed by eliminating non aligned pair-states
from it. Each iteration preserves equivalence. Using depth-first search, initialize the search
frontier to be {q0A×B}. Pick (and remove) a state (p, q) from the frontier and consider all
transitions starting from it. The main two cases are the following:

1. If there are transitions from (p, q) where both the A-output f and the B-output g are
(σ � → γ )-sequences with equal lookahead (say � = 2):

(p, q)
ϕ/( f,g)−−−−→

1
(p1, q1)

ψ/(⊥,⊥)−−−−−→
1

(p2, q2)

replace the path with the following combined transition with lookahead 2

(p, q)
λ(x0,x1)·ϕ(x0)∧ψ(x1)/( f,g)−−−−−−−−−−−−−−−−→

2
(p2, q2).

and add (p2, q2) to the frontier unless (p2, q2) has already been visited. Note that
(p2, q2) ∈ QA × QB and thus (p2, q2) is aligned.

2. Assume there are transitions where the A-output f is a (σ k → γ )-sequence and the
B-output g is a (σ � → γ )-sequence (k �= �, say k = 2 and � = 1):

(p, q)
ϕ/( f,g)−−−−→ (p1, q1)

ψ/(⊥,g1)−−−−−→ (p2, q2)

So p1 is temporary while q1 is not.
Decide if f can be split into two independent (σ → γ )-sequences f1 and f2 such that for
all a1 ∈ [[ϕ]] and a2 ∈ [[ψ]], [[ f ]](a1, a2) = [[ f1]](a1) · [[ f2]](a2). To do so, choose h1 and
h2 such that f = λ(x, y) · h1(x, y) · h2(x, y) (note that the total number of such choices
is | f | + 1 where | f | is the length of the output sequence), let f1 = λx · h1(x,W(ψ)),
f2 = λx · h2(W(ϕ), x) and check validity of the split predicate

∀x y ((ϕ(x) ∧ ψ(y)) ⇒ f (x, y) = f1(x) · f2(y))

If there exists a valid split predicate then pick such f1 and f2, and replace the above path
with

(p, q)
ϕ/( f1,g)−−−−−→ (p′

1, q
′
1)

ψ/( f2,g1)−−−−−→ (p2, q2)

where (p′
1, q

′
1) is a new aligned pair-state added to the frontier.

Suppose that splitting fails. We show that A � 1= B, by way of contradiction. Assume
A

1= B.
Since splitting fails, the following dependency predicates are satisfiable:

D1 = λ(x, x ′, y) · ϕ(x) ∧ ϕ(x ′) ∧ ψ(y) ∧ f (x, y) �= f (x ′, y)
D2 = λ(x, y, y′) · ϕ(x) ∧ ψ(y) ∧ ψ(y′) ∧ f (x, y) �= f (x, y′)

Let (a1, a′
1, a2) = W(D1) and (e1, e2, e′

2) = W(D2). Assume that A
1= B. We proceed

by case analysis over | f |. We know that | f | ≥ 1, or else splitting is trivial.
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(a) Assume first that | f | = 1. Let

[b] = [[ f ]](a1, a2), [b′] = [[ f ]](a′
1, a2), [d] = [[ f ]](e1, e2), [d ′] = [[ f ]](e1, e′

2).

Thus b �= b′ and d �= d ′.
Since (p, q) is aligned, and (p1, q1) is reachable and alive (by construction of A×B,
• is reachable from (p1, q1)), there exists α, β ∈ Σ∗, u1, u2, v1, v2, v3, v4 ∈ Γ ∗,
such that, by IsSat(D1),

p0
α/u1−−→→ p

[a1,a2]/[b]−−−−−−→→ p2
β/u2−−→→A •

q0
α/v1−−→→ q

[a1]/[[g]](a1)−−−−−−−→ q1
[a2]·β/v2−−−−−→→B •

⎫⎬
⎭

(A
1=B)�⇒ u1 · [b] · u2

= v1 · [[g]](a1) · v2

p0
α/u1−−→→ p

[a′
1,a2]/[b′]−−−−−−→→ p2

β/u2−−→→A •
q0

α/v1−−→→ q
[a′

1]/[[g]](a′
1)−−−−−−−→ q1

[a2]·β/v2−−−−−→→B •

⎫⎪⎬
⎪⎭

(A
1=B)�⇒ u1 · [b′] · u2

= v1 · [[g]](a′
1) · v2

By b �= b′, |v1| ≤ |u1| < |v1 · [[g]](a1)| = |v1| + |g|. Also, by IsSat(D2),

p0
α/u1−−→→ p

[e1,e2]/[d]−−−−−−→→ p2
β/u2−−→→A •

q0
α/v1−−→→ q

[e1]/[[g]](e1)−−−−−−−→ q1
[e2]·β/v3−−−−−→→B •

⎫⎬
⎭

(A
1=B)�⇒ u1 · [d] · u2

= v1 · [[g]](e1) · v3

p0
α/u1−−→→ p

[e1,e′
2]/[d ′]−−−−−−→→ p2

β/u2−−→→A •
q0

α/v1−−→→ q
[e1]/[[g]](e1)−−−−−−−→ q1

[e′
2]·β/v4−−−−−→→B •

⎫⎪⎬
⎪⎭

(A
1=B)�⇒ u1 · [d ′] · u2

= v1 · [[g]](e1) · v4

By d �= d ′, |v1 · [[g]](e1)| = |v1| + |g| ≤ |u1|. But |u1| < |v1| + |g|. E
(b) Assume that f = λ(x, y).[ f1(x, y), f2(x, y)] (the case for | f | > 2 is similar). Since

f cannot be split, either f1(x, y) depends on y (modulo ψ) or f2(x, y) depends on
x (modulo ϕ).
i. Suppose f1(x, y) does not depend on y. Then f2(x, y) must depend of both x

and y or else f can be split. We can then choose values a1, a′
1, e1 ∈ [[ϕ]] and

a2, e2, e′
2 ∈ [[ψ]] such that [[ f2]](a1, a2) �= [[ f2]](a′

1, a2) and [[ f2]](e1, e2) �=
[[ f2]](e1, e′

2). A contradiction is reached similarly to the case of | f | = 1.
ii. The case when f2(x, y) does not depend on x is symmetrical to (i).
iii. Suppose f1(x, y) depends on y and f2(x, y) depends on x . Choose e1, a1, a′

1 ∈
[[ϕ]] and e2, e′

2, a2 ∈ [[ψ]] such that [[ f1]](e1, e2) �= [[ f1]](e1, e′
2) and

[[ f2]](a1, a2) �= [[ f2]](a′
1, a2). Let

b1 = [[ f1]](e1, e2), b′
1 = [[ f1]](e1, e′

2), b2 = [[ f2]](a1, a2),
b′
2 = [[ f2]](a′

1, a2)

Since (p, q) is input-synchronized, and (p1, q1) is reachable and alive, there
exists α, β ∈ Σ∗, u1, u2, v1, v2, v3, v4 ∈ Γ ∗, such that:

p0
α/u1−−→→ p

[a1,a2]/[_,b2]−−−−−−−−→→ p2
β/u2−−→→A •

q0
α/v1−−→→ q

[a1]/[[g]](a1)−−−−−−−→ q1
[a2]·β/v2−−−−−→→B •

⎫⎬
⎭

(A
1=B)�⇒ u1 · [_, b2] · u2

= v1 · [[g]](a1) · v2

p0
α/u1−−→→ p

[a′
1,a2]/[_,b′

2]−−−−−−−−→→ p2
β/u2−−→→A •

q0
α/v1−−→→ q

[a′
1]/[[g]](a′

1)−−−−−−−→ q1
[a2]·β/v2−−−−−→→B •

⎫⎪⎬
⎪⎭

(A
1=B)�⇒ u1 · [_, b′

2] · u2
= v1 · [[g]](a′

1) · v2
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Since b2 �= b′
2 it must be that |u1| + 1 < |v1 · [[g]](a1)| = |v1| + |g| Also,

p0
α/u1−−→→ p

[e1,e2]/[b1,_]−−−−−−−→→ p2
β/u2−−→→A •

q0
α/v1−−→→ q

[e1]/[[g]](e1)−−−−−−−→ q1
[e2]·β/v3−−−−−→→B •

⎫⎬
⎭

(A
1=B)�⇒ u1 · [b1, _] · u2

= v1 · [[g]](e1) · v3

p0
α/u1−−→→ p

[e1,e′
2]/[b′

1,_]−−−−−−−→→ p2
β/u2−−→→A •

q0
α/v1−−→→ q

[e1]/[[g]](e1)−−−−−−−→ q1
[e′
2]·β/v4−−−−−→→B •

⎫⎪⎬
⎪⎭

(A
1=B)�⇒ u1 · [b′

1, _] · u2
= v1 · [[g]](e1) · v4

Thus, since b1 �= b′
1, we have |v1 · [[g]](e1)| = |v1| + |g| ≤ |u1|. But |u1| <

|v1| + |g|. E
The remaining cases are similar and effectively eliminate all non-aligned pair-states from
A×B or else establish that A � 1= B. ��

Assume A×B is aligned and let �A×B�be the followingproduct SFT (product ESFTall of

whose transitions have lookahead1) over the input typeσ ∗. For each p
λx̄ ·ϕ(x0,x1,...,x�−1)/( f,g)−−−−−−−−−−−−−−−→

�

q in 
A×B let y be a variable of sort σ ∗ and let ϕ1 be the σ ∗-predicate

λy.ϕ(y[0], y[1], . . . , y[� − 1]) ∧ tail�(y) = []
∧
i<�

taili (y) �= []

where y[i] is the term that accesses the i’th head of y and taili (y) is the term that accesses
the i’th tail of y. Lift f to the (σ ∗ → γ )-sequence f1 = λy. f (y[0], y[1], . . . , y[� − 1]) and
lift g similarly to g1. Add the rule p

ϕ1/( f1,g1)−−−−−−→
1

q as a rule of �A×B�. Thus, the domain type

of T�A×B� is (Σ∗)∗ while the range type is 2Γ ∗×Γ ∗
. For u = [u0, u1, . . . , un] ∈ (Σ∗)∗, let

�u� def= u0 · u1 . . . un in Σ∗.

Lemma 3 (Grouping) Assume A×B is aligned. For all u ∈ Σ∗ and v,w ∈ Γ ∗: (v,w) ∈
TA×B(u) iff ∃z(u = �z� ∧ (v,w) ∈ T�A×B�(z)).

Proof The type lifting does not affect the semantics of the label-theory specific transforma-
tions. ��

Note that, [[a1, a2], [a3]] and [[a1], [a2, a3]] may be distinct inputs of the lifted product,
while both correspond to the same flattened input [a1, a2, a3] of the original product. Intu-
itively, the internal subsequences correspond to input alignment boundaries of the two ESFTs
A and B.

So, in particular, grouping preserves the property: there exists an input u and outputs
v �= w such that (v,w) ∈ TA×B(u). We use the following lemma that is extracted from the
main result in [22, Proof of Theorem 1].

Lemma 4 (SFT one-equality [22]) Let C be a product SFT over a decidable label theory.
The problem of deciding if there exist u and v �= w such that (v,w) ∈ TC (u) is decidable.

We can now prove the main decidability result of this paper.

Theorem 9 (Cartesian ESFT one-equality)One-equality of Cartesian ESFTs over decidable
label theories is decidable.
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Proof Let A and B be Cartesian ESFTs. Construct A×B. By the Product Lemma 1,
D(A×B) = D(A) ∩ D(B) and A � 1= B iff there exist u and v �= w such that (v,w) ∈
TA×B(u). By using the Alignment Lemma 2, construct aligned product SFT C such that

TC = TA×B or else determine that A � 1= B. Now lift C to �C�, and by using the Group-

ing Lemma 3, A � 1= B iff there exist u and v �= w such that (v,w) ∈ T�C�(u). Finally,
observe that adding the sequence operations for accessing the head and the tail of sequences
in the lifting construction do, by themselves, not affect decidability of the label theory, apply
Lemma 4. ��
Since a Monadic ESFT can be effectively transformed into and equivalent Cartesian ESFT
(Theorem 9) we get the following result.

Corollary 1 (Monadic ESFT one-equality) One-equality of monadic ESFTs over decidable
label theories is decidable.

5 Composition of extended symbolic finite transducers

In this section we show few preliminary results on the problem of composing ESFTs.We first
show that ESFTs and Cartesian ESFTs are not closed under composition. Moreover, even if
the composition of two ESFTs is definable by another ESFT, it is undecidable to compute
such an ESFT. Last, we give a semi-decision procedures for composing ESFTs.

5.1 ESFTs are not closed under composition

Given f : X → 2Y andx ⊆ X , f(x) def= ⋃
x∈x f(x). Given f : X → 2Y andg : Y → 2Z , f◦g(x) def=

g(f(x)). This definition follows the convention in [9], i.e., ◦ applies first f , then g, contrary
to how ◦ is used for standard function composition. The intuition is that f corresponds to the
relation Rf : X × Y , Rf

def= {(x, y) | y ∈ f(x)}, so that f ◦ g corresponds to the binary relation
composition Rf ◦ Rg

def= {(x, z) | ∃y(Rf (x, y) ∧ Rg(y, z))}.
Definition 11 A class of transducer C is closed under composition iff for every T1 and T2
that are C-definable T1 ◦ T2 is also C-definable.

Theorem 10 ESFTs are not closed under composition.

Proof We show two Cartesian ESFTs whose composition cannot be expressed by any ESFT.
Let A be following ESFT over Z→Z

A =
(

{q}, q,

{
q

true/[x1,x0]−−−−−−→
2

q, q
true/[]−−−→

0
•
})

.

and B be following ESFT over Z→Z

B =
({

q0, q1}, q0, {q0 true/[x0]−−−−−→
1

q1, q1
true/[x1,x0]−−−−−−→

2
q1, q1

true/[x0]−−−−−→
1

•
})

The two transformations behave as in the following examples:

TA([a0, a1, a2, a3, a4, a5, a6, . . .]) = [a1, a0, a3, a2, a5, a4, a7, . . .]
TB([b0, b1, b2, b3, b4, b5, . . .]) = [b0, b2, b1, b4, b3, b6, . . .]
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When we compose TA and TB we get the following transformation:

TA◦B
([
a0, a1, a2, a3, a4, a5, a6, . . .

]) = [
a1, a3, a0, a5, a2, a7, . . .

]
Intuitively, looking at TA◦B we can see that no finite lookahead seems to suffice for this
function. Formally, for each ai such that i ≥ 0, TA◦B is the following function:

– if i = 1, ai is output at position 0;
– if i is even and greater than 1, ai is output at position i − 2;
– if i is equal to k − 2 where k is the length of the input, ai is output at position k − 1;
– if i is odd and different from k − 2, ai is output at position i + 2.

It is easy to see that the above transformation cannot be computed by any ESFT. Let’s assume
by contradiction that there exists an ESFT that computes TA◦B . We consider the ESFT C
with minimal lookahead (let’s say n) that computes TA◦B .

We now show that on an input of length greater than n + 2, C will misbehave. The first
transition of C that will apply to the input will have a lookahead of size l ≤ n. We now have
three possibilities (the case n = k − 2 does not apply due to the length of the input):

l = 1: before outputting a0 (at position 2) we need to output a1 and a3 which we have
not read yet. Contradiction;
l is odd: position l + 1 is receiving al−1 therefore C must output also the elements at
position l. Position l should receive al+2 which is not reachable with a lookahead of just
l. Contradiction;
l is even and greater than 1: since l > 1, position l is receiving al−2. This means C is
also outputting position l − 1. Position l − 1 should receive al+1 which is not reachable
with a lookahead of just l. Contradiction;

We nowhave that n cannot be theminimal lookaheadwhich contradicts our initial hypothesis.
Therefore TA◦B is not ESFT-definable. ��
Corollary 2 The composition of two Cartesian ESFTs is not always ESFT definable.

We now show that in general the composition of two ESFTs cannot be effectively con-
structed.

Theorem 11 (Composition is not constructible) Given two ESFTs with lookahead 2 over
quantifier free successor arithmetic and tuples, A and B, such that composition f = TA◦B
is ESFT definable, one cannot effectively construct an ESFT that defines the transformation
f .

Proof Given a Minsky machine M we construct two ESFTs A and B such that their compo-
sition A ◦ B is definable by an ESFT C such that:

– if M halts on input (0, 0) with a non-zero output in r1, C is defined exactly on the run of
M , and

– otherwise C is the empty transducer that is undefined on any input.

The proof is analogous to that of Theorem 3 andwe use the composition of ESFTs to simulate
the intersection of two ESFAs. Consider the predicates defined in the proof of Theorem 3.
Let

A =
(

{p0}, p0,
{
p0

ϕstep/[x0,x1]−−−−−−−→
2

p0, p0
true/•−−−→

0

})
, and

B =
(

{q0, q1}, q0,
{
q0

ϕini/[x0]−−−−−→
1

q1, q1
ϕstep/[x0,x1]−−−−−−−→

2
q1, q1

ϕfin/[x0]−−−−−→
1

•
})

.
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We have that α ∈ D(A ◦ B) iff α is a valid run of M , i.e., α[0] is the initial configuration,
α[i +1] is a valid successor configuration of α[i] (this follows from A for all odd i < |α| and
from B for all even i < |α|), andα[|α|−1] is a halting configuration. SinceM is deterministic
and we fix the initial configuration, we have that D(A ◦ B) = {α} iff there exists α, such
that M halts on α or D(A ◦ B) = ∅ otherwise. In the first case we will have TA◦B(α) = α

and undefined on any input different from α. In the second case TA◦B is always undefined.
In both cases TA◦B is ESFT definable. Let’s call C the ESFT that implements TA◦B . Since
emptiness of ESFT is a decidable problem, we can decide if M halts on input (0, 0) with a
non-zero output in r1. Since, the latter is an undecidable problem we have a contradiction
and therefore the composition of two ESFTs cannot be computed. ��

5.1.1 Composition of symbolic finite transducers with look-back

In this section we discuss how SLTs, the model we presented in Sect. 4.1.1, compares to
ESFTs for what concern composition. We recall that symbolic finite transducers with look-
back k (k-SLTs) [2] have a sliding window of size k that allows, in addition to the current
input character, references of up to k−1 previous characters (using predicates of arity k). All
the states of an SLTs are final and are associated with a constant output. In [2] it is wrongly
claimed that SLTs are closed under composition.We briefly explain why this is the case using
two SLTs over the sort σ = N. Consider an SLT A that echoes the first element of the input,
then deletes all the subsequent elements that are smaller or equal than 5, and finally outputs
the first element that is greater than 5. For example on the input sequence [1, 2, 4, 2, 5, 6],
the SLT A outputs the sequence [1, 6]. We observe that on any input sequence of the form
a1 . . . an such that for every 1 < i ≤ n, ai ≤ 5, and an > 5, the SLT A outputs the sequence
a1an . Next consider the SLT B that given a sequence a1a2 outputs the sequence a2a1 (this can
be implemented by an SLT with look-back 2). On any input sequence of the form a1 . . . an
such that for every 1 < i ≤ n, ai ≤ 5, and an > 5, the function resulting by composing
A with B should output the sequence ana1. But this function can’t be implemented using
finite look-back. In particular, in order to output the symbol a1 to the right of an , the symbol
a1 must be read by a transition that also reads the symbol an . But since n can be arbitrarily
large, no finite look-back k would suffice.

5.2 A practical algorithm for composing ESFTs

In this section we present a sound algorithm for composing ESFTs that is not guaranteed to
work in all cases, but works for many practical purposes [6]. Given two ESFTs, the algorithm
first transforms them into Symbolic Transducers with registers [22] (STs), and by using the
fact that STs are closed under composition, it computes their composition. The next step is a
register elimination algorithm that tries to build an ESFT that is equivalent to the composed
ST. This second step is sound but incomplete, and this is due to the fact that ESFTs are not
closed under composition. Recall that the closure fails already for restricted classes of ESFTs
(Corollary 2).

5.2.1 Symbolic transducers with registers

Registers provide a practical generalization of SFTs. SFTswith registers are called STs, since
their state space (reachable by registers) may no longer be finite. An ST uses a register as a
symbolic representation of states in addition to explicit (control) states. The rules of an ST are
guarded commands with a symbolic input and output component that may use the register. By
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using Cartesian product types, multiple registers are represented with a single (compound)
register. Equivalence of STs is undecidable but STs are closed under composition [22].

Definition 12 A Symbolic Transducer or ST over σ → γ and register type τ is a tuple
A = (Q, q0, ρ0, R),

– Q is a finite set of states;
– q0 ∈ Q is the initial state;
– ρ0 ∈ U τ is the initial register value;
– R is a finite set of rules R = 
 ∪ F ;

– 
 is a set of transitions r = (p, ϕ, o, u, q), also denoted p
ϕ/o;u−−−→ q ,

– p ∈ Q is the start state of r ;
– ϕ, the guard of r , is a (σ × τ)-predicate;
– o, the output of r , is a finite sequence of ((σ × τ)→ γ )-terms;
– u, the update of r , is a ((σ × τ)→ τ)-term;
– q ∈ Q is the end state of r .

– F is a set of final rules r = (p, ϕ, o), also denoted p
ϕ/o−−→ •,

– p ∈ Q is the start state of r ;
– ϕ, the guard of r , is a τ -predicate;
– o, the output of r , is a finite sequence of (τ → γ )-terms.

All ST rules in R have lookahead 1 and all final rules have lookahead 0. Longer lookaheads
are not needed because registers can be used to record history, in particular they may be used
to record previous input characters. A canonical way to do so is to let τ be σ ∗ that records
previously seen characters, where initially ρ0 = [], indicating that no input characters have
been seen yet.

An ESFT transition

p
λ(x0,x1,x2).ϕ(x0,x1,x2)/λ(x0,x1,x2).o(x0,x1,x2)−−−−−−−−−−−−−−−−−−−−−−−−−−−→

3
q

can be encoded as the following set of ST rules where p1 and p2 are new states

p
(λ(x,y).true)/[];λ(x,y).cons(x,nil)−−−−−−−−−−−−−−−−−−−→ p1 p1

(λ(x,y).true)/[];λ(x,y).cons(x,y)−−−−−−−−−−−−−−−−−−−→ p2

p2
(λ(x,y).ϕ(y[1],y[0],x))/λ(x,y).o(y[1],y[0],x);λ(x,y).nil−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ q

Final rules are encoded similarly. The only difference is that q above is • and the register
update is not used in the third rule. An ST rule (p, ϕ, o, u, q) ∈ R denotes the following set
of concrete transitions:

[[(p, ϕ, o, u, q)]] def= {(p, s) a/[[o]](a,s)−−−−−−→ (q, [[u]](a, s)) | (a, s) ∈ [[ϕ]]}
A final ST rule (p, ϕ, o) ∈ F denotes the following set of concrete transitions:

[[(p, ϕ, o)]] def= {
(p, s)

[]/[[o]](s)−−−−−→ • | s ∈ [[ϕ]]}

The reachability relation p
a/b−−→→A q for a ∈ Σ∗, b ∈ Γ ∗, p ∈ (Q×U τ ), q ∈ (Q×U τ )∪{•}

is defined analogously to ESFTs and TA(a)
def= {b | (q0, ρ0)

a/b−−→ •}.
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The following example illustrates a simplified case when an ESFT is turned into an
ST by saving a single character in a register, thus τ = σ in this case. The resulting ST

is then composed with itself. We abbreviate an ESFT rule p
λx̄ .ϕ(x̄)/λx̄ .o(x̄)−−−−−−−−−→

k
q , where

|x̄ | = k, by p
ϕ(x̄)/o(x̄)−−−−−→

k
q , and an ST rule p

λ(x,y).ϕ(x,y)/λ(x,y).o(x,y);λ(x,y).u(x,y)−−−−−−−−−−−−−−−−−−−−−−−−→ q by

p
ϕ(x,y)/o(x,y);u(x,y)−−−−−−−−−−−−→ q .

Example 3 Let A be an ESFT with the single state q and the rules

q
true/[x1,x0,x0]−−−−−−−−→

2
q, q

true/[]−−−→
0

•.

For example, A transforms the input [0, 1, 2, 3] into the output [1, 0, 0, 3, 2, 2]. The corre-
sponding ST of A, Ast, has the following transitions

q
true/[]; x−−−−−→ p, p

true/[x,y,y]; 0−−−−−−−−→ q, q
true/[]−−−→ •,

where y refers to the register, x refers to the current input, p is a new state, and the initial
register value is assumed to be 0. The first transition outputs nothing, and saves the current
character in the register. The second transition outputs the current character followed by
outputting the register twice in a row, and resets the register back to its initial value. Let us
consider the self-composition Ast ◦ Ast. The register of Ast ◦ Ast has the type σ × σ whose
first component y0 is the register of first instance of A and whose second component y1 is
the register of the second instance of A. The composed transitions are:

q0
true/[];(x,y1)−−−−−−−→ q1, q1

true/[y0,x,x];(0,y0)−−−−−−−−−−−→ q2,

q2
true/[];(x,y1)−−−−−−−→ q3, q3

true/[x,y1,y1,y0,y0,y0];(0,0)−−−−−−−−−−−−−−−−→ q0, q0
true/[]−−−→ •

where q0 is the initial state, initially register y = (0, 0), i.e., y0 = y1 = 0. Only q0 is a final
state (has a finalizer with the empty output).

5.2.2 A register elimination algorithm

In this section we describe an algorithm for transforming a class of STs into ESFTs. The
core idea that underlies the register elimination algorithm is a symbolic generalization of
the classic state elimination algorithm for converting an NFA into a regular expression (see
e.g. [26, Sect. 3.3]), that uses the notion of extended automata whose transitions are labelled
by regular expressions. Here the labels of the ST are predicates over sequences of ele-
ments of fixed lookahead. Essentially the intermediate data structure of the algorithm is an

“Extended ST”.We often abbreviate a transition p
λ(x,y).ϕ(x,y)/λ(x,y).o(x,y);λ(x,y).u(x,y)−−−−−−−−−−−−−−−−−−−−−−−−→ q by

p
ϕ(x,y)/o(x,y);u(x,y)−−−−−−−−−−−−→ q .

Input: ST Aσ/γ ;τ .
Output: ⊥ or an ESFT over σ → γ that is equivalent to A.

1. Lift A to the input type σ ∗. Replace each transition p
ϕ(x,y)/o(x,y);u(x,y)−−−−−−−−−−−−→ q with the

following transition where nil is the empty list of type σ ∗.

p
x �=nil∧ϕ(head(x),y)/o(head(x),y);(head(x),y)−−−−−−−−−−−−−−−−−−−−−−−−−−−→

(1)
q
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Intuitively, x must be a non-empty list, i.e., input nil is not allowed. In the rules we
indicate, for clarity, that x is a list of length at least k by annotating the transition
with subscript (k). Apply similar transformation to final rules.

2. Repeat the steps 2.a–2.c while there exists a state that does not have a self loop (a
self loop is a transition whose start and end states are equal).

2.a Choose a state p that is not the state of any self loop and is not the initial state.

2.b For all transitions p1
ϕ1/o1;u1−−−−−→

(k)
p

ϕ2/o2:u2−−−−−→
(�)

p2 in R:

let ϕ = λ(x, y).ϕ1(x, y) ∧ ϕ2(tailk(x), u1(x, y))
let o = λ(x, y).o1(x, y) · o2(tailk(x), u1(x, y))
let u = λ(x, y).u2(tailk(x), u1(x, y))

if IsSat(ϕ) then add p1
ϕ/o;u−−−→
(k + �)

p2 as a new rule.

2.c Delete the state p.
3. If all guards and outputs do not depend on the register, remove the register from all

the rules in the ST and return the resulting ESFT. Otherwise return ⊥.

After the first step, the original ST accepts an input [a0, a1, a2] and produces output v

iff the transformed ST accepts [cons(a0, _), cons(a1, _), cons(a2, _)] and produces output v,
where the tails _ are unconstrained and irrelevant. Step 2 further groups the inputs characters,
e.g., to [cons(a0, cons(a1, _)), cons(a2, _)], etc, while maintaining this input/output property
with respect to the original ST. Finally, in step 3, turning the ST into an ESFT, leads to
elimination of the register as well as lowering of the character sort back to σ , and replacing
each occurrence of head(tailk(x)) with corresponding individual tuple element variable xk .
Soundness of the algorithm follows.

The algorithm omits several implementation aspects that have considerable effect on
performance. One important choice is the order in which states are removed. In our imple-
mentation the states with lowest total number of incoming and outgoing rules are eliminated
first. It is also important to perform the choices in an order that avoids unreachable state
spaces. For example, the elimination of a state p in step 2 may imply that ϕ is unsatisfiable
and consequently that p2 is unreachable if the transition from p is the only transition leading
to p2. In this case, if p is reachable from the initial state, choosing p2 before p in step 2
would be wasteful.

For the class of STs inwhich no register value is passed through a loop the algorithmalways
succeeds. Intuitively this capture the cases in which there are no symbolic dependencies
between separate loop iterations. In other words, the register is only used through a fixed
number of states, and reset after that. The following example illustrates a case for which the
register elimination succeeds.

Example 4 Consider the ST Ast ◦ Ast from Example 3. We follow the steps of the algorithm
and show how the composed ST can be transformed into an equivalent ESFT.
Step 1: We lift the input type to σ ∗ so that a lifted character is a list (sequence of type σ ∗).
We let |x | > k abbreviate the formula

∧k
i=0 tail

k(x) �= nil. When |x | > i , we write xi for
the i’th element head(taili (x)) of x . Recall that y0 is the first component of the register and
y1 is the second component. The lifted transitions of Ast ◦ Ast are:

q0
x �=nil/[];(x0,y1)−−−−−−−−−→

(1)
q1, q1

x �=nil/[y0,x0,x0];(0,x0)−−−−−−−−−−−−−→
(1)

q2,

q2
x �=nil/[];(x0,y1)−−−−−−−−−→

(1)
q3, q3

x �=nil/[x0,y1,y1,y0,y0,y0];(0,0)−−−−−−−−−−−−−−−−−−→
(1)

q0, q0
true/[]−−−→ •
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Repeat Step 2: Choose p = q1. Eliminate q1 by merging the first two transitions. Here
k = � = 1. Observe that x0 in the second rule becomes x0+k = x1 and y0 refers to the first
sub-register update of the first transition, that is x0. The merged transition is

q0
|x |>1/[x0,x1,x1];(0,x1)−−−−−−−−−−−−−→

(2)
q2

Next, choose p = q2. Eliminate q2 similarly by replacing the new transition to q2 and the
original transition from q2 by

q0
|x |>2/[x0,x1,x1];(x2,x1)−−−−−−−−−−−−−−→

(3)
q3

Finally, choose p = q3. Eliminate q3 similarly by replacing the new transition to q3 and the
original transition from q3 by

q0
|x |>3/[x0,x1,x1,x3,x0,x0,x2,x2,x2];(0,0)−−−−−−−−−−−−−−−−−−−−−−−→

(4)
q0

Step 3: It is now safe to remove the register because it is not being used any more in any
guard or update. So the final ESFT, say AA, has the rules:

q0
true/[x0,x1,x1,x3,x0,x0,x2,x2,x2]−−−−−−−−−−−−−−−−−−−→

4
q0, q0

true/[]−−−→
0

•
where the lifting has been undone and here each variable xi is of type σ . For example
AA([0, 1, 2, 3]) = [0, 1, 1, 3, 0, 0, 2, 2, 2].

We now discuss the cases when the algorithm fails. We first discuss the cases when it
should fail, or else the algorithm would be unsound, and then identify two cases when it fails
due to incompleteness (w.r.t. the class of STs that have an equivalent ESFT).

We know from Theorem 10 that already Cartesian ESFTs are not closed under composi-
tion. For example, if we take the ESFTs A and B from the proof of Theorem10, first transform
them into equivalent STs and then compose the STs, then the resulting ST cannot be trans-
formed back into an ESFT. Although we know the algorithmwill fail, it is nevertheless useful
to see how this happens in the following example.

Example 5 Consider ESFTs A and B from the proof of Theorem 10. Modify B so that it
is deterministic, by letting the guard on the self-loop on q1 be x0 �= 0 and the guard on the
finalizer from q1 be x0 = 0. The composition Bst ◦ Ast, after lifting the input type, is then
the following ST (recall that Bst ◦ Ast(w) = Ast(Bst(w))):

If we apply the register elimination algorithm to this ST, it may first eliminate the state q2,

by creating the transition q1
|x |>1∧x0 �=0/[x1,y1];(0,x0)−−−−−−−−−−−−−−−−→

(2)
q1. After this step the algorithm stops

and returns ⊥. ��
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Another reason why the algorithm fails for some inputs is due to Theorem 11, which states
there are cases in which ESFTs can be composed, but their composition cannot be effectively
constructed. In particular composing the two ESFTs of Theorem 11 requires loop unrolling
in order to construct an equivalent ESFT. In this case the algorithm fails, as shown by the
following example.

Example 6 Consider again the ESFTs A and B from the proof of Theorem 10. This time
modify B so that the guard on the self-loop on q1 is x0 = 0 and the guard on the finalizer
from q1 is x0 �= 0. The composition Bst ◦ Ast, after lifting the input type, is then the following
ST, that is very similar to the one in Example 5:

If we apply the register elimination algorithm to this ST, it may again, first eliminate the state

q2, by creating the transition q1
|x |>1∧x0=0/[x1,y1];(0,0)−−−−−−−−−−−−−−−→

(2)
q1. The algorithm is not able to detect

that unrolling the loop once will remove the dependency on y1 from the output (because y1
will be fixed to 0 in all remaining iterations). The algorithm stops and returns ⊥. ��

The register elimination algorithm also returns undefined when the register is used in a
way that does not affect the transducer’s semantics. For example, if there is an output element
r − r where r is an integer valued register, then the value will always be 0. But the algorithm
does not perform any theory specific reasoning and will therefore not detect such cases.

5.2.3 A practical composition algorithm

We now have all the ingredients necessary to try to compose ESFTs. The algorithm proceeds
as follows. Given two ESFTs A and B:

1. compute two STs A′ and B ′ equivalent to A and B respectively;
2. compute a ST C ′ = A′ ◦ B ′;
3. run the register elimination algorithm on the ST C ′ and if it terminates output the ESFT

C equivalent to A ◦ B.

6 Experiments and potential applications

In this section we show how several practical applications can be modeled and verified using
ESFAs and ESFTs. We first use ESFTs to prove the correctness of some real world string
encoders and decoders. We then show how ESFAs and ESFTs can be useful in the context of
deep packet inspection and network protocol transformations. Finally we propose ESFTs as
a tool for the analysis of list manipulating programs. All our experiments are run using the
tools Bek2 and Bex3.

2 Bek is available at: http://www.rise4fun.com/Bek.
3 Bex is available at: http://www.rise4fun.com/Bex.
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Table 1 Analysed encoders (E)
and decoders (D), their
lookaheads, and analysis times

I is the identity transducer

Lookahead Analysis (ms)

E D E◦D 1= I D◦E 1= I

Utf8 2 4 16 24

Base64 3 5 53 19

Base32 5 8 8 12

Base16 1 2 2 1

Analysis of string encoders A string encoder E transforms input strings in a given format into
output strings in a different format. A decoder D inverts such a transformation. For coders E
and D to be correct, the following equalities should hold: E ◦ D

1= I and D ◦ E
1= I (where

I is the identity transducer).
We illustrated in Example 1 how the Base64 encoder and decoder can be modeled using

Cartesian ESFTs. Similarly, we can model Base32, Base16, and Utf8 coders. Using the
equivalence and composition procedures presented in this paper we proved that the equality
presented above hold for all these coders. Table 1 shows the corresponding running times.
The first half of Table 1 shows the lookahead sizes of both encoders and decoders, while the
second half shows the running times for checking correctness. Composition times (typically
1–2 ms) are included in the measurements.

Interestingly, during our experiments we identified wrong implementations of the Utf8
encoder/decoder for which the equivalence algorithm of Sect. 4 terminated, while the semi-
decision procedure presented in [6] did not terminate.

Deep packet inspection Fast identification of network traffic patterns is of vital importance
in network routing, firewall filtering, and intrusion detection. This task is addressed with the
name “deep packet inspection” (DPI) [20]. Due to performance constraints, DPI must be
performed in a single pass over the input. The simplest approach is to use DFAs and NFAs to
identify patterns. These representations are either not succinct or not streamable. Extended
finite automata (XFA) [20] make use of registers to reduce the state space while preserving
determinism and therefore deterministic ESFAs can be seen as a subclass of XFAs that are
able to deal with finite lookahead. Deterministic ESFA can also represent the alphabet sym-
bolically, which enables a new level of succinctness. We believe that deterministic ESFAs
can help achieve further succinctness. To support this hypothesis we observe that examples
shown in [20, Figs. 2, 3] can be represented as deterministic ESFAs with few transitions. For
example the language ˆ/\ncmd[ˆ\n]{200}$ can be succinctly modeled as a determin-
istic ESFAwith one transition!Moreover, the ability to compile ESFA to Symbolic Automata
with registers 5.2.1 makes this model appealing for efficient deterministic left-to-right DPI.

Network Protocol Conversions Deep packet inspection can be naturally extended by adding
datamanipulation. In this setting, we are interested in deterministic ESFTswhich can commit
their output at every transition andwithout having to process the rest of the input. Determinis-
tic ESFTs can be used to compute logs of network traffic or translate headers of one protocol
into another. As an example, a simplified translation from an IPv4 header to an IPv6 header4

can be implemented with a deterministic ESFT with less than 50 transitions. However, the
same transformation using an SFT would need to remember portions of the input packet and
therefore require more than 100000 states and transitions.

4 More information at http://www.cs.washington.edu/research/networking/napt/.
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Verification of List Manipulating Programs In [8] it was shown how SFTs can be used to
verify pre and post conditions of list manipulating programs. However, SFTs can only model
programs in which each node in the output list depends on at most one node in the input list.
ESFTs can be used to mitigate this problem as they can be used to model sequential pattern
matching. For example, the CAML guards x1::x2::xs -> (x1+x2)::(f2 xs) and
x1::x2::x3::xs -> (x1+x2+x3)::(f3 xs), can be naturally expressed as ESFT
transitions. Let’s consider two functions f2 and f3, both of type list int → list int , that
respectively contain the two guards defined above. These functions can bemodeled as ESFTs.
Using the one-equality algorithm of Sect. 4 and the composition algorithm of Sect. 5.2.3 we
were able to prove that ∀l. f3( f2 l) 1= f2( f3 l) in less than 1 ms.

Modeling tuple alphabets ESFTs also provide a natural way to extend SFTs to work with
tuple alphabets without changing the underlying solver. In particular, although the language
Bek [11] is optimized for 16 bits characters, an ESFT of lookahead can be used to model 32
bits characters without having to change the underlying solver.

7 Related work

7.1 From SFA/SFT to ESFA/ESFT

The concept of automata with predicates instead of concrete symbols was first mentioned
in [24] and was first discussed in [17] in the context of natural language processing. SFAs
are further studied in [7] in the context of automata minimization.

Symbolic finite transducers (SFTs) were originally introduced in [11] with a focus on
security analysis of sanitizers. The formal foundations and the theoretical analysis of the
underlying SFT algorithms, in particular, an algorithm for one-equality of SFTs, modulo
a decidable background theory is studied in [22]. Symbolic transducers (STs) that allow
the use of registers are also defined in [22]. Full equivalence of finite state transducers is
undecidable [10], and already so for very restricted fragments [12]. In the single-valued
case, decidability was established in [18], and extended to the finite-valued case in [3,25].
Symbolic finite transducers are extended to tree structures in [8].

ESFTs were introduced in [6] as a succinct and more analysable representation of a
subclass of symbolic transducers (STs). The main result in [6] is the register elimination
technique that provides a way to construct ESFTs from STs. The equivalence problem is
then studied in [5] where it is shown to be decidable for Cartesian ESFTs, and undecidable in
the general case. An algorithm for checkingwhether a predicate is monadic (finite disjunction
of Cartesian predicates) is proposed in [21].

Register elimination is further studied in [23] where it is called grouping and is combined
with explicit state-space exploration in order to extend the algorithm to a larger class of STs.
In [23] the algorithm is used in a pipeline of techniques for transforming Bek programs into
a parallelizable form.

7.2 Models over infinite alphabets

In recent years there has been considerable interest in automata that accept words over infinite
alphabets [13,19]. In this line of work, symbols can only be compared using equality and
arbitrary predicates are not allowed, making the proposed models incomparable to those
analyzed in this paper. In our paper, we focus on proving negative and positive properties of
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ESFAs and ESFTs over arbitrary decidable Boolean algebras. While we do not investigate
specific theories, it would be interesting to understand whether the properties we discussed
hold when considering an alphabet theory that only supports equality.

Symbolic visibly pushdown automata (SVPA) [4] operate over hierarchical words and can
use binary predicates to relate symbols appearing at different positions in the input, while
retaining decidable equivalence and Boolean closure properties. This is achieved by carefully
restricting what symbols can be related. SVPAs and ESFAs are orthogonal in expressiveness
and they operate over different structures (words vs nested words).

Symbolic finite transducers with look-back k (k-SLTs) [2] have a sliding window of size
k that allows, in addition to the current input character, references of up to k − 1 previous
characters. SLTs use only final states, because it is unclear how to support non-final states
in the context of learning. As we showed in this paper unlike what is claimed in [2], k-SLTs
are not closed under composition, and equivalence of k-SLTs is undecidable.

Streaming transducers [1] provide another recent symbolic extension of finite transducers
where the label theories are restricted to be total orders, in order to maintain decidability
of equivalence. Streaming transducers are largely orthogonal to SFTs or the extension of
ESFTs, as presented in the current paper. For example, streaming transducers do not allow
arithmetic, but can reverse the input, which is not possible with ESFTs.

7.3 Models over finite alphabets

Extended finite automata (XFA) are introduced in [20] for network packet inspection. XFAs
are a succinct representation of DFAs that uses registers to store and inspect values. History-
based finite automata [14] are another extension of DFAs introduced in the context of network
intrusion detection, that uses a single register (bit-vector) to keep track of the symbols read
so far. In both models the register is used together with the input character to determine
when a transition is enabled. Both these models focus on succinctness and the differ from
ESFAs in two ways: (1) they only support finite alphabets; and (2) they can relate sym-
bols at arbitrary positions, while ESFAs can only relate adjacent positions. We have not
investigated the application of ESFAs to network packet inspection and network intrusion
detection, but we think that ESFAs can help achieving a further level of succinctness in these
domains.

Extended top-down tree transducers (ETTTs) [15] are commonly used in natural language
processing. ETTTs also allow finite lookahead on transformation from trees to trees, but only
support finite alphabets. The special case inwhich the input is a string (unary tree) is equivalent
to ESFTs over finite alphabets. This paper focuses on ESFTs over any decidable theory. We
leave as future work extending the model to tree transformations.

8 Conclusion

We proved fundamental decidability results and closure properties for extended symbolic
finite automata and transducers. First, we investigated the problem of deciding transducer
equivalence and established a sharp boundary between decidability (the Cartesian case with
any decidable background) and undecidability (the non-Cartesian case with a background of
successor arithmetic). Second, although we showed that extended symbolic finite transduc-
ers are not closed under composition, we provided an incomplete but practically effective
composition algorithm that we used to prove the correctness of real-world string encoders.
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Future directions include identifying subclasses of these models that are effectively closed
under composition, and extending the models to trees.
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