
Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

Learned Load Balancing
Brian Chang

University of Texas at Austin
bchang@cs.utexas.edu

Kausik Subramanian
University of Wisconsin-Madison

sskausik08@cs.wisc.edu

Loris D’Antoni
University of Wisconsin-Madison

loris@cs.wisc.edu

Aditya Akella
University of Texas at Austin

akella@cs.utexas.edu

ABSTRACT
Effectively balancing traffic in datacenter networks is a cru-
cial operational goal. Most existing load balancing approaches
are handcrafted to the structure of the network and/or net-
work workloads. Thus, new load balancing strategies are
required if the underlying network conditions change, e.g.,
due to hard or grey failures, network topology evolution,
or workload shifts. While we can theoretically derive the
optimal load balancing strategy by solving an optimization
problem given certain traffic and topology conditions, these
problems take too much time to solve and makes the derived
solution stale to deploy. In this paper, we describe a load bal-
ancing scheme LLB, which is a general approach to finding
an optimal load balancing strategy for a given network topol-
ogy and workload, and is fast enough in practice to deploy
the inferred strategies. LLB uses deep supervised learning
techniques to learn how to handle different traffic patterns
and topology changes, and adapts to any failures in the un-
derlying network. LLB leverages emerging trends in network
telemetry, programmable switching, and "smart" NICs. Our
experiments show that LLB performs well under failures and
can be expanded to more complex, multi-layered network
topologies. We also prototype neural network inference on
smartNICs to demonstrate the workability of LLB.

1 INTRODUCTION
Network load balancing has received a lot of attention in
the datacenter context [3, 4, 13, 21, 24]. Load balancing is
central to effectively utilizing the increased path diversity
found in modern datacenter fabrics. An efficient fabric is
key to different applications’ performance, including both
latency- and throughput-sensitive ones, and for effectively
supporting emerging use cases such as serverless computing,
low-latency inference, and large-scale machine learning.

Most state-of-the-art datacenter load balancing approaches
thus focus on finding a "handcrafted" load balancing strat-
egy that caters to a specific datacenter setting. For example,
they may target a specific symmetric topology [4, 13] or
slowly changing network demands [3, 22]. Many of these
approaches probe local performance metrics, such as queue

lengths at a given switch [13] or congestion on a path [4,
21, 24], to make locally-optimal load balancing decisions.
While these approaches may work well for a specific net-
work setting, they cannot provide any guarantees for other
unforeseen settings.
In particular, due to failures, link capacity changes [37],

and shifts in application mix and workload patterns, modern
datacenters operate in an uncertain and constantly evolving
environment. Today, when the network setting changes, op-
erators are forced to live with suboptimal performance and
severe application impact of handcrafted strategies. Alter-
nately, network designers may try to craft a new niche load
balancing strategy in an attempt to best serve the "new nor-
mal", often requiring or leveraging new hardware support
(notable examples over time include [3, 4, 21]); this approach
cannot keep up with datacenters’ rapid pace of evolution.
Furthermore, ideally the optimal load balancing strategy

can be computed by formulating the strategy into optimiza-
tion problems such as the multi-commodity flow (MCF) prob-
lem, solving it, and installing it on datacenter switches.While
these optimization problems allow us to discover the best
strategy given certain workloads and topologies, solving
these problems is typically much slower compared to the
pace traffic pattern changes in datacenters: by the time an
optimal solution is derived, the traffic pattern would have
already changed, making the solution stale and unusable,
which we later show in Section 2 with a simple analysis on
real datacenter traces.

The limitations of existing approaches raise natural ques-
tions: Can we automate the generation of load balancing strate-
gies to keep up with the constantly evolving nature of datacen-
ters?
Instead of shooting for a "one-size-fits-all" strategy, we

advocate using machine learning to automatically learn spe-
cific strategies that are instance-optimal: at every instant,
the learned strategy provides close to optimal performance
for the current traffic pattern and topology. Our learned
load balancing approach, LLB, builds on recent successes of
similar learned strategies in improving various aspects of
networking [5, 8, 29, 31, 42, 43] and systems [26, 32] that

2022-07-05 22:47. Page 1 of 1–12. 1



Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

utilize recent advances in machine learning. Machine learn-
ing has been pervasive in tackling computational problems
across various fields, and in recent times, has found its way
to solving networking problems [5, 8, 29, 31, 32, 42]. At a
high level, machine learning leverages real-world data to
learn high quality solutions for complex problems.

First, modern datacenter networks have rolled out sophis-
ticated telemetry frameworks [2, 16, 33, 35] that offer de-
tailed instantaneous views into traffic patterns, enabling
data-driven load-balancing; the instantaneous view can en-
able the learning-based framework to select the right strat-
egy that fits the current workload and topology. Second,
programmable smartNICs are increasingly making their way
into datacenters and provide the needed computation to run
sophisticated models that support learned load balancing;
in particular, advances in smartNIC architectures are push-
ing custom accelerators onto the NIC [38, 40] offering the
promise of even faster learned model inference. Third, re-
cent advances in programmable switching enable both global
(network-wide) enforcement of learned load balancing de-
cisions (e.g., the load balancing weights to use at different
switches along network paths) as well as rapid detection
of events (e.g., link failures or capacity changes) that influ-
ence load balancing decisions. Fourth, by leveraging machine
learning techniques to ‘learn’ a close-to-optimal solutions,
running inference now has predictable latency for each ob-
served traffic instance, which originally would have taken
too long for a solver to compute. Given rich datasets on
fine-grained traces within production clusters, we can de-
rive traffic distributions of across spacial and temporal axes.
By training on these datasets, machine learning model to
make near-optimal decisions under particular traffic distri-
butions. We would only have to re-train the network if the
distribution shifts drastically, which occurs much less often
compared to traffic demand changes within a distribution.
In this paper, we discuss modern factors that are driv-

ing the strong need for a learned load balancing approach,
why a learned load balancing approach is plausible today,
and the challenges to realizing its promise (sec:motivation).
We present the architecture of LLB, our learned load bal-
ancing framework (sec:formulation). We discuss the algo-
rithms we leverage, and the design choices we make to
overcome the challenges to support both training learned
models and deploying them in modern data centers using
emerging smartNIC acceleration (ssec:training). Finally, we
present a comparison of our approach to the state-of-the-art
(sec:evaluation).

Our main contribution lies in arguing that a confluence of
technologies has created a ripe setting with the right building
blocks to deploy learned load balancing today (sec:motivation),
and providing a learning-based solution based on these blocks.
We make a case for using deep learning for a learned load

balancing framework which can be used to generate load
balancing strategies that adapt to different traffic failure, and
topology scenarios. A second contribution is to show an ap-
proach to train the learned load balancing framework, and
show how model inference can be deployed in the network
using programmable/smart network interface cards.

2 BACKGROUND AND MOTIVATION
Despite years of effort, we still do not have load balancing
techniques that can cope with the rapidly changing needs of
datacenters. We make a case for learned network load balanc-
ing: a general framework to devise adaptive instance-optimal
load balancing strategies for different kinds of topologies
and traffic demands. We first outline how and why the data-
center environment changes rapidly, engendering the need
for learned load balancing. We then discuss shortcomings
of existing approaches. Finally, we outline technological ad-
vances that make the time ripe for learned load balancing
and outline the challenges that must be overcome in realizing
it.
Applications workloads are changing, leading to a con-

stant evolution in the nature of traffic in the datacenter. More-
over, recent technological advances are enabling changes
in topology at much quicker timescales than before (min-
utes/hours instead of months). State-of-the-art network load
balancing frameworks are based on strategies that are cus-
tomized for specific topologies and traffic characteristics, and
are not well suited to adapt to evolving topology and traffic
in the datacenter.

2.1 Why Learned Load Balancing?
Evolution in Traffic Patterns Datacenter network traffic mix
changes based on the active application mix and the applica-
tions’ intrinsic send/receive patterns (e.g., ON/OFF, diurnal,
random burstiness, connection patterns such as out/incast,
etc.). We analyzed the fbflow packet traces [35] and found
that pod-to-pod traffic has largely uniform rates over time
(determined by the applications in the pod), with the oc-
casional microbursts interspersed over time. Luckily, with
rapid advances in network telemetry due to improved in-
network [2] and end-host [33] capabilities, operators can
now accurately measure current traffic patterns at fine gran-
ularities (both in terms of time and at the level of the traffic
grouping, e.g., individual flows). We argue that this capabil-
ity should be leveraged to design a network load balancing
framework that makes high quality global load balancing
decisions commensurate with the high quality of data.

Consider Conga [4], a state-of-art distributed load-balancing
scheme. Conga indirectly estimates the current load on the
network by measuring congestion metrics on various paths.
It uses these measurements to determine how to re-balance

2



Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

load to equalize congestion amongmultiple source-destination
paths with the implicit hope that this local readjustment re-
sults in global load balance. Aswe show later (sec:evaluation),
comparing Conga with a "optimal" oracle-based load balanc-
ing solution that uses instantaneous network-wide input traf-
fic patterns and demands to solve a multi-commodity flow
(MCF) problem [11] to determine load balancing weights, we
find that Conga has 50-90% higher maximum link utilization
than optimal. This shows that instead of an one-size-fits-all,
indirect approach, a direct data-driven strategy that explicitly
optimizes a network-wide objective for the current observed
workload can be highly beneficial. Using machine learning,
we can learn the load balancing strategy to use as a function
of the current workload.
Delay in Optimal Strategy Computation Theoretically, it

is possible to find an optimal load-balancing decision given
the observed network and traffic by repeatedly collecting
traffic demands, then transform the demands into an opti-
mization problem such as the MCF problem. However, in
practice there are several obstacles that need to be overcome:
First, on larger networks, solving the MCF problem for each
observed traffic demand constantly could potentially become
a bottleneck. Second, after solving the MCF problem, the net-
work would still need to update it’s configurations to reflect
the derived optimal solution constantly. This process might
take up to several seconds to complete, and by the time all
the solving/updating are completed, the derived solution
would have gone stale and no longer optimal.

To demonstrate this, we use the traces from fbflow [35],
which consists traces from Facebook’s production clusters.
Traces contain information such as (source, destination)
pairs, flow size, and timestamps at the granularity of sec-
onds. We aggregated flows across each (source, destination)
pair, and used the aggregate traffic demand as input to a
MCF problem solver to derive an optimal solution 𝑆 . Delay is
defined as the amount of time it takes before we can observe
input at time 𝑡 . For instance, if there is a 3 second delay, we
can only observe traffic on 𝑡 = 10 when 𝑡 = 13. Optimality
gap is calculated as 𝑆/𝑆𝑜 , where 𝑆𝑜 is the optimal solution.
Optimality gap captures how close the current solution is to
the optimal.

Table 1 shows how delay in traffic observation impacts op-
timality. We can observe that even a few seconds of delay has
a big impact on the derived solution, with some instances
having 17+ times worse performance. We also calculated
how long it takes to solve each MCF instance of the afore-
mentioned traffic demands on a machine with an 2.2GHz
6-core Intel Core i7 processor. On average each instance
takes around 75 ms to solve.

Given the high variance of datacenter traffic, where flows
can arrive every 1000 to 10000 us based on recent studies [35],
delayed derivation of the solution (large optimality gap) and

Table 1: Impact of delay on optimality

Delay(s) Max Opt. Gap Average Opt. Gap
0 1 1
1 10.29 1.58
2 14.05 1.65
5 12.98 1.74
10 17.98 2.01

time taken to solve optimization instances ( 75ms, 3-4 orders
slower than flow inter-arrival times) makes repeatedly com-
puting optimal solutions impractical to deploy. Our learning-
based load balancer should be able to derive near-optimal
solutions with low latency, which would overcome the per-
formance overhead caused by delays.
Evolution and Fine-grained Changes in Topology Data-

center topologies are constantly evolving due to a flood of
compelling new network structures [15, 36, 39] many of
which are being rolled out in practice. Although symmet-
ric network topologies are still popular in the datacenter,
such topologies are constantly subject to asymmetries: new
switching technologies, e.g., optical networks [12] and Fly-
ways [23], allow dynamically adding/removing links; recent
advances [37] allow near-instantaneous changes to optical
network link capacities; and, link failures are frequent in
datacenters [14] and can cause topology asymmetry.

An ideal load balancing approachmust be able to optimally
support all possible types of topologies, including ones that
are symmetric or asymmetric at the topological or the link-
capacity level or both. In addition, the load balancing strategy
must be able to optimally adapt to failures.
Finally, our network balancer must be able to handle the

volatility in the network caused due to changes in the topol-
ogy due to failures and changes in traffic demands. With
the advent of standardised programmable switches like Bare-
foot Tofino and off-the-shelf programmable SmartNICs like
Broadcom Stingray, we can potentially implement complex
load balancing algorithms in hardware at line rates. Thus,
argue that a load balancer should be able to be implemented
using off-the-shelf technologies to provide line rate processing
throughput.

2.2 Limitations of State-of-the-Art
We classify the state-of-art load balancing strategies into
three categories: (1) centralized controllers, which use topol-
ogy and traffic demands to generate optimal network-wide
paths, (2) distributed approaches, which are either stateless
or rely only on local knowledge at a switch/end-host, e.g., lo-
cal queue statistics, and (3) distributed approaches, which use
network-wide statistics (e.g., congestion metrics on paths)

3



Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

Table 2: State-of-art load balancing strategies

Type Name TD NT HW

Centralized B4 ✓ ✓
Hedera ✓

Distributed Local ECMP/WCMP ✓
DRILL ✓

Distributed Global

Conga ✓
Hula ✓
Contra ✓
LLB ✓ ✓ ✓

to make load balancing decisions. Table 2 summarizes these
different strategies.1
Today’s deployed centralized approaches, e.g., Hedera [3]

and Google’s wide-area network load balancing controller
B4 [22], take globally optimal decisions that can be used on
different kinds of topologies. But existing designs/implementations
render them incapable of handling traffic variations atmillisecond-
timescales (B4 can take ∼1 second to calculate new paths
that optimize global metrics, and cannot react quickly to
traffic variations).
Today’s completely distributed approaches (ECMP [20]

and WCMP [44]) are tailormade for specific network topolo-
gies and traffic demands – ECMP works best for symmetric
topologies, whileWCMP uses a central controller to compute
the weighted load distribution for different switches. Other
switch-local distributed approaches like DRILL [13] use local
switch queue statistics to adapt to changing traffic demands.
However, these distributed local load balancing approaches
cannot deal with changing topologies and asymmetries as
they do not have visibility into network-wide statistics. For
instance, let’s consider a switch has three outgoing links
with WCMP weights 1:2:1. When the third link fails, WCMP
does not adapt and still distributes load among the active
links using 1:2 weights, which could lead to congestion on
the second link due to increased demand.
Finally, today’s distributed approaches with deeper visi-

bility into network statistics (e.g., Conga [4], Hula [24] and
Contra [21]) change how traffic is sent on paths by dynam-
ically probing paths and measuring load on them. For in-
stance, Hula [24] is a performance-aware load balancer that
leverages enhanced data-plane capabilities to collect link
utilizations. Hula’s algorithm does not depend on the topol-
ogy or traffic demands, it sends flowlets on the current least
utilized hop (determined by probes). However, Hula prob-
ing mechanism requires certain structure to the topology
(notion of upstream and downstream switches), and thus,
1We show if the load balancer is adaptive to traffic demands (TD), can work
on different network topologies (NT), and can run on off-the-shelf hardware
(HW).

Hula cannot be used for arbitrary topologies. In general,
these approaches do not use current network-wide traffic as
input and thus cannot perform global optimization. These
approaches also often make assumptions about the topology
and cannot be easily used for arbitrary topologies, or they
break under topology asymmetries. Probing network path
metrics requires support for custom hardware (as is the case
with Conga) which may not be available.

In this paper, we seek to address the limitations of prior
work and answer the following questions: With a wide vari-
ety of datacenter designs and workloads, is there a general
approach to find an optimal load balancing strategy given a
network topology and workload? How should the strategy
change under different failure scenarios? Can we leverage
new programmable network devices such as standardised
P4 programmable data plane switches and off-the-shelf pro-
grammable SmartNICs to implement our load balancing al-
gorithm in hardware to run at line rates?

2.3 Why Learned Load Balancing Now?
We envision a learned network load balancing framework
which optimizes network-wide objectives while leveraging
evolving topology and traffic information, and can run on off-
the-shelf hardware with low latency for easy deployment. We
see four emerging opportunities that make We discuss these
and associated challenges next.
Opportunity 1: Advances in Telemetry. Recent advances
in programmable switches and scalable monitoring infras-
tructures have made fine-grained traffic measurement feasi-
ble [33]. In addition to what applications are running and
their fine-grained communication patterns and demands, it
is possible to track in-network statistics such as current and
historical queue lengths at each switch [2]. Operators there-
fore have a plethora of traffic data, which can be used as
input to infer load balancing strategies.
Challenge 1: Data Collection and Overfitting. Like any
system based on learning, our approach requires collect-
ing representative training data and avoiding overfitting.
Constant innovation in telemetry [2, 16, 17] is enabling ever-
richer instantaneous views into network traffic, but we need
a traffic-pattern-modeling scheme to craft suitable training
data that allows our deep learning-based approach to effec-
tively learn strategies that are optimal for traffic and topology
patterns that are yet to be seen.
Opportunity 2: Deep Learning. Recent advances in Ma-
chine Learning (ML), in particular Deep Learning (DL), have
opened the door to exciting ML-based approaches to improv-
ing various large scale systems. Examples include fast learned
indices in distributed databases [26], big data scheduling [32],
routing strategies [8, 42] and adaptive video streaming al-
gorithms [31]. Inspired by the success of these approaches,

4



Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

given rich traffic traces and metadata recent telemetry frame-
works have allowed operators to collect, we aim for a simi-
lar ML-based framework that automatically learns the best
instance-optimal network-wide load balancing strategy for
the current traffic pattern and network topology. If an ML
network can be trained to adjust to network failures and traf-
fic changes, we could obtain a load balancing framework that
is performance-aware, failure-tolerant, and is not overfitted
to a certain traffic scenario.
Challenge 2: Learning Challenges. Since load balancing
is distributed, each switch ideally must have an individual
learned model. However, in the optimal case, each switch re-
quires global information on the traffic, failures and topology
in order to make an optimal decision. Thus, we formulate the
load balancing problem as a global optimization problem–
i.e., a single ML agent makes load balancing decisions for
the entire network. Moreover, it is not practical to re-learn
load-balancing every time the current traffic pattern shifts
or topology changes due to link failures. Our deep learning-
based approach must be able to infer the load balancing strat-
egy when specific topological or traffic changes are seen.
Opportunity 3: SmartNICs. Load balancing decisions can
be performed at different granularities: packet, flowlet or
flow-level. Of these, per-packet load balancing can be most
effective in distributing load across paths. While it can lead
to re-ordering of packets, modern fabrics and transports
are increasingly robust to reordering [38] and can be easily
combined with learned per-packet load-balancing. However,
this means that we may need to perform inference using a
learned load balancing model at high line rates (100G and
beyond). While modern switches with P4 capabilities can
offer line-rate custom processing of packets, their limited
computational models restrict the nature of learned mod-
els that can be executed on them. Here, a new opportunity
is offered by programmable network interface cards (NICs),
which are being increasingly deployed in datacenters today.
Such smartNICs’ embedded on-board cores and FPGAs can
support complex neural network computations and contain
dedicated cores, custom ASICs [1] or packet processing at
end-hosts at high throughput and without incurring addi-
tional latency.
Challenge 3: Inference at Line Rate. While smartNICs
aremore computationally capable than programmable switches,
model inferencemust be carefully engineered [30] to achieve
line rate throughput and low packet latency. In particular,
this may need co-design of the model/parameters (e.g., input,
output, number of hidden layers) with the NIC hardware
specifications to ensure sufficiently rich models can run with
the needed performance.
Opportunity 4: Programmable Switches. Modern pro-
grammable switches provide the opportunity of encoding
custom headers and parsers using high-level languages [6].

Failure 
Vectors

Traffic Matrix

Telemetry 
Framework 

Traffic patterns, link status Network Metrics

WCMP 
Weights

LLB Inference 
System

SmartNIC

Figure 1: Learned Load Balancing (LLB) Architecture

This can be powerful, when combined with smartNICs: the
latter can compute the inferred weights to use at multiple
on-path switches and encode them into packet header fields;
each switch can then parse the headers to determine the
weights to use locally for load balancing. Crucially, this de-
couples inference from load balancing, and avoids having to
update switch rules when the model provides a new set of
inferred load balancing weights2. Programmable switches
also allow for enhanced in-band network telemetry [2] and
rapid remote link failure detection [19].
Challenge 4: Interaction with Routing, and Teleme-
try Latency. While programmable parsers provide the nice
advantage outlined above, careful design is necessary to ac-
count for the fact that network routing may change indepen-
dently: without co-design with routing, the inferred weights
may result in poor load balancing performance when routes
change. Furthermore, it is important to gather network-wide
statistics and provide them quickly to NICs for inference.
Instead of designing a custom load balancing strategy

for every topology, we want an approach that is robust for
different network designs, workloads, and failure scenarios,
and is extremely agile, i.e., the strategy can adapt to changes
in the network quickly. This is our primary motivation for
using deep learning. The deep learning model will learn
to make decisions similar to an optimization solver, where
the model will produce Weighted ECMP (WCMP) weights
for each leaf switch, and adjust these weights dynamically
based on traffic demands and global network status. Along
with the utilization of stateful programmable devices such as
smartNICs, this enables the opportunity to deploy machine-
learning models on end-hosts that can be used to perform
guide network load balancing.

3 LEARNED LOAD BALANCING
The architecture of LLB is illustrated in Figure 1. LLB col-
lects traffic demand and link status data from the network’s
telemetry framework and runs inference on the trained deep

2In contrast, when WCMP [44] is used, for example, we may have to repro-
gram weights at each switch.

5



Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

learning model. The output of the DL model at each infer-
ence step is a set of WCMP weights that is then deployed
onto the network. In the rest of this section, we first describe
the optimization problem tackled by LLB to achieve load
balancing (§ 3.1) and how LLB uses deep learning to solve
such a problem (§ 3.2).

3.1 Minimizing Maximum Utilization
In this paper, we focus on load balancing strategies that aim
at reducing link utilization. Given a set of WCMP weights,
and a traffic demand, the utilization of a link is defined as
the portion of aggregated traffic sent across a link.
Link utilization can be used as the recipe of a load bal-

ancer’s objective. One of the most commonly used objec-
tives is minimizing the maximum link utilization rate (MLU)
across all links in the network.
LP Formulation. One aim of our formulation is to make
sure it is generalizable enough to work on different topolo-
gies. We use a variation of the Multi-Commodity Flow (MCF)
problem, where we incorporate the min-max fairness objec-
tive into the original MCF formulation. The the formulation
is shown below and details are provided in Table 3.

Objective: minimize𝑚𝑎𝑥 (U)
Subject to:
c1.

∑
𝑝∈P(𝑠,𝑡 ) W𝑝 = 1 ∀(𝑠, 𝑡) ∈ 𝐺 (𝐸,𝑉 )

c2. U𝑒 =
∑D(𝑠, 𝑡) ∗W𝑝/C𝑒 ∀𝑒 ∈ 𝑝 ∧ 𝑝 ∈ P(𝑠,𝑡 )

c3. W𝑝 ≥ 0 ∀𝑝
c4. W𝑝 == 0 iff 𝑒 ∈ F ∧ 𝑒 ∈ 𝑝

Given a graph 𝐺 (𝐸,𝑉 ) that represents the network topol-
ogy, traffic demand, a set of paths P for each (source, destina-
tion) pair, and topology information (failures and capacity),
constraint c1. ensures weights of paths with the same (source,
destination) add up to 1, c2. calculates each link’s utilization,
c3. ensures all weights are positive, and c4. makes sure no
traffic is assigned to a failed link.

3.2 How LLB Learns
In this section we describe how LLB captures the aforemen-
tioned LP formulation in a deep learning setting. We briefly
describe how we use deep learning to approximate the be-
havior of the optimizer.
Deep Learning and Supervised Learning.

LLB uses Deep supervised learning (DL) to train an agent
that makes load balancing decisions. Deep learning (DL)
models have acquired huge success in various classification
and regression tasks such as image classification, speech
recognition and recommendation engines [28]. On the other
hand, supervised learning is a machine learning method that
trains a function that maps inputs to outputs based on a

given dataset of (input, output) pairs. A simplified objective
of supervised learning is as follows:

𝑓 (𝑥) = 𝑦 (1)

𝑚𝑖𝑛(L(𝑦,𝑦)) (2)
Given input, output pairs (𝑥,𝑦), supervised learning meth-

ods try to find an approximation function 𝑓 that aims to
minimize a loss function L with respect to output 𝑦 and
prediction 𝑦.
Given the nature of our problem’s background described

in Section 2, we can present the deep learning model with
abundant (input, output) examples of the optimization for-
mulation in Section 3.1, and let it learn to approximate the
optimizer’s behavior [7]. Deep learning models have the abil-
ity to capture complex linear and non-linear relationships
between inputs and labels to the network, which is a good fit
for our problem formulation of capturing the MCF solver’s
behavior and serve as the predictor to the given (input, out-
put examples).

We train LLB by drawing traffic from real traces alongwith
different failure/capacity settings to generate a rich dataset,
which the deep learning model then is trained on. Concretely,
given the dataset of traffic demands and topological data, we
want the deep learning model to predict the best WCMP
weights under the input.

4 TRAINING LLB
In this section we present LLB’s formulation of the learned
network load balancing problem as a deep learning problem.
We describe how LLB trains a load balancing policy and how
it uses the learned policy to modify the state of the network
at runtime. To model the load balancing problem as a deep
learning problem we first have to make a set of choices:
Where should we draw the dataset from? What is the output
of the deep learning model? How should we train the model?
We also discuss the challenges and potential solutions for
LLB to be deployed in the network.

4.1 LLB Formulation Choices
Modeling Traffic as a Distribution. The ultimate goal
of a learning-based solution is to leverage historical data
for training a solution that generalizes to unseen traffic and
topology patterns. Besides modeling real traffic traces, a
learning-based solution should also be able to predict for un-
seen data. In order to achieve this, we assume traffic matrices
follow a certain distribution, which captures the characteris-
tics of collected traffic traces.
We define the LLB’s traffic distribution D as follows:

D(C,Δ, F = [𝑙1, 𝑙2, ..., 𝑙𝑛]). Data points generated during
training consists of a traffic matrix and a failure vector simi-
lar to that described in Section 3.1. Traffic matrices drawn

6



Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

Table 3: List of Variables of the MLU Optimization Problem

List of Variables
Input 𝐺 (𝐸,𝑉 ) Topology Graph Representation with edges 𝐸 and vertices 𝑉
Input D(𝑠, 𝑡) Traffic Demand between source 𝑠 and destination 𝑡

Input P(𝑠, 𝑡) Set of paths between source 𝑠 and destination 𝑡

Input C𝑒 Link capacity of edge 𝑒
Input F Set of failed links

Intermediate U𝑒 Link Utilization of edge 𝑒
Output W𝑝 Path weight for path 𝑝

from this distribution are sampled from a high-dimensional
ball with center matrix C and radius Δ, where C’s dimension
is the number of host pairs in the topology. F is a random
variable representing link failures, where 𝑙𝑖 = 1 denotes that
link 𝑖 has failed, and 𝑙𝑖 = 0 denotes that link 𝑖 is working. The
combination of traffic matrices with different failure vectors
produces various scenarios of topology changes.
Network-wide Objective. In this paper, we train LLB to
minimize the utilization of the most congested link in the net-
work, which is also known asmax-min fairness. To minimize
the maximum utilization, we define our optimization objec-
tive as𝑚𝑎𝑥 (U) (whereU =𝑚𝑎𝑥𝑙 𝑈𝑙 ). This objective is used
in the multi-commodity flow (MCF) solver to derive the best
set of WCMP weights, where the weights are then learned
by LLB’s deep learning model. An advantage of a learning-
based approach is that it is programmable, i.e., DL models
can be easily trained on different objectives by generating
datasets derived from different optimization objectives. For
instance, one can train the model to minimize average utiliza-
tion and therefore distribute traffic evenly across all links. We
could also potentially train the agent to take multiple sub-
objectives into account by using composite objectives that
include network metrics such as queuing status (𝑄), flow
completion time (𝐹 ), and throughput (𝑇 ) in the objective
function. For instance, one can define an objective function
𝑎/𝑄 − 𝑏𝐹 + 𝑐𝑇 , where 𝑎, 𝑏, and 𝑐 are non-negative constants.
that asks LLB to minimize queuing and flow completion time
while maximizing throughput. This programmable aspect
gives learning-based load balancing schemes a promising
key advantage: the ability to customize to different policies
while taking multiple sub-objectives into account.
Choosing the Training Model. One of the common archi-
tectures used in deep learning is the fully-connected neural
network architecture. LLB uses fully connected neural net-
works for training. Two main reasons for this choice is that
fully-connected networks are cheap to compute, and their
simplicity to implement make them more straightforward to
offload onto network devices such as smartNICs. Also, while
the approximating nature of machine learning prevents our
model from perfectly predicting optimal solutions for all data

Figure 2: Tunneling and Path Selection.

points, we will see that this simplification still yields good
results in Section 5.
Representing complex topologies. Besides capturing the
adaptive nature of the LLB problem statement, another de-
sign challenge is how we can generalize LLB to large and
complex topologies. One issue that arises from the formula-
tion is that in larger topologies, the number of possible paths
between host pairs increases exponentially, resulting in huge
and sparse (link weights are thin-spread) solution spaces in
the dataset. This aspect makes training impractical because
1. a much larger neural network is needed to train the agent
and 2. the ultimate goal is to run inference on programmable
devices like smartNICs, and increasing the neural network
size to fit a large topology would make inference on the NIC
not fast enough for line-rate processing.
Path Selection. It is not practical to utilize all paths be-
tween each source, destination pair since switches have lim-
ited table space to store these forwarding rules, and main-
taining this huge amount of information on larger topologies
might not be deployable in practice. When solving the op-
timziation problem on these topologies, we enforce a path
budget 𝑡 , which limits the number of paths each source, des-
tination pair is allowed to route traffic through. This adapta-
tion keeps the neural network size moderate and able to run

7



Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

inference at acceptable speed.When solving the optimization
problem, LLB currently tries to find the maximum number
edge-disjoint paths with best effort given the budget 𝑡 . If 𝑡
paths which have complete disjoint edges cannot be found,
LLB tries to minimize the number of overlapped edges. It is
also straightforward to let LLB learn under different path
selection policies by simply changing how the optimization
problem derives its set of paths P. Figure 2 demonstrates
such tunneling and path selection on a Clos topology, where
there are three tunnels for every given (source, destination)
pair. One color represents one tunnel for traffic with source
1 and destination 3, where one of the three tunnels can be
chosen as the path.
A note on failures. When a link 𝑙 fails, the WCMP weight
predicted by LLB for 𝑙 should ideally be zero—i.e., traffic
should not be sent over 𝑙 . It is almost impossible for a com-
plex, non-linear function such as a neural network to output
exactly zero every time under a certain input. Therefore, we
simply ignore the weight of the failed link and simply split
the traffic on the active links based on the weights for the
active links.

4.2 Efficient Inference for LLB
A key requirement is that a learning-based load balancing
framework should be able to perform inference at line rate.
For every packet/flowlet/flow, we need to “run” the learned
model to perform inference and decide the next hop. In high-
speed networks (40/100Gbps), a software inference solution
cannot process packets at line rate and will greatly increase
latency of each packet/flowlet/flow. We can leverage recent
advances in building fabrics and transport protocols which
are robust to reordering—e.g., 1RMA [38] proposes provid-
ing ordering guarantees to applications which desire it in
software via a shim layer.
One option is to perform inference using programmable

switches like Barefoot Tofino. While programmable switches
support complex processing capabilities in the network at
line-rate, however, their architectures are not suited for com-
plex floating point operations and do not have the memory
required to store large models. We attempted a design of a
fully-connected neural network in P4, but it was not scal-
able due to the fixed numbers of pipelines and stages of a
hardware switch.
We propose to implement the LLB’s inference system on

a programmable smartNIC. Programmable smartNICs [1],
which now offer increasing computing resources, have brought
up the opportunity for data centers to offload general ap-
plications [30] and stateful network functions [34]. With
the combination of distributed inference techniques, these
progressions have made it possible to run inference systems
on smartNICs at a large scale while maintaining low latency.

The programmable NICs would collect the input traffic de-
mands through a telemetry framework and run inference to
generate WCMP weights for each switch. The NIC would
then encode these weights in the packet headers. The pro-
grammable switches can parse these headers (using P4’s
support for custom parsers), and then perform load balanc-
ing according to the encoded WCMP weights [41].

Another benefit that comes with running inference on pro-
grammable smartNICs is performance predictability. When
running on hardware, we can obtain an upper bound of the
number of instruction cycles the inference of a fix-sized neu-
ral network takes to run. Hardware predictability provides a
latency guarantee to the system that a host-based solution
would fail to achieve due to unexpected software latency.

5 EVALUATION
Our evaluation answers the following questions:
Q1. Can LLB adapt to unseen traffic demands?
Q2. Can LLB react to asymmetry and link failures?
Q3. Can LLB inference run on state-of-art smartNICs?

5.1 Experiment Settings
Implementation Details. We implemented LLB using Py-
Torch theGurobi optimizer to generate optimalWCMPweights
for each traffic matrix/capacity/failure triplet in the dataset.
The optimal weights are then later used to calculate the op-
timality gap against the LLB-predicted WCMP weights. All
our experiments are run on Cloudlab [10] machines.
Topologies and Traffic Patterns. We consider two topolo-
gies for our experiments. The first topology is a two layer
Clos topology with 8 leaves and 6 spines, The second topol-
ogy is a 8-ary 2-flat flattened-butterfly [25] topology with 10
edge devices. Clos topologies utilize abundant link connec-
tivity between the leaf and spine layers, and enjoy high path
diversity and low latency. Flatten butterfly topologies are
another class of topologies commonly seen in modern data-
centers. Compared to Clos topologies, which have better fault
tolerance, flattened butterfly topologies are less expensive
to construct and are more scalable. For experiments with an
asymmetric topology we set the capacity of the optical link
from capacities studied in RADWAN [37]. In the asymmetric
setting we consider one-link failures across the topology,
which is the most commonly observed scenario in data cen-
ters. For each topology, we sample 50000 samples from their
respective distribution D(C, _, F ), and partitioned the sam-
ples into train/test sets with an 80%/20% split. All the test
data points were not observed during training.

To approximate the flow statistics reported in the Fbflow [35]
network traces, we design distributions of the form discussed
in Section 4.1 by using fbflow’s average flow size as the cen-
ter traffic matrix C. The two layer topology samples from a

8



Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
Optimality Gap

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Untrained
ECMP
LLB-1 epoch
LLB-10 epochs
LLB-50 epochs

Figure 3: Clos Topology Without Failures

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
Optimality Gap

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y Untrained
ECMP
LLB-1 epoch
LLB-10 epochs
LLB-50 epochs

Figure 4: Clos Topology with Failures and Capacity
Asymmetry

center with 8 hosts, denoted C8, and similarly, the flattened-
butterfly with 10 edges draws from a center matrix denoted
C10. LLB’s learning network has three fully-connected layers,
with each hidden layer consisting of 128 hidden units.

5.2 Adapting to Unseen Traffic Demands
We first consider topologies with no failures and equal link
capacities. Data points used in Figure 3 were drawn from
D(C4, _, ®0), where _ is the average of C4. The zero vector
indicates that no failures are present in the sampled points.
Data points used in Figure 4 were drawn from D(C4, _, F ),
and points in Figures 5 and 6 were drawn from D(C8, _, F ).
Figure 3 shows the optimality gap of LLB under symmet-
ric topologies—i.e., how far is LLB from the optimal WCMP
weights for each sampled configuration. When LLB’s DL
model is untrained, as anticipated the optimality gap is bad:

all samples are over 200% more worse than the optimal so-
lution. As training progresses, after around 50 epochs LLB
converges to a solution close to the optimal solution, which
is equivalent to weights derived in ECMP under this setting.
Results for Figures 3, 4, 5 and 6 were also derived from
unseen traffic in the test dataset, which shows the general-
izability of LLB. We answer Q1 based on these results: LLB
can adapt to unseen traffic demands in the distribution.

5.3 Adapting to Asymmetry and Failures
We also analyze how how LLB adapts to asymmetry and
failures with the asymmetric topology. During dataset gen-
eration for results in Figures 4, 5 and 6, we combined various
failure and link capacity constraints with traffic matrices
drawn from the referenced distribution. Figure 4 shows that
LLB converges to a close-to-optimal solution even under
failures and capacity asymmetry, and outperforms static
methods like ECMP. Figures 5 and 6 shows LLB trained on
a flattened-butterfly topology, with Figure 5 showing results
with a path budget of 2, and Figure 6 with a budget of 4. We
can observe that under these more complicated topologies,
LLB is still able to learn a policy for the underlying traffic
distribution. In both cases, after training for more than 10
epochs LLB outperforms ECMP with a better optimality gap.
We can then draw conclusion for Q2 from these results: LLB
can adapt to asymmetry and link failures in the topology,
and can generalize to other more complex topologies.

5.4 LLB inference on smartNICs
We implemented our 3-layer neural network on the Alpha-
Data ADM-PCIE-9V3 Programmable FPGA smartNIC [1].
Profiling is done via the hls4ml [9] package, where the pack-
age translates deep learning models written in Keras or Py-
torch into FPGA code, and simulates how many cycles in-
ference takes to complete. Our microbenchmarks showed
that running at 300MHz, this programmable NIC can sus-
tain per-packet inference at 120 Gbps, and it imposes a 85ns
per inference latency. Compared to runtimes of the multi-
commodity flow (MCF) solver reported in Section 2, inference
on NICs is 6 orders of magnitude faster to execute. Alter-
nately, inference can potentially be accelerated further if
it was implemented on a custom ASIC on the NIC (with a
limited API for programmability to allow for model updates)
optimized specifically for funcionalities like inference. Pro-
grammable NIC platforms with such embedded ASICs for
custom functions have been proposed recently [38, 40], and
it is conceivable that such NICs may have an inference ASIC
on them in the future.

To avoid potential high latency overhead on existing pro-
grammable smartNICs, we can conduct inference, and cor-
respondingly load balancing, at the granularity of flowlets.

9



Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Optimality Gap

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Untrained
ECMP
LLB-1 epoch
LLB-10 epochs
LLB-50 epochs

Figure 5: Flattened Butterfly with Path Budget = 2

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
Optimality Gap

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Untrained
ECMP
LLB-1 epoch
LLB-10 epochs
LLB-50 epochs

Figure 6: Flattened Butterfly with Path Budget = 4

If we set the inter-flowlet inactivity timeout to 120ns, then
we can prefetch the load balancing decision for an upcom-
ing flowlet by conducting inference 60ns after the previous
flowlet to the same destination ended. Typical flowlet inac-
tivity timeouts are set to 500ns; a 120ns timeout results in
smaller flowlets and thus effective load balancing [18]. To
answer Q3: LLB can be deployed on state-of-the-art smart-
NICs.

6 RELATEDWORK
Data Center Network Load Balancing. Load balancing
is a crucial component in data center networks. Efficient
load balancing is essential for applications to deliver perfor-
mance guarantees such as high throughput and low latency.
Host pairs in data centers typically consist of multiple paths,

and the load balance algorithm is responsible for distribut-
ing traffic among these paths to reach applications’ perfor-
mance requirements. Well-known flow-based load balanc-
ing techniques include methods like equal-cost multi-path
(ECMP) and weighted-cost multi-path (WCMP), where flows
are routed through different paths based on path weights.
Programmable Network Devices. Programmable net-
work devices that emerged in recent years have allowed
the implementation and deployment of new functionalities
such as custom network protocols, custom header parsing
and network function offloading. Theses programmable de-
vices allow developers to write complex controlling logic
and packet processing pipelines that a lot of times can be
run at line rate. A few classes of programmable network
devices include programmable switches like the Barefoot
Tofino P4 switch and the Broadcom Stingray smartNIC. The
Tofino switches allow custom header parsing and match-
action logic to be run at line rate in the dataplane, and smart-
NICs like Stingray enable the support of complex offloads
and in-network computation tasks.

7 CONCLUSION AND FUTUREWORK
We presented a learned load balancing framework that can
adapt to evolving traffic patterns and topologies. While we
showed that such a framework can be made practical, the
concept of learned load balancing raises interesting ques-
tions, some of which we describe here.
When traffic characteristics are unpredictable, it may be

beneficial to learn online using real traffic. Continuously
refining the model can yield better strategies. However, con-
vergence in online learning is slow and the learned model
performance can be poor before convergence if we re-learned
constantly. We are exploring addressing this challenge us-
ing transfer learning, i.e., we will reuse the offline learning
models to bootstrap the online learner.

LLB leverages simple aggregate traffic characteristics dur-
ing training. With richer telemetry frameworks, deeper sta-
tistics about network data might become available, such as
instantaneous queue lengths and packet drop/marking statis-
tics. How to leverage these network statistics and combine
them with other application-level data sources, e.g., from
cluster schedulers and L7 load balancers, to further improve
the quality of load balancing is another important challenge.

Another promising direction of future work is to have LLB
learn optimization formulations that incorporate different
path selection paradigms. The current formulation of LLB
assumes that paths are statically pre-selected before training.
As path selection also has great influence on the robust-
ness of load balancing and traffic engineering [27], including
such mechanisms could further improve the performance of
learning-based solutions like LLB.

10



Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

REFERENCES
[1] [n. d.]. ADM-PCIE-9V3 - High-Performance Network Accel-

erator. https://www.alpha-data.com/dcp/products.php?product=
adm-pcie-9v3. ([n. d.]).

[2] [n. d.]. Improving Network Monitoring and Management with Pro-
grammable Data Planes. https://p4.org/p4/inband-network-telemetry/.
([n. d.]).

[3] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan,
Nelson Huang, Amin Vahdat, et al. 2010. Hedera: dynamic flow sched-
uling for data center networks.. In Nsdi, Vol. 10. 89–92.

[4] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan
Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis
Matus, Rong Pan, Navindra Yadav, et al. 2014. CONGA: Distributed
congestion-aware load balancing for datacenters. In Proceedings of the
2014 ACM Conference on SIGCOMM. 503–514.

[5] Mahmoud Bahnasy, Fenglin Li, Shihan Xiao, and Xiangle Cheng. 2020.
DeepBGP: A Machine Learning Approach for BGP Configuration Syn-
thesis. In Proceedings of the Workshop on Network Meets AI & ML.
48–55.

[6] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, et al. 2014. P4: Programming protocol-independent packet
processors. ACM SIGCOMM Computer Communication Review 44, 3
(2014), 87–95.

[7] Rich Caruana and Alexandru Niculescu-Mizil. 2006. An empirical
comparison of supervised learning algorithms. In Proceedings of the
23rd international conference on Machine learning. 161–168.

[8] Li Chen, Justinas Lingys, Kai Chen, and Feng Liu. 2018. AuTO: Scaling
Deep Reinforcement Learning for Datacenter-Scale Automatic Traffic
Optimization. In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication (SIGCOMM ’18). Association
for Computing Machinery, New York, NY, USA, 191–205. https://doi.
org/10.1145/3230543.3230551

[9] J. Duarte, S. Han, P. Harris, S. Jindariani, E. Kreinar, B. Kreis, J.
Ngadiuba, M. Pierini, R. Rivera, N. Tran, and Z. Wu. 2018. Fast
inference of deep neural networks in FPGAs for particle physics.
Journal of Instrumentation 13, 07 (jul 2018), P07027–P07027. https:
//doi.org/10.1088/1748-0221/13/07/p07027

[10] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong,
Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David John-
son, Kirk Webb, Aditya Akella, Kuangching Wang, Glenn Ricart,
Larry Landweber, Chip Elliott, Michael Zink, Emmanuel Cecchet,
Snigdhaswin Kar, and Prabodh Mishra. 2019. The Design and Op-
eration of CloudLab. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19). USENIX Association, Renton, WA, 1–14. https:
//www.usenix.org/conference/atc19/presentation/duplyakin

[11] Bernard Fortz and Mikkel Thorup. 2004. Increasing Internet Capacity
Using Local Search. Computational Optimization and Applications 29
(2004), 13–48.

[12] Monia Ghobadi, Ratul Mahajan, Amar Phanishayee, Nikhil Deva-
nur, Janardhan Kulkarni, Gireeja Ranade, Pierre-Alexandre Blanche,
Houman Rastegarfar, Madeleine Glick, and Daniel Kilper. 2016. Pro-
jecToR: Agile Reconfigurable Data Center Interconnect. In Proceed-
ings of the 2016 ACM SIGCOMM Conference (SIGCOMM ’16). Asso-
ciation for Computing Machinery, New York, NY, USA, 216–229.
https://doi.org/10.1145/2934872.2934911

[13] Soudeh Ghorbani, Zibin Yang, P Brighten Godfrey, Yashar Ganjali, and
Amin Firoozshahian. 2017. Drill: Micro load balancing for low-latency
data center networks. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication. 225–238.

[14] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. 2011. Under-
standing network failures in data centers: measurement, analysis, and
implications. In Proceedings of the ACM SIGCOMM 2011 conference.
350–361.

[15] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang,
Yunfeng Shi, Chen Tian, Yongguang Zhang, and Songwu Lu. 2009.
BCube: A High Performance, Server-Centric Network Architecture
for Modular Data Centers. In Proceedings of the ACM SIGCOMM
2009 Conference on Data Communication (SIGCOMM ’09). Associa-
tion for Computing Machinery, New York, NY, USA, 63–74. https:
//doi.org/10.1145/1592568.1592577

[16] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray
Huang, Dave Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua Chen, Zhi-
Wei Lin, and Varugis Kurien. 2015. Pingmesh: A Large-Scale System for
Data Center Network Latency Measurement and Analysis. In Proceed-
ings of the 2015 ACM Conference on Special Interest Group on Data Com-
munication (SIGCOMM ’15). Association for Computing Machinery,
New York, NY, USA, 139–152. https://doi.org/10.1145/2785956.2787496

[17] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer
Rexford, and Walter Willinger. 2018. Sonata: Query-Driven Stream-
ing Network Telemetry. In Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication (SIGCOMM ’18).
Association for Computing Machinery, New York, NY, USA, 357–371.
https://doi.org/10.1145/3230543.3230555

[18] Keqiang He, Eric Rozner, Kanak Agarwal, Wes Felter, John Carter,
and Aditya Akella. 2015. Presto: Edge-Based Load Balancing for Fast
Datacenter Networks. In Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication (SIGCOMM ’15). As-
sociation for Computing Machinery, New York, NY, USA, 465–478.
https://doi.org/10.1145/2785956.2787507

[19] Thomas Holterbach, Edgar Costa Molero, Maria Apostolaki, Alberto
Dainotti, Stefano Vissicchio, and Laurent Vanbever. 2019. Blink: Fast
Connectivity Recovery Entirely in the Data Plane. In 16th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
19). USENIX Association, Boston, MA, 161–176. https://www.usenix.
org/conference/nsdi19/presentation/holterbach

[20] Christian Hopps et al. 2000. Analysis of an equal-cost multi-path algo-
rithm. Technical Report. RFC 2992, November.

[21] Kuo-Feng Hsu, Ryan Beckett, Ang Chen, Jennifer Rexford, and David
Walker. 2020. Contra: A programmable system for performance-aware
routing. In 17th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 20). 701–721.

[22] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon
Poutievski, Arjun Singh, Subbaiah Venkata, Jim Wanderer, Junlan
Zhou, Min Zhu, et al. 2013. B4: Experience with a globally-deployed
software defined WAN. ACM SIGCOMM Computer Communication
Review 43, 4 (2013), 3–14.

[23] Srikanth Kandula, Jitendra Padhye, and Paramvir Bahl. 2009. Flyways
To De-Congest Data Center Networks. In Proceedings of the 8th ACM
Workshop on Hot Topics in Networks.

[24] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and
Jennifer Rexford. 2016. Hula: Scalable load balancing using pro-
grammable data planes. In Proceedings of the Symposium on SDN Re-
search. 1–12.

[25] John Kim, William J Dally, and Dennis Abts. 2007. Flattened butterfly:
a cost-efficient topology for high-radix networks. In Proceedings of
the 34th Annual International Symposium on Computer Architecture.
126–137.

[26] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis.
2018. The case for learned index structures. In Proceedings of the 2018
International Conference on Management of Data. 489–504.

11

https://www.alpha-data.com/dcp/products.php?product=adm-pcie-9v3
https://www.alpha-data.com/dcp/products.php?product=adm-pcie-9v3
https://p4.org/p4/inband-network-telemetry/
https://doi.org/10.1145/3230543.3230551
https://doi.org/10.1145/3230543.3230551
https://doi.org/10.1088/1748-0221/13/07/p07027
https://doi.org/10.1088/1748-0221/13/07/p07027
https://www.usenix.org/conference/atc19/presentation/duplyakin
https://www.usenix.org/conference/atc19/presentation/duplyakin
https://doi.org/10.1145/2934872.2934911
https://doi.org/10.1145/1592568.1592577
https://doi.org/10.1145/1592568.1592577
https://doi.org/10.1145/2785956.2787496
https://doi.org/10.1145/3230543.3230555
https://doi.org/10.1145/2785956.2787507
https://www.usenix.org/conference/nsdi19/presentation/holterbach
https://www.usenix.org/conference/nsdi19/presentation/holterbach


Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

[27] Praveen Kumar, Yang Yuan, Chris Yu, Nate Foster, Robert Kleinberg,
Petr Lapukhov, Chiun Lin Lim, and Robert Soulé. 2018. Semi-oblivious
traffic engineering: The road not taken. In 15th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI} 18). 157–
170.

[28] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning.
nature 521, 7553 (2015), 436–444.

[29] Eric Liang, Hang Zhu, Xin Jin, and Ion Stoica. 2019. Neural packet
classification. In Proceedings of the ACM Special Interest Group on Data
Communication. 256–269.

[30] Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishnamurthy, Simon
Peter, and Karan Gupta. 2019. Offloading Distributed Applications onto
SmartNICs Using IPipe. In Proceedings of the ACM Special Interest Group
on Data Communication (SIGCOMM ’19). Association for Computing
Machinery, New York, NY, USA, 318–333. https://doi.org/10.1145/
3341302.3342079

[31] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neu-
ral Adaptive Video Streaming with Pensieve. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication
(SIGCOMM ’17). Association for Computing Machinery, New York, NY,
USA, 197–210. https://doi.org/10.1145/3098822.3098843

[32] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan,
Zili Meng, and Mohammad Alizadeh. 2019. Learning Scheduling Al-
gorithms for Data Processing Clusters. In Proceedings of the ACM
Special Interest Group on Data Communication (SIGCOMM ’19). As-
sociation for Computing Machinery, New York, NY, USA, 270–288.
https://doi.org/10.1145/3341302.3342080

[33] Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat.
2016. Trumpet: Timely and precise triggers in data centers. In Proceed-
ings of the 2016 ACM SIGCOMM Conference. 129–143.

[34] Salvatore Pontarelli, Roberto Bifulco, Marco Bonola, Carmelo Cascone,
Marco Spaziani, Valerio Bruschi, Davide Sanvito, Giuseppe Siracusano,
Antonio Capone, Michio Honda, et al. 2019. Flowblaze: Stateful packet
processing in hardware. In 16th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 19). 531–548.

[35] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C
Snoeren. 2015. Inside the social network’s (datacenter) network. In
Proceedings of the 2015 ACM Conference on Special Interest Group on
Data Communication. 123–137.

[36] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armis-
tead, Roy Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie

Germano, Anand Kanagala, Jeff Provost, Jason Simmons, Eiichi Tanda,
Jim Wanderer, Urs Hölzle, Stephen Stuart, and Amin Vahdat. 2015.
Jupiter Rising: A Decade of Clos Topologies and Centralized Control
in Google’s Datacenter Network. SIGCOMM Comput. Commun. Rev.
45, 4 (Aug. 2015), 183–197. https://doi.org/10.1145/2829988.2787508

[37] Rachee Singh, Manya Ghobadi, Klaus-Tycho Foerster, Mark Filer, and
Phillipa Gill. 2018. RADWAN: rate adaptive wide area network. In
Proceedings of the 2018 Conference of the ACM Special Interest Group on
Data Communication. 547–560.

[38] Arjun Singhvi, Aditya Akella, Dan Gibson, Thomas F.Wenisch, Monica
Wong-Chan, Sean Clark, Milo M. K. Martin, Moray McLaren, Prashant
Chandra, Rob Cauble, Hassan M. G. Wassel, Behnam Montazeri, Si-
mon L. Sabato, Joel Scherpelz, and Amin Vahdat. 2020. 1RMA: Re-
envisioning Remote Memory Access for Multi-tenant Datacenters.
(2020). To appear in Proceedings of the 2020 ACM SIGCOMM Confer-
ence.

[39] Ankit Singla, Chi-Yao Hong, Lucian Popa, and P Brighten Godfrey.
2012. Jellyfish: Networking data centers randomly. In Presented as
part of the 9th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 12). 225–238.

[40] Brent Stephens, Aditya Akella, and Michael M. Swift. 2018. Your
Programmable NIC Should Be a Programmable Switch. In Proceedings
of the 17th ACM Workshop on Hot Topics in Networks (HotNets ’18).
Association for Computing Machinery, New York, NY, USA, 36–42.
https://doi.org/10.1145/3286062.3286068

[41] Kausik Subramanian, Anubhavnidhi Abhashkumar, Loris D’Antoni,
and Aditya Akella. 2019. D2R: Dataplane-Only Policy-Compliant
Routing Under Failures. (2019). arXiv:arXiv:1912.02402

[42] Asaf Valadarsky, Michael Schapira, Dafna Shahaf, and Aviv Tamar.
2017. Learning to Route. In Proceedings of the 16th ACM Workshop
on Hot Topics in Networks (HotNets-XVI). Association for Computing
Machinery, New York, NY, USA, 185–191. https://doi.org/10.1145/
3152434.3152441

[43] Keith Winstein and Hari Balakrishnan. 2013. TCP Ex Machina:
Computer-Generated Congestion Control. SIGCOMM Comput. Com-
mun. Rev. 43, 4 (Aug. 2013), 123–134. https://doi.org/10.1145/2534169.
2486020

[44] Junlan Zhou, Malveeka Tewari, Min Zhu, Abdul Kabbani, Leon
Poutievski, Arjun Singh, and Amin Vahdat. 2014. WCMP: Weighted
cost multipathing for improved fairness in data centers. In Proceedings
of the Ninth European Conference on Computer Systems. 1–14.

12

https://doi.org/10.1145/3341302.3342079
https://doi.org/10.1145/3341302.3342079
https://doi.org/10.1145/3098822.3098843
https://doi.org/10.1145/3341302.3342080
https://doi.org/10.1145/2829988.2787508
https://doi.org/10.1145/3286062.3286068
http://arxiv.org/abs/arXiv:1912.02402
https://doi.org/10.1145/3152434.3152441
https://doi.org/10.1145/3152434.3152441
https://doi.org/10.1145/2534169.2486020
https://doi.org/10.1145/2534169.2486020

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Why Learned Load Balancing?
	2.2 Limitations of State-of-the-Art
	2.3 Why Learned Load Balancing Now?

	3 Learned Load Balancing
	3.1 Minimizing Maximum Utilization
	3.2 How LLB Learns

	4 Training LLB
	4.1 LLB Formulation Choices
	4.2 Efficient Inference for LLB

	5 Evaluation
	5.1 Experiment Settings
	5.2 Adapting to Unseen Traffic Demands
	5.3 Adapting to Asymmetry and Failures
	5.4 LLB inference on smartNICs

	6 Related Work
	7 Conclusion and Future Work
	References

