
171

Synthesizing Abstract Transformers

PANKAJ KUMAR KALITA, Indian Institute of Technology Kanpur, India
SUJIT KUMAR MUDULI, Indian Institute of Technology Kanpur, India
LORIS D’ANTONI, University of Wisconsin–Madison, USA
THOMAS REPS, University of Wisconsin–Madison, USA
SUBHAJIT ROY, Indian Institute of Technology Kanpur, India

This paper addresses the problem of creating abstract transformers automatically. The method we present
automates the construction of static analyzers in a fashion similar to the way yacc automates the construction
of parsers. Our method treats the problem as a program-synthesis problem. The user provides specifications of
(i) the concrete semantics of a given operation op, (ii) the abstract domain𝐴 to be used by the analyzer, and (iii)
the semantics of a domain-specific language 𝐿 in which the abstract transformer is to be expressed. As output,
our method creates an abstract transformer for op in abstract domain 𝐴, expressed in 𝐿 (an “𝐿-transformer for
op over 𝐴”). Moreover, the abstract transformer obtained is a most-precise 𝐿-transformer for op over 𝐴; that is,
there is no other 𝐿-transformer for op over 𝐴 that is strictly more precise.

We implemented our method in a tool called Amurth. We used Amurth to create sets of replacement
abstract transformers for those used in two existing analyzers, and obtained essentially identical performance.
However, when we compared the existing transformers with the transformers obtained using Amurth, we
discovered that four of the existing transformers were unsound, which demonstrates the risk of using manually
created transformers.

CCSConcepts: • Software and its engineering→ Formal software verification; •Theory of computation

→ Automated reasoning; Abstraction.

Additional Key Words and Phrases: abstract transformer, program synthesis, DSL

ACM Reference Format:

Pankaj Kumar Kalita, Sujit Kumar Muduli, Loris D’Antoni, Thomas Reps, and Subhajit Roy. 2022. Synthesizing
Abstract Transformers. Proc. ACM Program. Lang. 6, OOPSLA2, Article 171 (October 2022), 29 pages. https:
//doi.org/10.1145/3563334

1 INTRODUCTION

Abstract interpretation is a methodology for establishing whether a software system satisfies
desired properties. It obtains information about the states that a program (possibly) reaches during
execution, without actually running the program on specific inputs. Instead, the program’s behavior
is explored for all possible inputs, and all possible states that the program can reach, by running the
program over abstract values—descriptors that represent sets of states. Each operation of the program
is interpreted over abstract values in a manner that overapproximates the operation’s standard
(“concrete”) interpretation over the corresponding sets of concrete states. Such an interpretation of

Authors’ addresses: Pankaj Kumar Kalita, Indian Institute of Technology Kanpur, Uttar Pradesh, India, pkalita@cse.iitk.ac.in;
Sujit Kumar Muduli, Indian Institute of Technology Kanpur, Uttar Pradesh, India, smuduli@cse.iitk.ac.in; Loris D’Antoni,
University of Wisconsin–Madison, USA, ldantoni@wisc.edu; Thomas Reps, University of Wisconsin–Madison, USA,
reps@cs.wisc.edu; Subhajit Roy, Indian Institute of Technology Kanpur, Uttar Pradesh, India, subhajit@cse.iitk.ac.in.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
2475-1421/2022/10-ART171
https://doi.org/10.1145/3563334

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 171. Publication date: October 2022.

https://doi.org/10.1145/3563334
https://doi.org/10.1145/3563334
https://doi.org/10.1145/3563334

171:2 Kalita, Muduli, D’Antoni, Reps, and Roy

operation op is called an abstract transformer for op (denoted by op
♯). In particular, the result of

applying an abstract transformer for a statement must result in an abstract value that represents a
superset of the concrete states that can actually arise.

Cousot and Cousot [1977] showed that, under reasonable conditions, for each operation op, there
exists a most-precise abstract transformer op

♯ (or “best transformer for op”). When the power set
of concrete states P(𝐶) is related to the set of abstract values (abstract domain 𝐴) by a Galois
connection P(𝐶) −−−→←−−−𝛼

𝛾

𝐴, the best transformer for op is the function

ôp
♯
= 𝛼 ◦ õp ◦ 𝛾, (1)

where õp is the lifting of op to sets of concrete states. Informally, ôp runs op on all the states
represented by the input abstract value. Eqn. (1) defines the limit of precision obtainable using
abstraction function 𝛼 and concretization function 𝛾 . However, Eqn. (1) is just a specification of the
best transformer: it fails to provide an algorithm for either
(a) applying ôp

♯ to a given abstract value, or
(b) finding a representation of ôp♯.
A “representation” means either (i) a data structure whose interpretation is ôp♯, or (ii) a program to
perform ôp

♯.
Prior work on algorithms for (a) and (b) can be categorized as follows. For (a), Graf and Saidi

[1997] showed that for predicate-abstraction domains (i.e, domains based on a fixed, finite set of state
predicates), SMT solvers can be used to apply the best transformer to an abstract value. (Improved
techniques were given by Lahiri et al. [2005, 2006].) Reps et al. [2004] showed that for abstract
domains with no infinite ascending chains, SMT solvers could be used to apply the best transformer
to an abstract value. The drawback of these methods is that they generally require making a large
number of SMT calls—at least one SMT call for each used abstract value.
For (b), Scherpelz et al. [2007] gave a method for creating a representation of an abstract trans-

former for predicate-abstraction domains. Because their method was based on term-rewriting
heuristics, they had no guarantee of obtaining a representation of the best abstract transformer.
Elder et al. [2014] gave a method for creating a representation of a best abstract transformer for the
abstract domain of conjunctions of bit-vector equalities. That method uses calls on an SMT solver at
the time a transformer is created for a statement, basic-block, or large-block encoding [Beyer et al.
2009]; thereafter, all operations are carried out within the abstract domain.
The advantage of methods of type (b) is that they compile the abstract transformer to a form

that can be used—i.e., applied or composed—without further incurring any expensive operations,
such as SMT calls; all expensive operations are performed once and for all at compilation time.

Thanks to our synthesis-based approach—and in contrast with previouswork—thework described
in this paper is not limited to predicate abstraction or bit-vector equalities. However, our work
addresses a slightly different problem from prior work: our method is parameterized by a domain-
specific language (DSL) 𝐿 in which the abstract transformer for operation op is to be expressed. Given
op and abstract domain 𝐴, our method creates an abstract transformer for op over 𝐴, expressed in
DSL 𝐿—what we call an “𝐿-transformer (for op over𝐴).” Our algorithm is guaranteed to return a best
𝐿-transformer. That is, among all 𝐿-transformers for op over 𝐴, there is no other 𝐿-transformer that
is strictly more precise than the one obtained by our algorithm. (There may be other 𝐿-transformers
that are incomparable to the one obtained by our algorithm, which is why we say that the algorithm
creates a best 𝐿-transformer.)

Thanks to our automated synthesis technique, we discovered four soundness bugs in themanually
written transformers of two real-world abstract-interpretation frameworks.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 171. Publication date: October 2022.

Synthesizing Abstract Transformers 171:3

Contributions.We present a framework to create abstract transformers in a form in which the
application of an abstract transformer involves the execution of relatively simple code. In particular,
we advance the type (b) approach in two ways:
• Our framework treats the problem as a program-synthesis problem, which opens up a new
possibility: rather than the representation of ôp♯ being limited to a fixed interface of operations
provided by an abstract domain, the user can supply a DSL—by specifying both its syntax and
semantics—in which ôp

♯ is to be expressed.
• The assumptions of the framework are fairly minimal. The inputs are quite natural (§2). The
synthesis algorithm that serves as the engine of the framework (§3 and §4) is formalized using a
primitive Synthesize for synthesizing candidate 𝐿-transformers; a primitiveMaxSatSynthesize,
which is biased toward satisfying so-called “positive” examples—see §3; and two primitives that
check soundness and precision of candidate 𝐿-transformers, generating counterexamples when
the respective property fails to hold.
• We implemented a tool, called Amurth (§5), to support our framework, and obtained good
results: we used Amurth to create sets of replacement abstract transformers for those used
in two existing analyzers, and obtained essentially identical performance (§6). However, when
we compared the existing transformers with the replacements synthesized by Amurth, we
discovered that four of the existing transformers were unsound. These results demonstrate the
risk of using manually created transformers, and hence the value of a tool for creating them
automatically.
An extended version of this work is also available [Kalita et al. 2021], which contains more

detailed experimental results.

2 PROBLEM STATEMENT

In this section, we define the problem addressed by our framework. Throughout the paper, we
use a running example in which the goal is to synthesize a most-precise 𝐿-transformer for the
absolute-value function abs(x) = |x| over the domain of intervals, where 𝐿 is the DSL defined by

Transformer ::= _a.[𝐸, 𝐸]
𝐸 ::= a.l | a.r | 0 | −𝐸 | +∞ | −∞ | 𝐸 + 𝐸 | 𝐸 − 𝐸 | 𝐸 ∗ 𝐸 | min(𝐸, 𝐸) | max(𝐸, 𝐸) (2)

and the operations in 𝐸 have their standard meaning. We describe what a user of the framework
has to provide to solve this problem, and what they obtain as output.

The user of our framework needs to provide the following inputs:
Concrete domain: A definition of the concrete domain𝐶—typically some set of values or program
states. In our example, 𝐶 is the set of integers.
Concrete transformer: A definition of the concrete semantics of the function 𝑓 for which we are
trying to synthesize a most-precise 𝐿-transformer. In our example, 𝑓 is the function abs : Int→
Int, which takes as input an integer and returns its absolute value. The semantics of abs(𝑥) is
provided by a logical specification Φabs (𝑥, 𝑥 ′) =df (𝑥 ≥ 0 ∧ 𝑥 ′ = 𝑥) ∨ (𝑥 < 0 ∧ 𝑥 ′ = −𝑥), where 𝑥
and 𝑥 ′ represent the input and output, respectively.
Abstract domain: A definition of the abstract lattice (𝐴, ⊑,⊥), where 𝐴 is the abstract domain, ⊑
is the partial order on elements of 𝐴, and ⊥ is the least element of 𝐴. In our example, the domain
of intervals A𝑖𝑛𝑡𝑣 abstracts a set of integers by maintaining only the maximum and minimum
elements in the set. Each element 𝑎 is a pair [𝑎.𝑙, 𝑎.𝑟] such that 𝑎.𝑙 (which can be −∞) denotes the
minimum element and 𝑎.𝑟 (which can be +∞) denotes the maximum element.
Relation between the abstract and concrete domains: A definition of the concretization
function 𝛾 : 𝐴→ P(𝐶). In our example, the concretization function is 𝛾 (𝑎) = {𝑎.𝑙, 𝑎.𝑙 + 1, . . . , 𝑎.𝑟 }.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 171. Publication date: October 2022.

171:4 Kalita, Muduli, D’Antoni, Reps, and Roy

Language of Possible Transformers: The syntax and semantics of a DSL in which the synthesizer
is to express abstract transformers. In our example, the DSL defined in Eqn. (2).
We assume that all semantic specifications are given in—or can be translated to—formulas in a

fragment of first-order logic. For instance, the concretization function for intervals, 𝛾Interval (a), can
be specified via the predicate 𝑥 ∈ 𝛾Interval (a) =df a.l ≤ 𝑥 ∧ 𝑥 ≤ a.r,

For concrete domain𝐶 and abstract domain 𝐴, Eqn. (1) specifies the behavior of the best abstract
transformer for 𝑓 , denoted by 𝑓 ♯. As mentioned previously, Eqn. (1) does not provide the basis for
an implementation of 𝑓 ♯ because 𝛾 (𝑎) is potentially a large set. (It can even be an infinite set for
some abstract domains.) Moreover, the introduction of language 𝐿 into the problem introduces a
new wrinkle: there is no guarantee that 𝑓 ♯ is even expressible in language 𝐿.
Any transformer that is expressible in 𝐿 is referred to as an L-transformer, denoted by 𝑓

♯

𝐿
. We

use 𝑓 ♯
𝐿
to denote a best 𝐿-transformer for 𝑓 . A best 𝐿-transformer must satisfy the dual objectives

of soundness and precision.
Soundness: A sound 𝐿-transformer for a concrete function 𝑓 must overapproximate the best
transformer 𝑓 ♯; i.e., 𝑓 ♯

𝐿
is sound iff for all 𝑎 ∈ 𝐴, 𝑓 ♯ (𝑎) ⊑ 𝑓

♯

𝐿
(𝑎).

Precision: We define a (pre-)partial order on 𝐿-transformers with respect to precision (⊑𝑝𝑟) as
follows: for all 𝑓1♯, 𝑓2♯ ∈ 𝐿, 𝑓1♯⊑𝑝𝑟 𝑓2♯ ≡ ∀𝑎 ∈ 𝐴. 𝛾 (𝑓 ♯1 (𝑎)) ⊆ 𝛾 (𝑓 ♯2 (𝑎)). A sound 𝐿-transformer
𝑓 ♯ ∈ 𝐿 is most-precise if it is minimal with respect to ⊑𝑝𝑟 .

Definition 2.1. An abstract transformer 𝑓 ♯
𝐿
∈ 𝐿 is a best 𝐿-transformer for a function 𝑓 if 𝑓 ♯

𝐿
is

both sound and most-precise (in which case, we denote it by 𝑓
♯

𝐿
). We use Ŝ𝐿 (𝑓) to denote the set

of all best 𝐿-transformers for a function 𝑓 .

Note that there may not exist a unique best 𝐿-transformer under ⊑𝑝𝑟 . For example, if 𝑓 is the
constant-zero function _𝑥 .0, and language 𝐿 can only express the functions {_𝑎.[0, 𝑘], _𝑎.[−𝑘, 0] |
𝑘 ∈ N ∧ 𝑘 ≥ 1}, the transformers _𝑎.[0, 1] and _𝑎.[−1, 0], which are incomparable under ⊑𝑝𝑟 , are
both best 𝐿-transformers for 𝑓 .

This paper targets the following problem:
Given the concrete semantics Φ𝑓 of a concrete transformer 𝑓 , a description of an abstract domain
(𝐴, ⊑,⊔), its relation to the concrete domain (𝛾), and a domain-specific language 𝐿, synthesize a
best 𝐿-transformer for 𝑓 .

As illustrated in §4, our method synthesizes the following transformer abs♯ : Aintv → Aintv:

abs♯ (a) = [max(max(0, a.l),−a.r), max(−a.l, a.r)] . (3)

Even though the concrete function abs and the interval abstract domain are both quite simple, the
transformer in Eqn. (3) is non-trivial, providing motivation for this work.
We now provide an informal argument that the transformer abs♯ is a best 𝐿-transformer âbs

♯

𝐿

over the interval domain. Given an input interval a ∈ Aintv, âbs
♯

𝐿 must behave as follows: (1) If 𝛾 (a)
only contains non-negative values (i.e., a.l ≥ 0), âbs

♯

𝐿 should return the input interval a itself. (2) If
𝛾 (a) only contains non-positive values (i.e., a.r ≤ 0), âbs

♯

𝐿 should return the interval [−a.r,−a.l].
(3) If 𝛾 (a) contains both positive and negative values (i.e., a.l < 0 ∧ a.r > 0), âbs

♯

𝐿 should return
the interval [0, max(−a.l, a.r)]. A transformer meeting all these conditions is a best 𝐿-transformer
(cf. Eqn. (1)). With a little bit of case analysis, one can see that the transformer abs♯ handles all of
the cases as described above.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 171. Publication date: October 2022.

Synthesizing Abstract Transformers 171:5

Note that, for a given abstract domain, all of the components provided as inputs to the framework
are reusable. To synthesize a best 𝐿-transformer for a different concrete transformer 𝑔, one only
needs to supply the specification of 𝑔.

For a given concrete transformer 𝑓 , to synthesize a variety of best 𝐿𝑖 -transformers over different
abstract domains (𝐴𝑖 , ⊑𝑖 ,⊥𝑖), one needs to supply the definitions of the different abstract domains,
and—typically—define DSLs 𝐿𝑖 with suitable operations to manipulate the various components in
the representations of 𝐴𝑖 values.

3 POSITIVE EXAMPLES, NEGATIVE EXAMPLES, SOUNDNESS, AND PRECISION

The engine that underlies our framework is an example-based synthesis algorithm to synthesize
the target 𝐿-transformer. The key insight behind the algorithm is as follows:

Use both positive and negative examples. Treat positive examples as hard constraints and
negative examples as soft constraints.

The synthesis algorithm is formalized using a primitive Synthesize for synthesizing candidate
𝐿-transformers; a primitive MaxSatSynthesize, which is biased toward satisfying positive exam-
ples; and two primitives, CheckSoundness and CheckSoundness, which check the soundness
and precision of candidate 𝐿-transformers, respectively—generating counterexamples when the
respective property fails to hold. The algorithm proceeds in iterations, and maintains a set of
examples 𝐸 = ⟨𝐸+, 𝐸−⟩, divided into positive (𝐸+) and negative (𝐸−) examples. It also issues queries
to check whether the current candidate 𝐿-transformer is sound and precise. If it fails either the
soundness or precision criterion, a new candidate 𝐿-transformer is created. In this section, we
discuss the soundness and precision queries (§3.1 and §3.2, respectively). The algorithm itself is
presented in §4, and the role of MaxSatSynthesize is explained in §4.2.

Definition 3.1 (Positive and Negative Examples). A positive example is a pair ⟨𝑎, 𝑐 ′⟩ such that 𝑎 ∈ 𝐴
and 𝑐 ′ ∈ 𝛾 (𝑓 ♯ (𝑎)). A negative example is a pair ⟨𝑎, 𝑐 ′⟩ such that 𝑎 ∈ 𝐴, and there exists some best
𝐿-transformer 𝑓 ♯

𝐿
∈ Ŝ𝐿 such that 𝑐 ′ ∉ 𝛾 (𝑓 ♯

𝐿
(𝑎)).

Example 3.2. For the interval domain and the function abs, ⟨[5, 9], 6⟩ is a positive example, but
⟨[5, 9], 12⟩ is not. Along the same lines, assuming the DSL 𝐿 from Eqn. (2), ⟨[5, 12], 2⟩ is a negative
example, while ⟨[5, 12], 7⟩ is not a negative example.

Fig. 1. Positive and negative ex-

amples, along with two best 𝐿-

transformers and 𝑓 ♯ . The blue ex-

ample 𝑥0 is neither positive nor
negative.

Fig. 1 illustrates a case with two best 𝐿-transformers, Ŝ𝐿 =

{𝑓 ♯1𝐿, 𝑓
♯

2𝐿}, shown by the blue outlines; the black dashed outline
shows the best abstract transformer 𝑓 ♯. Points on the plot depict
examples ⟨𝑎, 𝑐 ′⟩; a point ⟨𝑎, 𝑐 ′⟩ ∈ 𝑓 ♯ denotes that 𝑐 ′ ∈ 𝛾 (𝑓 ♯ (𝑎)) and
vice-versa. Point 𝑝1 is a positive example because it is inside 𝑓 ♯.
Point 𝑛1 (resp. 𝑛2) is a negative example because it is outside best
𝐿-transformer 𝑓 ♯1𝐿 (resp. 𝑓 ♯2𝐿); and 𝑛3 is a negative example because
it is outside of both 𝑓

♯

1𝐿 and 𝑓
♯

2𝐿 . Point 𝑥0 is neither a positive exam-
ple nor a negative example: it is outside 𝑓 ♯, but inside both best
𝐿-transformers.

We assume that we have available a Synthesize procedure that
accepts a set of examples ⟨𝐸+, 𝐸−⟩, and returns an 𝐿-transformer
𝑓
♯

𝐸
that includes all 𝑒+ ∈ 𝐸+ and excludes all 𝑒− ∈ 𝐸−.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 171. Publication date: October 2022.

171:6 Kalita, Muduli, D’Antoni, Reps, and Roy

(a) Adding positive counterexamples (b) Adding negative counterexamples. 𝑃 is a set of

positive examples (•) .

Fig. 2. The blue ovals represent the successions of synthesized 𝐿-transformers; the black dashed oval represents

a best 𝐿-transformer.

That is, 𝑓 ♯
𝐸
satisfies

sat
+ (𝑓 ♯

𝐸
, 𝐸+) ∧ sat− (𝑓 ♯

𝐸
, 𝐸−), where sat+ (𝑓 ♯

𝐸
, 𝐸+) =df ∀⟨𝑎, 𝑐⟩ ∈ 𝐸+ . 𝑐 ∈ 𝛾 (𝑓 ♯𝐸 (𝑎)),

and sat− (𝑓 ♯
𝐸
, 𝐸−) =df ∀⟨𝑎, 𝑐⟩ ∈ 𝐸− . 𝑐 ∉ 𝛾 (𝑓 ♯𝐸 (𝑎)) .

(4)

3.1 SoundnessQueries (CheckSoundness)

Definition 3.3. A soundness query takes as input an 𝐿-transformer 𝑓 ♯
𝐸
(that is consistent with the

set of examples 𝐸) and returns
(1) True if 𝑓 ♯

𝐸
is sound for all possible inputs; i.e., ∀𝑎. 𝑓 ♯ (𝑎) ⊑ 𝑓

♯

𝐸
(𝑎),

(2) False and a pair of abstract and concrete values ⟨𝑎, 𝑐 ′⟩, such that 𝑐 ′ ∈ 𝛾 (𝑓 ♯ (𝑎)) \ 𝛾 (𝑓 ♯
𝐸
(𝑎)). 𝑎 is a

witness to the unsoundness of 𝑓 ♯
𝐸
; ⟨𝑎, 𝑐 ′⟩ is called a positive counterexample.

Because a logical specification Φ𝑓 for the semantics of the concrete function 𝑓 is provided, where
Φ𝑓 is expressed in a decidable logic, the soundness check can be carried out by checking the
following formula for satisfiability:

∃⟨𝑎, 𝑐 ′⟩, where 𝑎 ∈ 𝐴, and 𝑐 ′ ∈ 𝐶, such that ∃𝑐 ∈ 𝐶, 𝑐 ∈ 𝛾 (𝑎) ∧ Φ𝑓 (𝑐, 𝑐 ′) ∧ 𝑐 ′ ∉ 𝛾 (𝑓 ♯𝐸 (𝑎)) (5)

Let us now define the interface:

CheckSoundness(𝑓 ♯
𝐸
, 𝑓) =

{
False, ⟨𝑎, 𝑐 ′⟩ if Eqn. (5) is SAT
True, _ otherwise

(6)

One might wonder if is is possible to solve the problem of synthesizing a best 𝐿-transformer using
CheckSoundness alone. For example, one could use a counterexample-guided inductive synthesis
(CEGIS) algorithm that uses CheckSoundness iteratively, to synthesize a succession of candidate
𝐿-transformers that cover larger and larger sets of examples. This (hypothetical) algorithm would
maintain a set of positive examples 𝐸+, use Synthesize to generate a sound 𝐿-transformer 𝑓 ♯

𝐸+ for 𝐸
+,

and issue a query to CheckSoundness to determine whether the current candidate 𝐿-transformer
is sound in general. If not, the algorithm would add the positive counterexample to 𝐸+ and repeat.
For example, suppose that on some iteration abs♯

𝐸+0
= _a:[a.l,a.r], and CheckSoundness

is called to generate the positive counterexample ⟨[10, 15], 12⟩; a synthesizer, given 𝐸+1 = 𝐸+0 ∪
{⟨[10, 15], 12⟩}, may generate the 𝐿-transformer abs♯

𝐸+1
(a) = [0, a.r], which is sound on all examples.

The positive-counterexample-guided-synthesis algorithm is illustrated in Fig. 2a. The blue ovals
represent the succession of synthesized 𝐿-transformers; the black dashed oval represents the best

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 171. Publication date: October 2022.

Synthesizing Abstract Transformers 171:7

transformer. The green stars represent positive counterexamples. If this algorithm terminates, it is
guaranteed to generate an 𝐿-transformer that is sound on all of the possible inputs; however, the
result is not guaranteed to be precise. For instance, our example may converge to the maximally
imprecise result abs♯

𝐸+ (a) = [−∞, +∞].

3.2 PrecisionQueries (CheckPrecision)

To help the reader’s understanding, we start by discussing a slightly idealized version of the
CheckPrecision query, denoted by CheckPrecision∗. (Note the ∗ symbol.)

Definition 3.4. A precision query takes as input an 𝐿-transformer 𝑓 ♯
𝐸
(that is consistent with the

set of examples 𝐸) and returns
(1) False if there exists an abstract example ⟨𝑎, 𝑐 ′⟩, where𝑎 ∈ 𝐴 is an abstract input, and 𝑐 ′ is a concrete

value such that there exists a best 𝐿-transformer 𝑓 ♯

𝐿
∈ Ŝ𝐿 for which 𝑐 ′ ∈ 𝛾 (𝑓 ♯

𝐸
(𝑎)) \ 𝛾 (𝑓 ♯

𝐿
(𝑎)),

and 𝑓
♯

𝐿
is also consistent with the set of examples 𝐸. ⟨𝑎, 𝑐 ′⟩ is a witness that 𝑓 ♯

𝐸
is not a best

𝐿-transformer; ⟨𝑎, 𝑐 ′⟩ is called a negative counterexample.
(2) True otherwise.

Let us start by considering the case when Ŝ𝐿 = {𝑓 ♯

𝐿
} is a singleton set. Given a precision query, we

could try to solve our problem using a CEGIS algorithm that uses the precision query iteratively, to
synthesize successively more precise 𝐿-transformers. This (hypothetical) algorithm would maintain
a set of examples 𝐸− that we want our 𝐿-transformer to avoid, and would issue a precision query to
determine whether the current candidate 𝐿-transformer is a most-precise 𝐿-transformer. If not, the
algorithm would add the example returned by the query to 𝐸− and repeat. For example, starting
with abs♯∅ (a) = [−∞, +∞], CheckPrecision

∗ may generate a negative counterexample ⟨[1, 6], 10⟩
that improves the precision of the 𝐿-transformer, after which a new 𝐿-transformer is synthesized
(and 𝐸− = {⟨[1, 6], 10⟩} starts to build up): abs♯

𝐸− (a) = [0, a.l + a.r] . Fig. 2b illustrates how this
algorithm synthesizes a more-precise 𝐿-transformer on each iteration. (Green circles represent
positive examples, and red stars represent negative counterexamples.)

The precision query only returns a negative counterexample when there exists an 𝐿-transformer
that satisfies the current set of examples 𝐸. We can illustrate the definition by returning to the
situation depicted in Fig. 1, where there are two best 𝐿-transformers, Ŝ𝐿 = {𝑓 ♯1𝐿, 𝑓

♯

2𝐿}. Suppose that
𝐸+ = {𝑝1}, 𝐸− = {𝑛1}, and that Synthesize has found best 𝐿-transformer 𝑓 ♯1𝐿 (so we would like the
algorithm to terminate). At this point, the only other best 𝐿-transformer that the precision query
could find is 𝑓 ♯2𝐿 . It is true that 𝑛2 ∈ 𝛾 (𝑓

♯

1𝐿) \ 𝛾 (𝑓
♯

2𝐿), but if 𝑛2 were added to 𝐸−, Synthesize would
then be blocked from finding any 𝐿-transformer consistent with 𝐸, and thus a CEGIS procedure
would fail (without returning any 𝐿-transformer). However, a best 𝐿-transformer returned by the
precision query must satisfy both 𝐸+ and 𝐸−, and 𝑓

♯

2𝐿 does not satisfy 𝐸− (which contains 𝑛1). The
requirement to satisfy 𝐸 prevents the precision query from returning 𝑓

♯

2𝐿 ; instead, the precision
query would return True, and CEGIS would terminate with 𝑓

♯

1𝐿 .
The following lemma describes how the CheckPrecision∗ query relates to the problem of

synthesizing a best 𝐿-transformer.

Lemma 3.5. Suppose that 𝑓 ♯ is a sound 𝐿-transformer for 𝑓 . 𝑓 ♯ is a best 𝐿-transformer for 𝑓 if and

only if for every set of examples 𝐸 with which 𝑓 ♯ is consistent, the answer to the query CheckPrecision∗

with respect to 𝑓 ♯ and examples 𝐸 is True.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 171. Publication date: October 2022.

171:8 Kalita, Muduli, D’Antoni, Reps, and Roy

The lemma shows how a False answer from CheckPrecision∗ guarantees that a more precise
𝐿-transformer exists in 𝐿, but a positive answer on a single set of examples 𝐸 does not guarantee
that the 𝐿-transformer 𝑓 ♯ is a best 𝐿-transformer.

From CheckPrecision
∗
to CheckPrecision. Given an L-transformer 𝑓 ♯

𝐸
, the precision query

CheckPrecision∗ returns true if 𝑓 ♯
𝐸
is a maximally precise overapproximation of 𝑓 ♯

𝐿
(with respect

to ⊑𝑝𝑟); otherwise it returns a counterexample ⟨𝑎, 𝑐 ′⟩. Even though a logical specification Φ𝑓 for
the semantics of the concrete function 𝑓 is provided, where Φ𝑓 is expressed in a decidable logic,
instantiating CheckPrecision∗ would be challenging because 𝑓 ♯

𝐿
is not known.

Instead, CheckPrecision—note ∗ symbol—uses the current set of examples 𝐸 to approximate 𝑓 ♯

𝐿
:

a most-precise 𝐿-transformer that satisfies 𝐸 (denoted by 𝑓
♯

𝐸
) is optimistically assumed to be 𝑓 ♯

𝐿
. Of

course, this approximation improves as more positive examples are discovered. Furthermore, we do
not need to compute 𝑓 ♯

𝐸
; any 𝐿-transformer ℎ♯

𝐿
⊒pr 𝑓 ♯

𝐸
(where ℎ♯

𝐿
satisfies certain other conditions)

suffices, as we explain next.
CheckPrecision attempts to discover a negative counterexample (𝑒−), while ensuring that there

exists a sound 𝐿-transformer ℎ♯
𝐿
that continues to satisfy both 𝐸+ and 𝐸− of example set 𝐸, in

addition to satisfying the negative counterexample 𝑒−. Clearly, ℎ♯
𝐿
⊒pr 𝑓 ♯

𝐸
for some 𝑓

♯

𝐸
. Given a

candidate transformer 𝑓 ♯
𝐸
, CheckPrecision asserts the following conditions:

• All examples in 𝐸+ and 𝐸− are satisfied (see Eqn. (4)).
• There exists a feasible 𝐿-transformer ℎ♯

𝐿
that satisfies 𝐸, as well as a new negative counterexample

⟨𝑎, 𝑐 ′⟩ ∉ 𝐸−

𝑠𝑎𝑡+ (ℎ♯
𝐿
, 𝐸+) ∧ 𝑠𝑎𝑡− (ℎ♯

𝐿
, 𝐸−) ∧ 𝑠𝑎𝑡− (ℎ♯

𝐿
, {⟨𝑎, 𝑐 ′⟩}) .

• The transformer 𝑓 ♯
𝐸
does not satisfy the new (negative) example ⟨𝑎, 𝑐 ′⟩

𝑠𝑎𝑡− (𝑓 ♯
𝐸
, {⟨𝑎, 𝑐 ′⟩}) = false.

The precision check can be expressed as follows:

∃ℎ♯
𝐿
, ⟨𝑎, 𝑐 ′⟩. 𝑠𝑎𝑡+ (ℎ♯

𝐿
, 𝐸+) ∧ 𝑠𝑎𝑡− (ℎ♯

𝐿
, 𝐸− ∪ {⟨𝑎, 𝑐 ′⟩}) ∧ ¬𝑠𝑎𝑡− (𝑓 ♯

𝐸
, {⟨𝑎, 𝑐 ′⟩}) (7)

We can now define the CheckPrecision interface:

CheckPrecision(𝑓 ♯
𝐸
, 𝐸+, 𝐸−) =

{
False, ⟨𝑎, 𝑐 ′⟩ if Eqn. (7) is SAT
True, _ otherwise

(8)

4 AN ALGORITHM TO SYNTHESIZE A BEST 𝐿-TRANSFORMER

4.1 Accommodating Competing Objectives

The competing objectives of soundness and precision might seem to stand in the way of designing
an algorithm that can achieve both. To address this issue, our algorithm essentially runs two CEGIS
loops—one for soundness and one for precision. At each step, it non-deterministically chooses
to query CheckSoundness or CheckPrecision, improving soundness or precision, respectively.
When neither query generates any further counterexamples, the algorithm has provably synthesized
a best 𝐿-transformer.

Because the two CEGIS loops operate independently, interacting only through examples, improv-
ing soundness can temporarily compromise precision and vice-versa. For example, the first positive
counterexample could lead the synthesizer to emit _𝑎.⊤, allowing progress only via a negative
counterexample. Similarly, a negative counterexample can temporarily compromise soundness.
(See §4 and §5.)

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 171. Publication date: October 2022.

Synthesizing Abstract Transformers 171:9

Example 4.1. We now illustrate the principles used in the algorithm on the abs function, using
the interval abstract domain and the DSL from Eqn. (2). To start, abs♯⟨∅,∅⟩ (a) = ⊥. Now suppose
that CheckSoundness is used to generate a positive counterexample, say, ⟨[5, 5], 5⟩. The algorithm
records this example, and attempts to synthesize an 𝐿-transformer that satisfies it, say,

abs♯⟨{ ⟨[5,5],5⟩ },∅⟩ (a) = [a.l,∞] .

Because the above 𝐿-transformer is still not sound, there could be additional calls to Check-
Soundness to generate new counterexamples to soundness. However, the algorithm can choose
nondeterministically to perform a precision step, calling CheckPrecision to generate a negative
counterexample. Suppose that CheckPrecision generates ⟨[1, 6], 10⟩, after which the following
𝐿-transformer is synthesized:

abs♯⟨{ ⟨[5,5],5⟩ },{ ⟨[1,6],10⟩ }⟩ (a) = [0, a.l + a.r] .

Eventually, the algorithms will not be able find any additional positive or negative examples, and
will return the following sound and precise 𝐿-transformer:

abs♯
𝐸
(a) = [max(max(0, a.l),−a.r), max(−a.l, a.r)] .

4.2 Consistency of Positive and Negative Examples

We define the following interface functions:

CheckConsistency(𝐸+, 𝐸−) = ∃𝑓 ♯
𝐸
. 𝑠𝑎𝑡+ (𝑓 ♯

𝐸
, 𝐸+) ∧ 𝑠𝑎𝑡− (𝑓 ♯

𝐸
, 𝐸−)

Synthesize(𝐸+, 𝐸−) =
{
𝑓
♯

𝐸
if ∃𝑓 ♯

𝐸
. 𝑠𝑎𝑡+ (𝑓 ♯

𝐸
, 𝐸+) ∧ 𝑠𝑎𝑡− (𝑓 ♯

𝐸
, 𝐸−)

⊥ otherwise
(9)

In our algorithm, Synthesize is only called if CheckConsistency returns true and is, therefore,
guaranteed to return a transformer.

Recall that whenever a new negative counterexample 𝑒− is generated for a candidate transformer
𝑓
♯

𝐸
, CheckPrecision uses ℎ♯

𝐿
as an over-approximation (⊒pr) of (some) 𝑓 ♯

𝐸
. Because 𝑒− is excluded

from ℎ
♯

𝐿
, 𝑒− is also excluded from some 𝑓 ♯

𝐿
. However, there are two possible cases:

(1) The negative counterexample ⟨𝑎, 𝑐 ′⟩ is such that 𝑐 ′ ∉ 𝛾 (𝑓 ♯
𝐿
(𝑎)) (and 𝑐 ′ ∈ 𝛾 (𝑓 ♯

𝐸
(𝑎))). This case is

illustrated by the red star labeled 𝑛1 in Fig. 3, where 𝑓
♯

𝐿
and 𝑓

♯

𝐸
are shown as the dashed black

and solid blue ovals, respectively. In this case, 𝑛1 is inside 𝑓 ♯𝐸 , but outside 𝑓
♯

𝐿
.

(2) The negative counterexample ⟨𝑎, 𝑐 ′⟩ is such that 𝑐 ′ ∈ 𝛾 (𝑓 ♯
𝐿
(𝑎)) (and 𝑐 ′ ∈ 𝛾 (𝑓 ♯

𝐸
(𝑎))). Hence, by

excluding this negative counterexample, the synthesized transformer 𝑓 ♯
𝐸
remains sound w.r.t. the

examples 𝐸, but can become unsound w.r.t. 𝑓 ♯
𝐿
. This case is illustrated by the red star labeled 𝑛2

in Fig. 3: 𝑛2 is inside both 𝑓
♯

𝐸
and 𝑓

♯

𝐿
.

If 𝐸+ = {⟨[1, 5], 2⟩} and 𝑓
♯

𝐸
is _𝑎.[𝑎.𝑙, +∞], the negative example ⟨[−15,−11], 2⟩ illustrates an

example of case 2 above, and the transformer _𝑎.[𝑎.𝑙, 𝑎.𝑟] would be a possible ℎ♯
𝐿
.

Because 𝑓 ♯

𝐿
is unknown, our algorithm has no means for identifying which of the above cases

a negative counterexample falls into. Hence, the algorithm tentatively marks the example as a
negative example. However, such an assumption has the risk of making the set of positive and
negatives examples inconsistent: the examples 𝐸 = ⟨𝐸+, 𝐸−⟩ are inconsistent if there does not exist
any 𝐿-transformer 𝑔♯

𝐸
such that 𝑠𝑎𝑡+ (𝑔♯

𝐸
, 𝐸+) ∧ 𝑠𝑎𝑡− (𝑔♯

𝐸
, 𝐸−).

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 171. Publication date: October 2022.

171:10 Kalita, Muduli, D’Antoni, Reps, and Roy

(a) Positive example 𝑝2 creates an inconsistency

w.r.t. 𝑝1.
(b) The negative example 𝑝1 is dropped.

Fig. 4. (a) Inconsistent positive and negative examples. (b) Illustration of how our algorithm resolves the

inconsistency. (⋆: most recent positive example)

Fig. 3. Negative examples: 𝑛1 is outside of 𝑓
♯

𝐿
and

𝑛2 is inside 𝑓
♯

𝐿
.

In our example, suppose that in the next iteration
the algorithm selects the soundness check, calling
CheckSoundness to generate another positive ex-
ample, say ⟨[−1, 0], 1⟩ (𝑝2 in Fig. 4a). Now the exam-
ples are inconsistent because there does not exist
any 𝐿-transformer that includes ⟨[−1, 0], 1⟩ and ex-
cludes ⟨[−15,−11], 2⟩. At this point, CheckConsis-
tency finds that the positive and negative examples
are inconsistent, and hence, some negative exam-
ple added by CheckPrecision must have been a
positive example.
The algorithm uses Occam’s razor to solve this

dilemma: the goal of the synthesis step becomes “synthesize a transformer that ignores the smallest

number of negative examples.” In our case, by ignoring the negative example ⟨[−15,−11], 2⟩, it is
possible to synthesize the abstract transformer,

𝑓
♯

𝐸
(a : Aintv) : Aintv = [max(max(0, a.l),−a.r), max(−a.l, a.r)]

To reestablish the consistency of the sets of positive and negative examples, the algorithm
now drops the negative examples that it could not satisfy from 𝐸−. This scenario is illustrated
in Fig. 4b, where the negative example 𝑝1 is dropped, so that positive and negative examples are
now consistent. Hence, in addition to a procedure, Synthesize, the algorithm needs access to a
stronger synthesis procedure,MaxSatSynthesize. This procedure is similar to the standard partial
MaxSat procedure [Li and Manya 2009] (allowing for hard and soft constraints), but applied in
the context of program synthesis. When the positive and negative example sets are conflicting,
MaxSatSynthesize attempts to synthesize a transformer by dropping the smallest number of
negative examples that make the query satisfiable.

Definition 4.2. Given example set ⟨𝐸+, 𝐸−⟩ for which there is no 𝐿-transformer 𝑔♯
𝐸
such that

CheckConsistency(𝑔♯
𝐸
, 𝐸+, 𝐸−) = true, MaxSatSynthesize returns an 𝐿-transformer that can be

synthesized by dropping the smallest set of negative examples:

MaxSatSynthesize(𝐸+, 𝐸−) =

𝑓
♯

𝐸
, 𝐷 if ∃𝑓 ♯

𝐸
, 𝐷. 𝑠𝑎𝑡+ (𝑓 ♯

𝐸
, 𝐸+) ∧ 𝑠𝑎𝑡− (𝑓 ♯

𝐸
, 𝐸− \ 𝐷),

where 𝐷 is minimal,

⊥ otherwise
(10)

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 171. Publication date: October 2022.

Synthesizing Abstract Transformers 171:11

Algorithm 1: SynthesizeTransformer(𝑓) // 𝐶, (𝐴, ⊑,⊥), 𝛾, 𝐿
1 𝑓

♯

𝐸
← _𝑎 : ⊥

2 𝑖𝑠𝑆𝑜𝑢𝑛𝑑, 𝑖𝑠𝑃𝑟𝑒𝑐𝑖𝑠𝑒 ← False

3 𝐸+, 𝐸− ← InitializeExamples()
4 while ¬isSound ∨ ¬isPrecise do
5 if ¬𝑖𝑠𝑆𝑜𝑢𝑛𝑑 ∧ ¬𝑖𝑠𝑃𝑟𝑒𝑐𝑖𝑠𝑒 then
6 if CheckConsistency(𝐸+, 𝐸−) then
7 𝑓

♯

𝐸
← Synthesize(𝐸+, 𝐸−)

8 else

9 𝑓
♯

𝐸
, 𝛿 ← MaxSatSynthesize(𝐸+, 𝐸−)

10 if 𝑓
♯

𝐸
≠ ⊥ then

11 𝐸− ← 𝐸− \ 𝛿
12 else

13 return ⊥

14 if ∗ then
15 isSound, 𝑒 ← CheckSoundness(𝑓 ♯

𝐸
, 𝑓)

16 if ¬isSound then
17 isPrecise← False

18 𝐸+ ← 𝐸+ ∪ {𝑒}

19 else

20 isPrecise, 𝑒 ← CheckPrecision(𝑓 ♯
𝐸
, 𝐸+, 𝐸−)

21 if ¬𝑖𝑠𝑃𝑟𝑒𝑐𝑖𝑠𝑒 then
22 isSound← False

23 𝐸− ← 𝐸− ∪ {𝑒}

24 return 𝑓
♯

𝐸

4.3 Putting It All Together

The algorithm to synthesize a best 𝐿-transformer is given as Alg. 1. In essence, it runs two CEGIS
loops, attempting to meet the dual goals of soundness and precision. The two CEGIS loops interact
with each other via the set of positive and negative counterexamples that they generate, and the
algorithm can terminate only when both loops have attained their objectives. The algorithm starts
off with a trivial transformer that always returns the abstract bottom, and (potentially empty)
example sets 𝐸+ and 𝐸− (line 3). While the synthesized transformer is either unsound or imprecise
(line 4), the algorithm synthesizes a transformer (line 7) that is consistent with the current set of
positive (𝐸+) and negative (𝐸−) examples. Then, it non-deterministically chooses to perform either
a soundness check (line 14) or a precision check (line 19), expanding its set of examples (positive or
negative, respectively) in each case if the check fails.

As discussed in §4.2, it is possible that the positive and negative examples from CheckSoundness
and CheckPrecision become inconsistent. If the examples are inconsistent (i.e., CheckConsis-
tency fails in line 6), the algorithm invokes MaxSatSynthesize to synthesize a transformer that
satisfies all positive examples and a maximal set of negative examples, returning the unsatisfied
negative examples in 𝛿 . The examples are adjusted to reinstate consistency (dropping the unsatisfied
negative examples), and the loop continues. If MaxSatSynthesize fails to synthesize a transformer,

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 171. Publication date: October 2022.

171:12 Kalita, Muduli, D’Antoni, Reps, and Roy

then it must be the case that language 𝐿 is inadequate to express a valid abstraction of 𝑓 , and the
algorithm terminates with ⊥.

The invariant of Alg. 1 is that, on each iteration, at line 14 a transformer 𝑓 ♯
𝐸
has been computed

that is (i) expressible in 𝐿, and (ii) consistent with respect to ⟨𝐸+, 𝐸−⟩. Then, in lines 14–23, soundness
or precision is checked. When both hold, 𝑓 ♯

𝐸
is a suitable 𝐿-transformer, and Alg. 1 terminates.

Alg. 1 is stated as a non-deterministic procedure, as a way to separate mechanism from policy.
However, any fair scheduler can be used to resolve the non-determinism—e.g., alternating between
CheckSoundness and CheckPrecision in successive iterations. (We describe the scheduler that
we use in our implementation in §5.)

Theorem 4.3. If Alg. 1 terminates with a valid 𝑓
♯

𝐸
(i.e., does not terminate with ⊥), then 𝑓

♯

𝐸
is a best

𝐿-transformer for the concrete function 𝑓 .

Proof. For the algorithm to return a valid 𝐿-transformer, both CheckSoundness (Eqn. (6)) and
CheckPrecision (Eqn. (8)) must have returned true (lines 4, 15, and 20).
Passing the test of CheckSoundness guarantees that the 𝐿-transformer is sound. CheckPre-

cision attempts to find a more precise 𝐿-transformer than 𝑓
♯

𝐸
that still satisfies the current set of

positive examples; the inability of CheckPrecision to find such an 𝐿-transformer proves that 𝑓 ♯
𝐸

must also be a best 𝐿-transformer.
□

Theorem 4.4. Let 𝐿 be the DSL whose syntax and semantics has been supplied by the user. If

𝐿 is a finite language (i.e., the grammar for 𝐿 generates only a finite number of terms), and the

non-deterministic choice at line 14 is resolved by a fair scheduler, then Alg. 1 always terminates.

Proof. We assume that the executions of Alg. 1 are fair: i.e., the non-deterministic scheduler
chooses each of lines 15 and 20 infinitely often. Consider a “normalized” execution trace, in which
all calls to CheckSoundness on a sound 𝐿-transformer and CheckPrecision on a precise 𝐿-
transformer are filtered out. That is, each remaining call on CheckSoundness adds to 𝐸+, and each
remaining call on CheckPrecision adds to 𝐸−.
Consider the normalized sub-trace 𝑡 between any two consecutive calls to CheckSoundness.

Note that by the assumption of fairness, only a finite number of calls on CheckSoundness and
CheckPrecision could have been filtered out of 𝑡 . Now consider the number of calls to CheckPre-
cision and MaxSatSynthesize in 𝑡 .
• There can be at most one call on MaxSatSynthesize. The reason is that a call on MaxSatSyn-
thesize establishes consistency among 𝐸+ and 𝐸−, and subsequent calls to CheckPrecision can
only generate negative counterexamples that are consistent with the current set 𝐸+. (That is, in
the suffix of 𝑡 after the call onMaxSatSynthesize, 𝐸+ and 𝐸− always pass CheckConsistency.)
• In effect, each call to CheckPrecision removes at least one 𝐿-transformer from consideration
(by generating a new negative counterexample that is added to 𝐸−). Thus, when DSL 𝐿 is finite,
there can only be a finite number of calls on CheckPrecision in 𝑡 .
Now consider the full normalized trace. Each call on CheckSoundness adds a new positive

example to 𝐸+, and thus removes at least one 𝐿-transformer from consideration during a subsequent
call on Synthesize. Consequently, there can only be a finite number of calls on CheckSoundness
in the normalized trace, and hence every execution of Alg. 1 with a finite DSL 𝐿 must terminate. □

Corollary 4.5. Assuming the same premises as Thm. 4.4, if Alg. 1 terminates with a valid 𝑓
♯

𝐸
(i.e.,

does not terminate with ⊥), then 𝑓
♯

𝐸
is a best 𝐿-transformer for the concrete function 𝑓 .

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 171. Publication date: October 2022.

Synthesizing Abstract Transformers 171:13

1 generator interval genT(interval inv) {

2 int t = ??;

3 if(t == 0) return inv;

4 if(t == 1) return [0, 0];

5 . . .

6 interval x = genT(inv);

7 interval y = genT(inv);

8 . . .

9 if(t == 2) return addInterval(x, y);

10 if(t == 3) return subtractInterval(x, y);

11 . . .

12 }

(a) A snippet of a Sketch generator for the DSL shown

in Eqn. (2). In essence, lines 3, 4, 9, and 10] are

“productions” in a grammar with a supplied semantics

that gives an interpretation over interval arithmetic.

1 interval fun♯(interval inv){

2 if(isBot(inv)){

3 return ⊥;
4 }

5 else{

6 return genT(inv);

7 }

8 }

(b) Representative function for the

interval-domain transformer, which returns ⊥ if

the input is also ⊥; otherwise it returns the
output of generator genT.

Fig. 5. Template for the abstract transformers using a Sketch generator.

5 IMPLEMENTATION

We implemented our framework in a tool, called Amurth. Amurth is written in Python and uses
the Sketch synthesizer (v. 1.7.5) [Solar-Lezama 2013] as a subroutine. Amurth’s inputs are
(1) The type of the elements in the concrete domain, e.g., integers.
(2) A logical specification Φ𝑓 of the semantics of concrete function 𝑓 .
(3) An implementation, written in Sketch, that specifies the partial order (⊑) in the abstract domain,

along with an implementation of gammaCheck(𝑐, 𝑎), which, given 𝑐 ∈ 𝐶 and 𝑎 ∈ 𝐴, checks
whether 𝑐 ∈ 𝛾 (𝑎).

(4) The definition of the DSL, written in the Sketch language.
(5) Optionally, a set of initial positive and negative examples.

Sketch is built on top of the C programming language, and allows one to write programs with
holes, assertions, and a minimization objective over an integer expression. The goal of the Sketch
solver is to find integer values for the holes that cause all assertions to hold, while minimizing the
value of the given objective. As discussed below, Amurth uses these features to implement the
primitives used in Alg. 1.
One specifies a DSL 𝐿 in Sketch using generators. Generators are special functions—possibly

recursive—that contain holes, and allow one to build complex programs via recursion. Sketch
allows one to set a bound on how deep the recursion can be—thereby bounding the size of a
generated program. Generators contain holes that allow the Sketch solver to pick productions to
build a program that satisfies a given specification. Fig. 5a shows how the DSL from Eqn. (2) can be
specified using a generator. In such an encoding, a generator does two things simultaneously: (1)
it uses the hole value to select some production, and (2) it “executes” the code corresponding to
the production. Fig. 5a is an example of a Sketch idiom: it sidesteps generating an intermediate
object (e.g., an abstract syntax tree) that then needs to be executed by an interpreter to obtain the
semantics. Fig. 5b shows the template for the abstract transformers for the interval domain. It
takes as input an interval, and returns ⊥ in case the input is ⊥; otherwise, it returns the output of
the call on the generator.

A generator for an interval-to-interval transformer has a signature of the following form:

generator interval genT(interval in){...}

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 171. Publication date: October 2022.

171:14 Kalita, Muduli, D’Antoni, Reps, and Roy

Sketch allows imposing constraints on the programs produced by a generator. For instance, one
can provide a set of input/output pairs, and assert that the program exhibits those behaviors, e.g.,

assert fun♯ ([1, 2]) == [2, 3] && ... && fun♯ ([1, 3]) == [2, 4]
The solver will then compute a realization of genT (i.e., an 𝐿-transformer) that correctly matches
the given examples.

Because our algorithm may require synthesizing transformers that are correct on “most” of a set
of examples, we can use Sketch to count how many examples are satisfied, and then maximize that
value. Although there is no maximize primitive, it can be simulated using the minimize construct:

c = NumExamples;

if(fun♯ ([1, 2]) == [2, 3]) c = c − 1; . . .
minimize(c);

In §6, we show some of the grammars for the DSLs used in our experiments, e.g., Eqns. (11), (12),
(13), and (16), each of which is encoded using the idiom described above. Because the grammars are
recursive, their languages are of infinite cardinality; however, Sketch imposes a (user-controllable)
unrolling bound on generators that are recursive. Cor. 4.5 holds for all of our experiments with
Amurth—i.e., for a concrete function 𝑓 , if Alg. 1 terminates with something other than ⊥, then the
function 𝑓

♯

𝐸
obtained is a best 𝐿-transformer for 𝑓—however, 𝐿 is the finite language of programs

that fall within the unrolling bound, not the full infinite-cardinality language of the grammar.
The current implementation indicates the existence (yes/no) of a bug in a manually written trans-
former. To locate a bug, a user must currently inspect the faulty transformer and the one synthesized
by Amurth manually.
CheckSoundness. Given a logical specification Φ𝑓 of concrete function 𝑓 , we use Sketch as a
satisfiability solver. For a given candidate 𝐿-transformer 𝑓 ♯, the gammaCheck primitive is used to
specify that Sketch should try to find an input 𝑐 ∈ 𝛾 (𝑎), such that Φ𝑓 (𝑐) ∉ 𝛾 (𝑓 ♯ (𝑎)). If successful,
⟨𝑎,Φ𝑓 (𝑐)⟩ is returned as a positive counterexample.
CheckPrecision, CheckConsistency, Synthesize, and MaxSatSynthesize. Although
in Alg. 1 CheckPrecision, CheckConsistency, and Synthesize are shown as separate procedure
calls, Amurth implements all three calls via a single invocation of Sketch (which finds a new
𝐿-transformer that is more precise than the given one, as well as a witness example). MaxSatSyn-
thesize uses the minimize construct from Sketch, as described above.

5.1 Designing a DSL

As in all synthesis tasks, the design of the DSL is important. DSLs for expressing abstract trans-
formers essentially involve a combination of
(1) Primitives that operate on concrete values (e.g., addition, subtraction, etc. for numeric values;

isSubset, size, containsSpace, etc. for strings). The reason is that concrete values may appear as
components of abstract values, such as endpoints of an interval or a member of a string set.

(2) Operations to deconstruct an abstract value (e.g., to access one of the two endpoints of an
interval).

(3) Operations to construct an abstract value (e.g., to pair the two endpoints of an interval).
(4) Boolean connectives.
(5) Control-flow constructs.

Consider the DSL shown in Eqn. (2). The production Transformer ::= _a.[𝐸, 𝐸] is an example
of item (3): an interval is created from the values of two expressions. Nonterminal 𝐸 derives
expressions for use in a transformer. The productions 𝐸 ::= a.l | a.r are examples of item (2):

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 171. Publication date: October 2022.

Synthesizing Abstract Transformers 171:15

here a refers to the _-bound variable in _a.[𝐸, 𝐸], and a.l (a.r) selects the left (right) end of interval
a. The remaining productions of nonterminal 𝐸 are examples of item (1): they allow synthesizing
arithmetic operations, e.g., sums, differences, products, etc. This DSL is a natural fit for the problem
of creating an interval transformer for the absolute-value function.

The key point in our work is that we have a DSL 𝐿, and (provably) obtain one of the best results
possible in 𝐿. For a given DSL grammar 𝐺 , one has different languages 𝐿1, 𝐿2, etc. according to the
grammar depth that one chooses to use. Thus, if you increase the grammar depth from 𝑘 to 𝑘+1, you
would then obtain a best 𝐿𝑘+1-transformer, which can be more precise than a best 𝐿𝑘 -transformer.
In the experiments described in §6, which involved synthesizing 57 transformers (for 15 operations
and 8 abstract domains: 57 = 6 × 5 + 9 × 3; see Tab. 1), we found that most transformers could be
synthesized with reasonably simple grammars and small grammar depths. In our experiments, we
used grammar depth 3 for almost all of the transformer-synthesis tasks. We chose 3 because we
found that we were able to synthesize almost all transformers in a reasonable time (<600 seconds),
and the transformers obtained were equal to or better than (i.e., were sound) the transformers used
in SAFEstr and the tool of Navas et al..
In §6.3, we provide additional discussion about the design of DSLs, using example DSLs from

§6.1 and §6.2. §6.3 also discusses how changing the DSL can lead to a different (more-precise or
less-precise) transformer and/or impact the synthesis time.

5.2 Refinements to Alg. 1

In §4.3, we stated Alg. 1 as a non-deterministic procedure, as a way to separate mechanism from
policy. However, any fair scheduler can be used to resolve the non-determinism (e.g., alternating
between CheckSoundness and CheckPrecision in successive iterations). We found that a simple
deterministic scheduler that prioritizes CheckPrecision over CheckSoundness works well in
practice. In Alg. 1, if both the isSound and isPrecise flags are False, our algorithm chooses the branch
that calls CheckPrecision. Fairness is ensured by forcing a call on CheckSoundness after 𝑘
consecutive calls on CheckPrecision have been performed. Our implementation uses this strategy
(with 𝑘 = 50).

6 EVALUATION

Table 1. List of abstract operations synthesized by Amurth for

the String and Fixed-Bitwidth Interval domains.

Domain
Type Abstract Domains Operations

String

Constant String (CS) charAt♯ , concat♯ ,
contains♯ ,

toLower♯ , toUpper♯ ,
trim♯

String Set (size 𝑘) (SS𝑘)
Char Inclusion (CI)
Prefix-Suffix (PS)
String Hash (SH)

Fixed
Bitwidth
Interval

Unsigned-Int (Auintv) add♯ , sub♯ , mul♯ , and♯ , or♯ ,
xor♯ , shl♯ , ashr♯ , lshr♯

Signed-Int (Auintv)
Wrapped (W)

We performed two studies with
Amurth.
Case Study 1 (§6.1): We used
Amurth to synthesize abstract trans-
formers for string operations us-
ing the multiple string abstract do-
mains employed in SAFEstr [Amadini
et al. 2017]. We compared the syn-
thesized transformers with the hand-
crafted transformers implemented in
SAFEstr.
Case Study 2 (§6.2): We used
Amurth to synthesize abstract trans-
formers for simple mathematical op-
erations using three kinds of interval
abstract domains defined by Navas et al. [2012]. We compared the synthesized transformers with
those implemented by Navas et al.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 171. Publication date: October 2022.

171:16 Kalita, Muduli, D’Antoni, Reps, and Roy

See Tab. 1 for the abstract domains and operations used in these studies. The two studies were
designed to shed light on the following research questions:

[RQ1]: How long does it take Amurth to synthesize best 𝐿-transformers?
[RQ2]: How do the abstract transformers synthesized by Amurth compare to manually written
ones?

We ran all experiments on an Intel(R) Xeon(R) 2.00GHz E5-2620 CPU with 32GB RAM, running
Ubuntu 16.04. Each reported time is the median of three runs of Amurth. We used an unrolling
depth of 3 for the DSLs used in our experiments. We used a timeout value of 600s per call on Sketch.

6.1 Case Study 1: Transformers for the String Domains in SAFEstr

SAFEstr is a state-of-art static analyzer for programs involving complex string operations. In this
study, we used Amurth to create abstract transformers over the abstract domains used in SAFEstr.

6.1.1 String Abstract Domains. Our study considered the five string abstract domains summarized
below, which are all used in SAFEstr.
String Set (SS𝑘) [Madsen and Andreasen 2014]. This domain can abstract a finite set of strings
precisely, as long as the size of the set does not exceed 𝑘 . An element of this domain (with the
exception of ⊤SS𝑘) is a set of constant strings of size up to 𝑘—i.e., SS𝑘 = {⊤SS𝑘 } ∪ {𝑆 | 𝑆 ⊆
Σ∗ ∧ |𝑆 | ≤ 𝑘}, where Σ is the set of all characters, and ⊥SS𝑘 is the empty set. Let 𝑆 be a set of
strings, then the abstraction function is defined as 𝛼SS𝑘 (𝑆) = 𝑆 if |𝑆 | ≤ 𝑘 and ⊤SS𝑘 otherwise.
The lattice operations, ⊔SS𝑘 (join) and ⊑SS𝑘 (partial order) are defined in terms of set ∪ and ⊆,
respectively. If a set exceeds size 𝑘 , its abstraction is ⊤SS𝑘 .
Constant String (CS) [Madsen and Andreasen 2014]. This domain can abstract precisely up to
one concrete string; it is a special case of the previous domain—i.e., CS = SS1.
Character Inclusion (CI) [Amadini et al. 2017]. An element of this domain is a pair of two sets
of characters, [𝐿,𝑈]. The set 𝐿 (resp.𝑈) denotes what characters a string must (resp. may) contain
to be in the concretization of this abstract element. We will sometimes refer to 𝐿 and 𝑈 as must

and may sets, respectively, in our discussion. Formally, CI = {⊥CI} ∪ {[𝐿,𝑈] | 𝐿,𝑈 ⊆ Σ, 𝐿 ⊆ 𝑈 }.
Given a string 𝑠 ∈ Σ∗, let 𝑐ℎ𝑎𝑟 (𝑠) denote the set of characters in 𝑠 . The abstraction function
is defined as 𝛼CI ({𝑠1, . . . , 𝑠𝑛}) = [⋂𝑖 𝑐ℎ𝑎𝑟 (𝑠𝑖),

⋃
𝑖 𝑐ℎ𝑎𝑟 (𝑠𝑖)], and the concretization function is

then defined as 𝛾CI ([𝐿, 𝑅]) = {𝑠 | 𝐿 ⊆ 𝑐ℎ𝑎𝑟 (𝑠) ⊆ 𝑅}. The partial-order relation is defined
as [𝐿1,𝑈1] ⊑CI [𝐿2,𝑈2] ⇔ (𝐿1 ⊆ 𝐿2 ∧ 𝑈1 ⊆ 𝑈2), and the ⊔CI (join) operation is defined as
[𝐿1,𝑈1] ⊔CI [𝐿2,𝑈2] = [𝐿1 ∩ 𝐿2,𝑈1 ∪𝑈2].
Prefix-Suffix (PS) [Amadini et al. 2017]. An element of this domain is a pair consisting of two
strings ⟨pre, suf⟩ (we use a different pair notation to distinguish from the previous domain), where
pre ∈ Σ∗ is the longest common prefix (lcp) and suf ∈ Σ∗ is the longest common suffix (lcs) for the
corresponding set of strings. The abstraction function is defined as 𝛼PS (𝑆) = ⟨lcp(𝑆), lcs(𝑆)⟩, and
the concretization function is defined as 𝛾PS (⟨pre, suf⟩) = {𝑠 | ∃𝑠1 ∈ Σ∗, ∃𝑠2 ∈ Σ∗ . 𝑠=pre.𝑠1 ∧
𝑠=𝑠2.suf}. The partial order is defined as ⟨pre1, suf1⟩ ⊑PS ⟨pre2, suf2⟩ ⇔ lcp({pre1, pre2}) =

pre2 ∧ lcs({suf1, suf2}) = suf2, and the join operation is defined as ⟨pre1, suf1⟩ ⊔PS ⟨pre2, suf2⟩ =
⟨lcp({pre1, pre2}), lcs({suf1, suf2})⟩.
StringHash (SH) [Madsen andAndreasen 2014]. This domain uses a hash functionℎ : Σ∗ → 𝑈 ,
which takes the sum of the character codes in a string, and maps it to an element in a fixed-size
universe 𝑈 = {0, . . . , 𝑏 − 1}. The concrete implementation of SAFEstr uses the function ℎ(𝑠) =
(Σ𝑐∈𝑐ℎ𝑎𝑟 (𝑠) 𝐼 (𝑐)) 𝑚𝑜𝑑 𝑏, where 𝐼 : Σ → N, is a mapping from characters to an integer value. An
element of the abstract domain SH is a set 𝐻 ⊆ 𝑈 denoting the hash values of the strings being
tracked. Let 𝑆 be a set of strings, then the abstraction function is defined as 𝛼SH (𝑆) = {ℎ(𝑠) | 𝑠 ∈ 𝑆}.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 171. Publication date: October 2022.

Synthesizing Abstract Transformers 171:17

The concretization function is defined as 𝛾SH (𝐻) = {𝑠 ∈ Σ∗ | ℎ(𝑠) ∈ 𝐻 }. The partial order (⊑SH)
and join (⊔SH) are defined as ⊆ and ∪ on sets, respectively.

6.1.2 Abstract Transformers for String Operations. Our study involved six string-manipulation
operations: concat, contains, charAt, toLower, toUpper, and trim. For each domain from §6.1.1,
we used Amurth to synthesize abstract transformers for the six functions. For each concrete
function and abstract domain, we specified a particular DSL 𝐿, and then ran Amurth to synthesize
a best 𝐿-transformer. The time taken by Amurth to synthesize an 𝐿-transformer across all exper-
iments varies between 3.73s and 1,983.83s; see Tab. 2. A table showing detailed results for the
string-domain experiments is available in the extended version [Kalita et al. 2021].

Table 2. Time, in seconds, to synthesize abstract trans-

formers for string functions. The shaded cell indicates

that we used a sketch of the transformer in this case,

and Amurth only synthesizes the holes in the sketch.

𝑓 CS SS𝑘 CI PS SH
charAt 18.29 3.94 24.91 5.94 3.76
concat 99.05 9.57 1,983.83 8.92 609.30
contains 132.06 78.42 1,804.69 9.13 10.39
toLower 11.26 11.74 381.65 6.91 8.44
toUpper 9.77 12.18 735.13 5.85 3.73
trim 4.31 16.35 641.53 8.52 8.29

As it happens, theSH domain only supports
a non-trivial abstract transformer for the con-
crete function concat; for each of the other
five functions, the best abstract transformer
is the trivial abstract transformer _𝑎.(if 𝑎 =

⊥ then ⊥ else ⊤) [Amadini et al. 2017; Mad-
sen and Andreasen 2014]. Amurth synthesized
these transformers, too; each took a nontrivial
amount of time because Amurth had to es-
tablish that the DSL could not express a more
precise abstract transformer.
In this section, we focus the discussion on

the transformers that produced interesting be-
haviors and challenges, and discuss the DSLs
that we used.
Transformer for contains in the CI Domain. The concrete function contains(arg1, arg2)
returns True if arg2 is a contiguous substring of arg1, and False otherwise. Amurth takes
1,804.69s to synthesize the abstract transformer contains♯CI shown in Fig. 6a. The transformer
takes two abstract inputs in CI, and returns an abstract Boolean value in AbsBool. AbsBool
contains four elements, BoolBot, BoolTrue, BoolFalse, and BoolTop, and these elements satisfy
the partial order BoolBot ⊑ 𝑣𝑎𝑙𝑢𝑒 ⊑ BoolTop, where 𝑣𝑎𝑙𝑢𝑒 can be either BoolTrue or BoolFalse.
BoolTrue and BoolFalse are incomparable. The DSL we used to synthesize this transformer is

Transformer ::= _a1, a2 .𝐴𝐵
𝐴𝐵 ::= ite(𝐵,𝐴𝐵,𝐴𝐵) | BoolTop | BoolBot | BoolTrue | BoolFalse
𝐵 ::= isSubset(𝐿𝑈 , 𝐿𝑈) | size(𝐿𝑈) ≤ 1 | isBot(𝐶𝐼) | isTop(𝐶𝐼) | isEmpty(𝐶𝐼)

| ¬𝐵 | 𝐵 ∧ 𝐵 | 𝐵 ∨ 𝐵
𝐶𝐼 ::= a1 | a2
𝐿𝑈 ::= 𝐶𝐼 .l | 𝐶𝐼 .u

(11)
A program in this DSL computes an AbsBool, hence the initial nonterminal𝐴𝐵. Other nonterminals
denote the types Boolean (𝐵), CI (𝐶𝐼), and 𝐿,𝑈 values (𝐿𝑈). This DSL contains a number of auxiliary
functions, e.g., isBot, isTop, isSubset, which can be used to inspect abstract values. The auxiliary
function isBot (resp. isTop) checks whether an abstract value in CI is ⊥CI (resp. ⊤CI). The
function, isSubset(a1,a2) returns True iff a1 is a subset of a2. isEmpty(a) returns True iff a
represents the empty set.

When comparing the transformer contains♯CI synthesized using Amurth (with line 9 in Fig. 6a)
to the one implemented in SAFEstr (with line 8 in Fig. 6a), we discovered that the latter was not sound.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 171. Publication date: October 2022.

171:18 Kalita, Muduli, D’Antoni, Reps, and Roy

1 contains♯CI (a1 : 𝐶𝐼) (a2 : 𝐶𝐼) : AbsBool =

2 ite(isBot(a1 .l, a1 .u)∨isBot(a2 .l, a2 .u),
3 boolBot,

4 [−] ite(isTop(a1 .l, a1 .u) ∨ isTop(a2 .l, a2 .u), // Bug

5 [−] boolTop, // Bug

6 ite(¬isSubset(a2 .l, a1 .u),
7 boolFalse,

8 [-] ite(size(a2 .u) ≤ 1 ∧ isSubset(a2 .u, a1 .l), // Bug

9 [+] ite(isEmpty(a2), // Fix

10 boolTrue,

11 [−] boolTop)))) // Bug

12 [+] boolTop))) // Fix

(a) Abstract transformers for contains.

1 trim♯CI (a : 𝐶𝐼) : 𝐶𝐼 =
2 ite(isBot(a.l,a.u),

3 Bot,

4 ite(isTop(a.l,a.u),

5 Top,

6 ite(size(a.u)≤1∧containsSpace(a.u),
7 [∅, ∅],
8 [-] a // Bug

9 [+] [removeSpace(a.l), a.u] // Fix

10)))

(b) Abstract transformers for trim.

Fig. 6. Bugs found and fixed in the CI domain for contains and trim. The lines in blue show how the

synthesized transformers differ from the incorrect ones in SAFEstr (denoted by the lines in red).

The following example illustrates the problem. Consider two abstract values a1 = [{′a′}, {′a′,′ b′}]
and a2 = [{}, {′a′}]. When the CI abstract transformer implemented in SAFEstr is applied to a1
and a2, it returns BoolTrue. For BoolTrue to be the correct answer, every string in 𝛾 (a2) must be
a contiguous substring of every string in 𝛾 (a1). However, “aaa” ∈ 𝛾 (a2), and “ababa” ∈ 𝛾 (a1), but
“aaa” is not a contiguous substring of 𝛾 (a2). Therefore, SAFEstr’s CI transformer has a bug: it is
unsound. The transformer synthesized by Amurth is sound (and a best 𝐿-transformer with respect
to the DSL given above).

Our inspection also revealed that contains♯CI in SAFEstr contained a precision bug: contains♯
𝐶𝐼

should return boolTrue when 𝑎1 = ⊤ and 𝑎2 is the empty string. In SAFEstr, it returns boolTop,
which is sound but imprecise. In contrast, the transformer synthesized by Amurth (without
lines 4–5, and line 12 in place of line 11) returns boolTrue: isSubset(a2 .l, a1 .u) is true, and a2 is
empty.
Transformer for trim in the CI Domain. The function trim takes a string s and removes all
the whitespace at the beginning and the end of s. Amurth synthesizes the transformer trim♯CI in
Fig. 6b in 641.53s. The DSL used when synthesizing this transformer is

Transformer ::= _a.𝐶𝐼
𝐶𝐼 ::= a | [∅, ∅] | [𝐿𝑈 , 𝐿𝑈] | ite(𝐵,𝐶𝐼,𝐶𝐼)
𝐵 ::= size(𝐿𝑈) ≤ 1 | isBot(𝐶𝐼) | isTop(𝐶𝐼) | containsSpace(𝐿𝑈)

| ¬𝐵 | 𝐵 ∧ 𝐵 | 𝐵 ∨ 𝐵
𝐿𝑈 ::= 𝐶𝐼 .l | 𝐶𝐼 .u | removeSpace(𝐿𝑈)

(12)

A program in the DSL returns an abstract string in the CI domain, hence the initial non-
terminal is 𝐶𝐼 . The DSL contains the following operators: size returns the size of the argu-
ment set, containsSpace returns True iff the argument set contains a whitespace character, and
removeSpace removes any whitespace character from the argument set.

When comparing the transformer synthesized using Amurth to the one implemented in SAFEstr
(blue and red lines in Fig. 6b), we discovered that the latter was not sound. Consider the abstract
input value absArg = [{'␣','a'}, {'␣','a','b','c'}] for which the concretization contains—
among other values—the concrete string s = "␣␣abc␣␣". On this input, trim♯CI returns as output
the abstract value absArg’, which is same as absArg. However, trim(s)="abc", whereas "abc" ∉

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 171. Publication date: October 2022.

Synthesizing Abstract Transformers 171:19

1 trim♯PS (a : 𝑃𝑆) : 𝑃𝑆 =

2 ite(isBot(a.p,a.s),

3 BOT,

4 ite(isTop(a.p,a.s),

5 TOP,

6 [-] [trimStart(a.p), trimEnd(a.s)] // Bug

7 [+] [trim(a.p), trim(a.s)] // Fix

8))

Fig. 7. Abstract transformers for trim in the PS
domain.

1 concat♯ (a : Long) (b : Long) : Long =

2 r ← reverse(b); c ← 0; i ← 0

3 WHILE i < b

4 r ←rotateLeft(r, 1)

5 IF (a & r) ≠ 0 THEN

6 [−] c← c | (1 << i) //SAFEstr
7 [+] c← c ˆ (1 << i) //Amurth
8 i ← i + 1

9 RETURN c

Fig. 8. Abstract transformers for concat in the SH
domain.

𝛾 (absArg’) (because '␣' is an element of the must-set of absArg’). Consequently, the abstract-
transformer implementation in SAFEstr is unsound. The transformer synthesized by Amurth
(trim♯synCI) does not have this issue.
Transformer for trim in the PS Domain.

An element of the PS domain is a pair [𝑝, 𝑠] describing the longest common prefix 𝑝 and suffix
𝑠 of a set of strings. Consider the abstract value 𝑎 = ["␣b␣", "␣b␣"], and the string "␣b␣" ∈ 𝛾 (𝑎).
A most precise transformer for trim on input 𝑎 should output 𝑎′ = ["b", "b"].

The transformer trim♯PS implemented in SAFEstr is unsound. It incorrectly produces the output
𝑎′ = ["b␣", "␣b"], whose concretization fails to contain the concrete value trim("␣b␣") = b. This
bug is due to the statement at line 6 of Fig. 7. Using the DSL defined in Eqn. (13), Amurth is able to
synthesize (in 8.52s) a correct version of trim♯PS: in Fig. 7, line 6 is replaced by line 7.

Transformer ::= _a.𝑃𝑆
𝑃𝑆 ::= a | ['', ''] | [𝐿𝑈 , 𝐿𝑈] | ite(B, PS, PS) | 𝐵𝑂𝑇 | 𝑇𝑂𝑃
𝐵 ::= isBot(PS) | isTop(PS)

𝐿𝑈 ::= 𝑃𝑆.p | 𝑃𝑆.s | trim(LU) | trimStart(LU) | trimEnd(LU)

(13)

Transformer for concat in the SH Domain.

The concrete function concat takes two concrete strings and returns their concatenation. Pseu-
docode for the concat♯ transformer used in SAFEstr is shown in Fig. 8 with line 6 (and without
line 7). SAFEstr uses a universe 𝑈 of values of size 64 (the range of the hash function). The ab-
stract transformer uses a 64-bit long value 𝑎 as a bit-vector encoding of a subset 𝐴 ⊆ 𝑈—i.e.,
the 𝑖-th bit of 𝑎 is 1 iff 𝑖 ∈ 𝐴. Amurth synthesizes the abstract transformer concat♯syn whose
pseudocode is shown in Fig. 8 with line 7 (and without line 6). The DSL used to synthesize this
transformer uses a different structure than the ones described above. In particular, it is a sketch of
the loop that we expect the target function to contain, as shown in Fig. 9. From the options speci-
fied within {|...|...|...|}, the Sketch synthesizer selects an option that makes the resulting
program consistent with the specification. For example, at line 10, Sketch selects from among the
provided options rotateLeft(r,1) and rotateRight(r,1). The sketch can then be completed
using bitwise operators—i.e., not (¬), or (|), and (&), xor (ˆ), left shift (<<), right shift (>>), left-rotate,
right-rotate, and reverse. Amurth takes 609.30s to synthesize the abstract transformer for concat
in the SH domain (see Tab. 2).
This transformer is particularly interesting because it contains complex logic, and an imple-

mentation trick that is hard to reason about. While we had to provide the overall structure of
the program, Amurth could fill in the tricky implementation details automatically. This type of
approach has been used before in program synthesis. For example, the original motivation for

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 171. Publication date: October 2022.

171:20 Kalita, Muduli, D’Antoni, Reps, and Roy

Sketch itself was to synthesize tricky implementation details of user-provided implementation
sketches for bit-vector operations. This particular example shows that Amurth can synthesize
highly non-trivial abstract transformers.

1 #define W 64

2

3 bit[W] absConcat(bit[W] a, bit[W] b){

4 bit[W] r = {| a | b | reverse(a) | reverse(b)|};

5 bit[W] one = {1};

6 bit[W] c = {0};

7 bit[W] cond;

8 for(int i = 0; i < W; i++){

9 one = {1};

10 r = {| rotateLeft(r, 1) | rotateRight(r, 1) |};

11 cond = {| (a & r) | (a | r) | (a ^ r) |};

12 if((cond) != (bit[W]){0}){

13 c = {| (c & rotateLeft(one, i))

14 | (c | rotateLeft(one, i))

15 | (c ^ rotateLeft(one, i))

16 | (c & rotateRight(one, i))

17 | (c | rotateRight(one, i))

18 | (c ^ rotateRight(one, i)) |};

19 }

20 }

21 return c;

22 }

Fig. 9. Sketch to synthesize abstract transformer for

concat♯ in SH

6.1.3 Performance and Precision of the

Synthesized Transformers in a Program

Analyzer. We compared the performance
and precision of the hand-written trans-
formers in SAFEstr with the transformers
synthesized by Amurth. The three bugs
found in SAFEstr were fixed for this exper-
iment. We ran all the benchmark verifica-
tion problems provided in SAFEstr, and col-
lected the same precision metric (“impreci-

sion index” [Amadini et al. 2017]) used to
evaluate SAFEstr. For each benchmark, we
compared the performance with respect to
the time, the number of fixpoint iterations
of the analysis, the number of reachable
program states, and the precision metric
from SAFEstr.
The scatter plots in Figs. 10 (plots for

other domains are available in extended
version [Kalita et al. 2021]) show the data
from runs using the SAFEstr transformers
on the 𝑥-axis, and the data from runs using
the transformers synthesized by Amurth
on the 𝑦-axis. For both the hand-written
transformers in SAFEstr and the transform-
ers synthesized by Amurth, each run of
the analyzer is given a timeout threshold of 600 seconds. An analysis run can also terminate
with a SAFEstr imprecision-trigger exception (“Imprec”) if the imprecision becomes too great. The
following symbols are used in the plots to show the status of an analysis: a magenta square ()
shows that the analysis timed out; a blue triangle () indicates normal termination; and a red
circle () indicates termination due to an imprecision-trigger exception. The plots show that the
transformers synthesized by Amurth have the same performance and precision as the ones imple-
mented in SAFEstr (i.e., all points lie essentially on the diagonal line). There were no examples of a
run using the hand-written SAFEstr transformers that timed out, but the corresponding run with
the transformers synthesized by Amurth completing within the time limit, or vice versa.
For the SH domain, the abstract transformer synthesized by Amurth for concat (line 7 of

Fig. 8) is equivalent to the hand-written transformer in SAFEstr (line 6 of Fig. 8). Hence, we do not
show plots for the SH domain.
Because a singleton set of strings cannot be represented precisely in the CI and PS domains,

to provide a better basis for comparing precision, we used instead their direct products with CS
(i.e., CS × CI and CS × PS). See Fig. 10 for CS × CI; the results for CS × PS are available in
the extended version [Kalita et al. 2021].

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 171. Publication date: October 2022.

Synthesizing Abstract Transformers 171:21

Fig. 10. Performance and precision of the synthesized transformers with the product domain CS×CI. In the

right-hand plot, all examples labeled “timeout” exceeded the timeout threshold with both the hand-written

SAFEstr transformers and the transformers synthesized by Amurth. (There were no examples in which one

set of transformers exceeded the timeout threshold and the other set did not.)

Finding [RQ1]: The time taken by Amurth to synthesize an 𝐿-transformer across all of the
string-transformer experiments varies between 3.73s and 1,983.83s.
Finding [RQ2]: A manual comparison of the automatically-generated and manually-written
transformers revealed that three of the manually written transformers in SAFEstr were unsound:
contains♯ for the CI domain, and trim♯ for CI and PS.
Fig. 10 (and the plots for other corresponding domains in the extended version [Kalita et al.

2021]) show that the abstract transformers synthesized by Amurth for the six string operations
are empirically indistinguishable—in terms of analysis time and precision—from the manually
written ones used in SAFEstr (after the three buggy SAFEstr transformers were fixed).

6.2 Case Study 2: Transformers for Three Fixed-Bitwidth Interval Domains

In this study, we used Amurth to synthesize abstract transformers in the three fixed-bitwidth
interval domains described in §6.2.1, for nine differentmathematical and logical operations. Concrete
arithmetic operations are performed in modular arithmetic (sometimes known as “machine-integer
arithmetic”). Each domain represents a set of fixed-bitwidth integers, and is parameterized on𝑤 ,
which denotes the number of bits in a represented integer.

6.2.1 Fixed-Bitwidth Interval Domains. Our study considered the three fixed-bitwidth interval
domains summarized below [Navas et al. 2012].

North

South

Fig. 11. Wrapped Interval (W) number circle.

Unsigned-Integer Intervals (Auintv). An element
in the𝑤-bit unsigned-integer interval domain is ei-
ther ⊥, which denotes the empty set, or is from
the set {[𝑎, 𝑏] | 0 ≤ 𝑎 ≤ 𝑏 < 𝑚}, where 𝑚 =

2𝑤 . The concretization function (𝛾u) is defined as,
𝛾u ([𝑎, 𝑏]) = {𝑎, 𝑎 + 1, . . . , 𝑏 − 1, 𝑏}.
Signed-Integer Intervals (Asintv). An element in
the 𝑤-bit signed-integer interval domain is either
⊥, which denotes the empty set, or is from the set
{[𝑎, 𝑏] | −𝑚 ≤ 𝑎 ≤ 𝑏 < 𝑚}, where 𝑚 = 2𝑤−1.
Negative numbers are interpreted in their two’s-complement representation. The concretization
function 𝛾𝑠 is defined as, 𝛾𝑠 ([𝑎, 𝑏]) = {𝑎, 𝑎 + 1, . . . , 𝑏 − 1, 𝑏}.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 171. Publication date: October 2022.

171:22 Kalita, Muduli, D’Antoni, Reps, and Roy

Table 3. Time, in seconds, to synthesize abstract transformers for the fixed-bitwidth interval domains.

Templates were used in synthesizing the abstract transformers of the shaded cells in the table.

Domain Arith. Ops. Bitwise Ops.

add sub mul and or xor shift left arithmetic
shift right

logical
shift right

Unsigned 133.70 99.07 1,449.85 14.54 17.36 1,095.94 12.52 6.15 12.88
Signed 607.63 213.17 1,287.83 284.42 958.16 1,234.94 11.78 7.61 4.23
Wrapped 858.60 739.47 880.12 1,360.98 1,311.37 962.13 198.90 598.62 548.72

Wrapped Intervals (W). An element in the wrapped interval is either ⊥, which denotes the
empty set, ⊤, which represents the set {−2𝑤−1 ≤ 𝑎 < 2𝑤−1}, or it is represented by [𝑎, 𝑏], where
𝑎, 𝑏 are 𝑤-bit bit-vectors such that 𝑎 . (𝑏 + 1) mod 2𝑤 . This domain is a sign-agnostic domain.
Wrapped intervals are permitted to cross either or both of the “North pole” and “South pole” shown
in Fig. 11.1 The concretization function (𝛾𝑤) for the wrapped interval domain is defined as follows,
where ≤𝑙 is lexicographic ordering on bit-vectors.

𝛾𝑤 ([𝑎, 𝑏]) =
{
{𝑎, . . . , 𝑏} if 𝑎 ≤𝑙 𝑏
{0𝑤, . . . , 𝑏} ∪ {𝑎, . . . , 1𝑤} otherwise.

(14)

For example, for 3-bit intervals, 𝛾 ([111, 101]) = {000, 001, 010, 011, 100, 101, 111} illustrates the
second case of the Eqn. (14).

6.2.2 Abstract Transformers for Fixed-Bitwidth Interval Domains. For each of the three domains, we
used Amurth to synthesize abstract transformers for nine operations (add, sub, mul, and, or, xor,
shl, ashr, and lshr). Amurth takes 4.23s to 1,449.85s to synthesize a best 𝐿-transformer; see Tab. 3.
Table showing detailed results for the fixed-bitwidth interval-domain experiments are available in
the extended version [Kalita et al. 2021]. While in most cases, merely providing a DSL grammar
was enough (indicated by the unshaded cells in Tab. 3), for some of the more involved transformers,
we had to provide a template—a sketch of the high-level implementation—and Amurth was able to
fill in the details (see the shaded cells). The transformers for which we needed an implementation
sketch are discussed in §6.2.4.
When we tried to synthesize the abstract transformers for xor for the Asintv andW domains

using the auxiliary functions used by Navas et al., Amurth failed. A closer examination revealed
that there was a bug in the Navas et al. implementation of the minAnd auxiliary function: in
two places, they used a bitwise negation(∼) instead of an arithmetic negation (−) as shown in
Fig. 12. After we fixed this bug, all of the 𝐿-transformers synthesized by Amurth are semantically
equivalent to those provided in the implementation that accompanies the Navas et al. paper [2012].

6.2.3 Abstract transformer for multiplication for Auintv and Asintv. For this operation, whenever
there is a possibility of an overflow, the transformer returns ⊤. An overflow is detected as follows:

overflow_mul♯ (𝑎1 : Auintv, 𝑎2 : Auintv) = overflows(𝑎1.𝑙 ∗ 𝑎2.𝑙) ∨ overflows(𝑎1 .𝑙 ∗ 𝑎2.𝑟)
∨ overflows(𝑎1.𝑟 ∗ 𝑎2 .𝑙) ∨ overflows(𝑎1.𝑟 ∗ 𝑎2 .𝑟)

where overflows(𝑥 ∗ 𝑦) returns true whenever the unsigned multiplication of 𝑥 and 𝑦 overflows.
A similar case holds for the case of signed multiplication, but in this case, the overflow is checked
with an overloaded version of overflows() that checks overflows of signed multiplications.

1In contrast, unsigned-integer and signed-integer intervals are allowed to cross only the North and South poles, respectively.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 171. Publication date: October 2022.

Synthesizing Abstract Transformers 171:23

1 llvm::APInt minAnd(llvm::APInt a, const llvm::APInt& b, llvm::APInt c, const llvm::APInt& d) {

2 llvm::APInt m = llvm::APInt::getOneBitSet(a.getBitWidth(), a.getBitWidth() - 1);

3 while (m != 0) {

4 if ((~a & ~c & m)) {

5 [-] llvm::APInt temp = (a | m) & ~𝑚; // Bug

6 [+] llvm::APInt temp = (a | m) & −𝑚; // Fix

7 if (temp <= b) {

8 a = temp;

9 break;}

10 [-] temp = (c | m) & ~𝑚; // Bug

11 [+] temp = (c | m) & −𝑚; // Fix

12 if (temp <= d) {

13 c = temp;

14 break;}

15 }

16 m = m.lshr(1);

17 }

18 return a & c;

19 }

Fig. 12. Buggy implementation of minAnd from the Navas et al. implementation.

To complete the transformer, we used Amurth to synthesize the case where there was no
overflow. In essence, we used the following transformer template:

mul♯ (𝑎1, 𝑎2) =
{
⊤ overflow_mul♯ (𝑎1, 𝑎2) = 𝑡𝑟𝑢𝑒

mul♯𝑛𝑜 overflow_mul♯ (𝑎1, 𝑎2) = 𝑓 𝑎𝑙𝑠𝑒
(15)

We used the following DSL for both the signed and unsigned domains:

Transformer ::= _a.[𝐸, 𝐸]
𝐸 ::= a.l | a.r | 0 | −𝐸 | INTMAX | INTMIN | min(𝐸, 𝐸) | max(𝐸, 𝐸) | mul(𝐸, 𝐸) (16)

Eqn. (17) shows the abstract transformer synthesized by Amurth for the unsigned-integer
interval domain (Auintv). In this case, the abstract transformer is quite simple, multiplying the
corresponding left and right limits of the multiplicands.

mul♯𝑛𝑜 (a1 : Auintv, a2 : Auintv) : Auintv = [mul(a2 .l, a1 .l), mul(a2 .r, a1.r)] (17)
In contrast, the case of signed multiplication is more involved. Eqn. (18) shows the abstract trans-
former synthesized by Amurth for the signed-integer interval domain (Asintv), again using the
DSL from Eqn. (16).

mul♯𝑛𝑜 (a1 : Asintv, a2 : Asintv) : Asintv =[
min

(
min(mul(a2 .r, a1 .r), mul(a1 .r, a2 .l)),
min(mul(a1 .l, a2 .r), mul(a2 .l, a1 .l))

)
, max

(
max(mul(a1 .l, a2 .l), mul(a2 .r, a1 .r)),
max(mul(a1 .r, a2 .l), mul(a1 .l, a2 .r))

)]
(18)

This abstract transformer takes the product of every pair of bounds from the two intervals, and
chooses the minimum element as the left bound of the resultant interval. Similarly, it picks the
maximum element as the right bound of the resultant interval.

Note that, for all the above domains, although Amurth was provided with the same DSL syntax
shown in Eqn. (16), the supplied semantics of the constructs differed, according to the domain.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 171. Publication date: October 2022.

171:24 Kalita, Muduli, D’Antoni, Reps, and Roy

That is, depending on the intended domain, a.l and a.r were interpreted as signed or unsigned
integers; INTMAX and INTMIN were interpreted according to the bitwidth and signedness under
consideration; etc.

1 W xorGen (W a1, W a2) {

2 W s1[] = intervalSplitAtZero(a1.l,a1.r);

3 W s2[] = intervalSplitAtZero(a2.l,a2.r);

4 W result = ⊥;
5 for(int i = 0; i < s1.size(); i++){

6 for(int j = 0; j < s2.size(); j++){

7 int res0 = ?1 (𝑠1[𝑖], 𝑠2[𝑗]);
8 int res1 = ?2 (𝑠1[𝑖], 𝑠2[𝑗]);
9 result = 𝐽𝑜𝑖𝑛W([res0, res1], result);

10 }}}

Fig. 13. Sketch for xor♯ in W and Asintv. Function

intervalSplitAtZero splits the interval at 0, if interval
contains 0.

6.2.4 Abstract transformers for xor. The ab-
stract transformer for xor in theW domain
is quite complex because it involves nested
loops. However, the “high-level” algorithm
is quite intuitive and proceeds by splitting in-
tervals. If 0𝑘 falls in the interval [𝑎, 𝑏], where
𝑎, 𝑏 are𝑘-bit bit-vectors, a split at zero (South
pole) inW will split the interval [𝑎, 𝑏] into
two intervals [𝑎, 1𝑘] and [0𝑘 , 𝑏].
We show the sketch for this high-level

structure in Fig. 13, where the the 𝑖 th hole

to be filled by Amurth is denoted by “ ?i ”.
Both the multiplicands are split at 0 (lines 2–
3), and the sketch loops through each pos-
sible pair of interval segments generated
(lines 5–6). For each pair, it specifies holes
for functions to be synthesized (lines 7–8) that constitute the lower and upper bounds of the interval.
Finally, the intervals corresponding to all such segments are joined to construct the final interval
(line 9).

Amurth synthesizes the functions shown in Eqns. (20) and (21) for the two holes in Fig. 13,
using the following grammar:

Transformer ::= _a1, a2 . 𝐸𝑋
𝐸𝑋 ::= minOr(𝐵, 𝐵, 𝐵, 𝐵) | maxOr(𝐵, 𝐵, 𝐵, 𝐵) | minAnd(𝐵, 𝐵, 𝐵, 𝐵) | maxAnd(𝐵, 𝐵, 𝐵, 𝐵)

| minOr(0, 𝐸𝑋, 0, 𝐸𝑋) | maxOr(0, 𝐸𝑋, 0, 𝐸𝑋) | minAnd(0, 𝐸𝑋, 0, 𝐸𝑋) | maxAnd(0, 𝐸𝑋, 0, 𝐸𝑋)
| or(𝐸𝑋, 𝐸𝑋) | and(𝐸𝑋, 𝐸𝑋)

𝐵 ::= 𝑎1.𝑙 | 𝑎11 .𝑟 | 𝑎2.𝑙 | 𝑎2.𝑟 | ~𝐵
(19)

?1(a1 :W, a2 :W) :W = or

(
minAnd(𝑎1.𝑙, 𝑎1.𝑟 , ~𝑎2.𝑟 , ~𝑎2 .𝑙),
minAnd(~𝑎1.𝑟 , ~𝑎1.𝑙, 𝑎2.𝑙, 𝑎2.𝑟)

)
(20)

?2(a1 :W, a2 :W) :W = maxOr

(
0, maxAnd(𝑎1.𝑙, 𝑎1.𝑟 , ~𝑎2.𝑟 , ~𝑎2 .𝑙),
0, maxAnd(~𝑎1.𝑟 , ~𝑎1.𝑙, 𝑎2.𝑙, 𝑎2.𝑟)

)
(21)

Using the sketch (Fig. 13) and the same DSL (Eqn. (19)), with numbers and operations interpreted
as signed integers Amurth ends up synthesizing the same transformers for the signed domain
(Asintv). For the unsigned domain (Auintv), the transformer is simpler: Amurth could synthesize
the Auintv transformer just from the DSL (Eqn. (19))—with numbers and operations interpreted
as unsigned—without any need for a sketch. Eqn. (22) (minXor) and Eqn. (23) (maxXor) show the
minimum and maximum limits for the xor abstract transformer in theAuintv domain, respectively.

minXor(a1 : Auintv, a2 : Auintv) : Auintv = or

(
minAnd(𝑎1.𝑙, 𝑎1 .𝑟 , ~𝑎2.𝑟 , ~𝑎2 .𝑙),
minAnd(~𝑎1.𝑟 , ~𝑎1 .𝑙, 𝑎2.𝑙, 𝑎2.𝑟)

)
(22)

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 171. Publication date: October 2022.

Synthesizing Abstract Transformers 171:25

maxXor(a1 : Auintv, a2 : Auintv) : Auintv = maxOr

(
0, maxAnd(𝑎1 .𝑙, 𝑎1.𝑟 , ~𝑎2 .𝑟 , ~𝑎2.𝑙),
0, maxAnd(~𝑎1.𝑟 , ~𝑎1 .𝑙, 𝑎2.𝑙, 𝑎2 .𝑟)

)
(23)

Finding [RQ1]: The time taken by Amurth to synthesize an 𝐿-transformer across all of the
fixed-bitwidth interval-transformer experiments varies between 4.23s and 1,449.85s.
Finding [RQ2]: Our experiments using Amurth uncovered bugs in the abstract transformers
implemented by Navas et al. for xor for the Asintv andW domains. The two bugs had a single
root cause, which was that an auxiliary function used in their interval-analysis tool was unsound
due to a mistranscription of code from Hacker’s Delight [Warren 2012], which came to light when
we used the Navas et al. auxiliary function, and Amurth failed to synthesize a correct abstract
transformer.
After the bug in the auxiliary function was fixed, all of the synthesized abstract transformers

for the three kinds of interval domains are sound, precise, and semantically equivalent to those
provided in the implementation that accompanies the paper by Navas et al..

6.3 Experience with Designing DSLs

1 contains♯syn (a1 : 𝐶𝐼) (a2 : 𝐶𝐼) : AbsBool =

2 ite(isBot(a1 .l, a1 .u) ∨ isBot(a2 .l, a2 .u),

3 boolBot,

4 ite(isTop(a1 .l, a1 .u) ∧ isSubset(a2 .u, a1 .l),

5 boolTrue,

6 ite(¬isSubset(a2 .l, a1 .u),
7 boolFalse,

8 boolTop)))

Fig. 14. Another abstract transformer for contains in the

CI domain.

In this section, we discuss more about the
design of DSLs for transformer synthesis,
using the DSLs shown in Eqns. (11), (12),
and (13) as examples.

Some aspects of DSLs are common across
the DSLs for different operations and differ-
ent abstract domains. For instance, all the
DSLs in Eqns. (11), (12), and (13) provide
a way to check whether an abstract value
is ⊥ or ⊤, and to perform different actions
depending on the outcome.
Other parts of a DSL typically reflect the properties that are observable in the abstract domain

for which the DSL will be used for synthesizing transformers. For instance, in the case of the DSL
for the contains operator in the character inclusion (CI) domain (Eqn. (11)), it is natural to add
constructs such as isSubset() and isEmpty() to compare sets of characters. In the case of the
DSL for the trim operation in CI domain (Eqn. (12)), we use constructs such as containsSpace()
and removeSpace() to handle the space (␣) character. Similarly, Eqn. (13) is also a DSL for the
trim operation, but for use with the prefix-suffix (PS) domain. Eqn. (13) is similar to that of
Eqn. (12), but instead of operations on sets, here operations are on strings, such as trimStart()
and trimEnd(), which return strings in which spaces have been removed from the beginning and
the end, respectively, of the argument string.

We now turn to what we observed when Amurth is supplied with a DSL that is a misfit for the
problem at hand. Such misfitting can take two forms: one can have “too many” constructs (§6.3.1),
or “too few” constructs (§6.3.2).

6.3.1 DSLs with “too many” constructs. Consider the DSL shown in Eqn. (24).

Transformer ::= _a.[𝐸, 𝐸]
𝐸 ::= a.l | a.r | 0 | −𝐸 | +∞ | −∞ | 𝐸 + 𝐸 | 𝐸 − 𝐸 | 𝐸 ∗ 𝐸

| min(𝐸, 𝐸) | max(𝐸, 𝐸) | E * E * E | pow(E, E)
(24)

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 171. Publication date: October 2022.

171:26 Kalita, Muduli, D’Antoni, Reps, and Roy

Eqn. (24) is similar to the DSL shown in Eqn. (2),except that it has some extra constructs, which are
highlighted in yellow. We tried to synthesize an abstract transformer for abs with this DSL variant.
We ran Amurth three times with a timeout of 6,000 seconds per call on Sketch—ten times the
usual timeout. The median time of the three runs was 6010.7 seconds. In all three runs, Amurth
could only synthesize a sound but imprecise interval transformer for absolute value in which the
right-hand limit of the return value is always positive infinity (+∞). An investigation of the reason
for this result revealed that Amurth exceeded the timeout threshold in calls to CheckPrecision,
causing it to synthesize an imprecise solution.

6.3.2 DSLs with “not enough” constructs. Now consider the DSL defined by Eqn. (11) but with the
production 𝐵 ::= isEmpty(𝐶𝐼) removed, and suppose that we askAmurth to synthesize an abstract
transformer for the contains operation in the CI domain. In this case, Amurth synthesizes the
abstract transformer shown in Fig. 14. This abstract transformer is a best 𝐿-transformer, where 𝐿 is
the language defined by Eqn. (11) without the production 𝐵 ::= isEmpty(𝐶𝐼).
The absence of isEmpty() in the DSL causes Fig. 14 to be less precise than the (corrected)

abstract transformer shown in Fig. 6a (without line 8 and with line 9). Concretely, the empty
string is contained in every string. The corrected abstract transformer in Fig. 6a returns boolTrue
whenever 𝑎2 is the empty string—see Fig. 6a, line 10. In contrast, the transformer in Fig. 14 returns
boolTrue only in the case that a2 is the empty string and a1 is ⊤: in line 4 it checks whether 𝑎1 is
⊤ and 𝑎2.𝑢 is subset of 𝑎1.𝑙 ; when 𝑎1 is ⊤ and 𝑎2 is the empty string, 𝑎1.𝑙 and 𝑎2.𝑢 both hold the
empty set, and boolTrue is returned (line 5). However, when 𝑎1 is not ⊤, due to the absence of
isEmpty() in the DSL, the transformer cannot check whether argument 𝑎2 is the empty string,
and thus returns the sound answer boolTop.

7 RELATEDWORK

The related work closest to ours was discussed in §1; here we discuss some other related work.
Program synthesis has recently gained a lot of attention, and has found applications in diverse

areas. CEGIS [Solar-Lezama 2013] is a popular synthesis strategy. In our work, we interleave
two CEGIS loops to handle competing objectives, considering a “negative-example” classification
as a soft constraint, allowing MaxSatSynthesize to find a better classification. Work on synthe-
sizing data-structure invariants [Miltner et al. 2020] also deals with two competing objectives—
weakening/strengthening candidate invariants—for which they employ three CEGIS loops.

Several papers by Reps, Sagiv, Yorsh, Thakur, and others address (explicitly or implicitly) the
problem of creating best abstract transformers for a variety of abstract-interpretation frameworks
[Reps et al. 2004; Reps and Thakur 2016; Thakur et al. 2012, 2015; Thakur and Reps 2012] (with
slightly different requirements among the different papers). Elder et al. [2014] gave a method for
creating best abstract transformers for the abstract domain of conjunctions of bit-vector equalities.
The main differences with our work is that (i) those papers use positive examples only, and (ii) they
do not allow the user to specify a DSL. Our algorithm uses both positive and negative examples,
and the user can supply a DSL of their own design.

Wang et al. [2018] presented an approach for learning abstract transformers for a given abstract
domain. There are major differences between their approach and ours. For them, (i) abstract
transformers are expressed in a specific language: conjunctions of a (learned) set of fixed predicates
over affine expressions, and (ii) the operations of the DSL are the concrete operations for which the
system tries to find suitable abstract transformers. In contrast, with Amurth the user (i) supplies
their own DSL in which the abstract transformer is to be expressed, and (ii) provides a logical
specification of the concrete operation for which an abstract transformer is sought.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 171. Publication date: October 2022.

Synthesizing Abstract Transformers 171:27

Bielik et al. [2017] present a method to learn program analyzers from data. Their method attempts
to automatically learn program-analysis inference rules for program primitives (such as assignment
statements, pointer dereferences, etc.), with an emphasis on learning corner-cases for such rules.
The user must supply training data of the form ⟨program, analysis output⟩. The algorithm finds
patterns to apply to program abstract-syntax trees to produce analysis results that match the
dataset as closely as possible. It also uses program-mutation operations to test the learned rules,
and to augment the dataset in a CEGIS loop. Transfer functions are expressed as decision trees,
learned using a modification of the ID3 algorithm. Because the transfer functions cannot use
arithmetic/bitwise operations, their method is suited to selecting from a set of facts, rather than
constructing arbitrary abstract values. Bielik et al. handle precision by attempting to minimize a cost
function on the dataset. They do not attempt to verify that their solution is indeed precise. While
their approach works well for pointer analysis, and for some forms of type analysis and constant
propagation, due to (i) the inability to use arithmetic, and (ii) the way precision is handled, their
technique cannot generate abstract transformers for the domains considered in our experiments.
A recent paper [Wang et al. 2021] is a synthesis-based technique for creating sound abstract

transformers using learned predicates; however, their method of using Datalog query containment
corresponds to CheckSoundness only. They have no analogue of CheckPrecision, and hence no
mechanism for controlling the precision of the transformers that they obtain.

Prabhu et al. [2021] synthesize code specifications using CHC solvers. The problem they tackle
shares some commonalities with ours: a specification has to be not only sound but precise (e.g.,
True is not a very useful specification). To synthesize precise specifications, their algorithm uses
CHC solvers to strengthen the synthesized specification in a CEGIS loop. While this aspect shares
some structure with our precision queries, the task solved by our algorithm is much harder as
it requires synthesizing programs over a DSL instead of logical specifications in a given theory.
Moreover, the problem that they address is dual to ours: their work goes from code to logic, whereas
our work goes from logic to code.

Astorga et al. [2021] use a test generator to generate positive examples to synthesize a contract
that is sound with respect to the examples. There are two main differences between their work
and ours. (i) They only use positive examples, whereas we use both positive and negative ones;
negative examples are the key to synthesizing best 𝐿-transformers. (ii) Their notion of “tight” is
with respect to a syntactic restriction on the logic in which the contract is to be specified. That is,
their system works with a specific logic fragment—for example, the contract is to be specified by
a formula that uses at most 𝑘 disjuncts. In contrast, in our work the user-specified DSL provides
another “knob,” which can be used to explore the trade-off between precise solutions and pragmatic
solutions. There has also been the use of test generators (like fuzzers) to analyze programs for
closed-box functions (program components whose logical specifications are not available) [Lahiri
and Roy 2022; Muduli and Roy 2022; Pandey et al. 2019]. Amurth can also be targeted for such
applications to infer abstract transformers for such closed-box functions by driving the soundness
check by a test generator; we intend to pursue such directions in the future.

Data-Availability Statement.We provide a complete Docker image containing the source code
of Amurth, and relevant dependencies for the experiments, on Zenodo [Kalita et al. 2022].

Acknowledgments. Supported, in part, by a gift from Rajiv and Ritu Batra; by multiple Facebook
Research Awards; by aMicrosoft Faculty Fellowship; by NSF under grants 1420866, 1763871, 1750965,
1918211, and 2023222; and by ONR under grants N00014-17-1-2889 and N00014-19-1-2318. Any
opinions, findings, and conclusions or recommendations expressed in this publication are those of
the authors, and do not necessarily reflect the views of the sponsoring entities.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 171. Publication date: October 2022.

171:28 Kalita, Muduli, D’Antoni, Reps, and Roy

REFERENCES

Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter Schachte, Harald Søndergaard, Peter J.
Stuckey, and Chenyi Zhang. 2017. Combining String Abstract Domains for JavaScript Analysis: An Evaluation. In Tools

and Algorithms for the Construction and Analysis of Systems, Axel Legay and Tiziana Margaria (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 41–57.

Angello Astorga, Shambwaditya Saha, Ahmad Dinkins, Felicia Wang, P. Madhusudan, and Tao Xie. 2021. Synthesizing
Contracts Correct Modulo a Test Generator. Proc. ACM Program. Lang. 5, OOPSLA, Article 104 (Oct. 2021), 27 pages.
https://doi.org/10.1145/3485481

Dirk Beyer, Alessandro Cimatti, Alberto Griggio, M. Erkan Keremoglu, Simon Fraser University, and Roberto Sebastiani.
2009. Software Model Checking via Large-Block Encoding. In 2009 Formal Methods in Computer-Aided Design. 25–32.
https://doi.org/10.1109/FMCAD.2009.5351147

Pavol Bielik, Veselin Raychev, and Martin Vechev. 2017. Learning a Static Analyzer from Data. In Computer Aided Verification,
Rupak Majumdar and Viktor Kunčak (Eds.). Springer International Publishing, Cham, 233–253.

Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs
by Construction or Approximation of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles

of Programming Languages (Los Angeles, California) (POPL ’77). Association for Computing Machinery, New York, NY,
USA, 238–252. https://doi.org/10.1145/512950.512973

Matt Elder, Junghee Lim, Tushar Sharma, Tycho Andersen, and Thomas Reps. 2014. Abstract Domains of Affine Relations.
ACM Trans. Program. Lang. Syst. 36, 4, Article 11 (Oct. 2014), 73 pages. https://doi.org/10.1145/2651361

Susanne Graf and Hassen Saidi. 1997. Construction of Abstract State Graphs with PVS. In Computer Aided Verification,
Orna Grumberg (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 72–83.

Pankaj Kumar Kalita, Sujit Kumar Muduli, Loris D’Antoni, Thomas Reps, and Subhajit Roy. 2021. Synthesizing Abstract
Transformers. https://doi.org/10.48550/ARXIV.2105.00493 Extended version of the current work.

Pankaj Kumar Kalita, Sujit Kumar Muduli, Loris D’Antoni, Thomas Reps, and Subhajit Roy. 2022. Synthesizing Abstract
Transformers. https://doi.org/10.5281/zenodo.7068650 Software artifact of the current work.

Sumit Lahiri and Subhajit Roy. 2022. Almost Correct Invariants: Synthesizing Inductive Invariants by Fuzzing Proofs. In
Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis (Virtual, South Korea)
(ISSTA 2022). Association for Computing Machinery, New York, NY, USA, 352–364. https://doi.org/10.1145/3533767.
3534381

Shuvendu K. Lahiri, Thomas Ball, and Byron Cook. 2005. Predicate Abstraction via Symbolic Decision Procedures. In
Computer Aided Verification. Springer Berlin Heidelberg, Berlin, Heidelberg, 24–38.

Shuvendu K. Lahiri, Robert Nieuwenhuis, and Albert Oliveras. 2006. SMT Techniques for Fast Predicate Abstraction. In
Computer Aided Verification, Thomas Ball and Robert B. Jones (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
424–437.

Chu Min Li and Felip Manya. 2009. MaxSAT, Hard and Soft Constraints. Handbook of satisfiability 185 (2009), 613–631.
Magnus Madsen and Esben Andreasen. 2014. String Analysis for Dynamic Field Access. In Compiler Construction, Albert

Cohen (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 197–217.
Anders Miltner, Saswat Padhi, Todd Millstein, and David Walker. 2020. Data-Driven Inference of Representation Invariants.

In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation (London, UK)
(PLDI 2020). Association for Computing Machinery, New York, NY, USA, 1–15.

Sujit Kumar Muduli and Subhajit Roy. 2022. Satisfiability Modulo Fuzzing: A Synergistic Combination of SMT Solving and
Fuzzing. In Proceedings of the 2022 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems,

Languages, and Applications (OOPSLA 2022). Association for Computing Machinery. https://doi.org/10.1145/3563332
Jorge A. Navas, Peter Schachte, Harald Søndergaard, and Peter J. Stuckey. 2012. Signedness-Agnostic Program Analysis:

Precise Integer Bounds for Low-Level Code, Implementation available at: https://github.com/sav-tools/wrapped-intervals.
In Programming Languages and Systems, Ranjit Jhala and Atsushi Igarashi (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 115–130.

Awanish Pandey, Phani Raj Goutham Kotcharlakota, and Subhajit Roy. 2019. Deferred Concretization in Symbolic Execution
via Fuzzing. In Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis (Beijing,
China) (ISSTA 2019). Association for Computing Machinery, New York, NY, USA, 228–238. https://doi.org/10.1145/
3293882.3330554

Sumanth Prabhu, Grigory Fedyukovich, Kumar Madhukar, and Deepak D’Souza. 2021. Specification Synthesis with
Constrained Horn Clauses. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language

Design and Implementation (Virtual, Canada) (PLDI 2021). Association for Computing Machinery, New York, NY, USA,
1203–1217. https://doi.org/10.1145/3453483.3454104

Thomas Reps, Mooly Sagiv, and Greta Yorsh. 2004. Symbolic Implementation of the Best Transformer. In Verification,

Model Checking, and Abstract Interpretation, Bernhard Steffen and Giorgio Levi (Eds.). Springer Berlin Heidelberg, Berlin,

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 171. Publication date: October 2022.

https://doi.org/10.1145/3485481
https://doi.org/10.1109/FMCAD.2009.5351147
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/2651361
https://doi.org/10.48550/ARXIV.2105.00493
https://doi.org/10.5281/zenodo.7068650
https://doi.org/10.1145/3533767.3534381
https://doi.org/10.1145/3533767.3534381
https://doi.org/10.1145/3563332
https://github.com/sav-tools/wrapped-intervals
https://doi.org/10.1145/3293882.3330554
https://doi.org/10.1145/3293882.3330554
https://doi.org/10.1145/3453483.3454104

Synthesizing Abstract Transformers 171:29

Heidelberg, 252–266.
Thomas W. Reps and Aditya V. Thakur. 2016. Automating Abstract Interpretation. In Verification, Model Checking, and

Abstract Interpretation - 17th International Conference, VMCAI 2016, St. Petersburg, FL, USA, January 17-19, 2016. Proceedings

(Lecture Notes in Computer Science, Vol. 9583), Barbara Jobstmann and K. Rustan M. Leino (Eds.). Springer, 3–40. https:
//doi.org/10.1007/978-3-662-49122-5_1

Erika Rice Scherpelz, Sorin Lerner, and Craig Chambers. 2007. Automatic Inference of Optimizer Flow Functions from
Semantic Meanings. In Proceedings of the 28th ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation (San Diego, California, USA) (PLDI ’07). Association for Computing Machinery, New York, NY, USA, 135–145.
https://doi.org/10.1145/1250734.1250750

Armando Solar-Lezama. 2013. Program Sketching. International Journal on Software Tools for Technology Transfer 15, 5 (01
Oct 2013), 475–495. https://doi.org/10.1007/s10009-012-0249-7

Aditya V. Thakur, Matt Elder, and Thomas W. Reps. 2012. Bilateral Algorithms for Symbolic Abstraction. In Static Analysis -

19th International Symposium, SAS 2012, Deauville, France, September 11-13, 2012. Proceedings. 111–128. https://doi.org/
10.1007/978-3-642-33125-1_10

Aditya V. Thakur, Akash Lal, Junghee Lim, and Thomas W. Reps. 2015. PostHat and All That: Automating Abstract
Interpretation. Electronic Notes in Theoretical Computer Science 311 (2015), 15–32. https://doi.org/10.1016/j.entcs.2015.02.
003 Fourth Workshop on Tools for Automatic Program Analysis (TAPAS 2013).

Aditya V. Thakur and Thomas W. Reps. 2012. A Method for Symbolic Computation of Abstract Operations. In Computer

Aided Verification - 24th International Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings. 174–192.
https://doi.org/10.1007/978-3-642-31424-7_17

Jingbo Wang, Chungha Sung, Mukund Raghothaman, and Chao Wang. 2021. Data-Driven Synthesis of Provably Sound
Side Channel Analyses. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). 810–822. https:
//doi.org/10.1109/ICSE43902.2021.00079

XinyuWang, Greg Anderson, Isil Dillig, and K. L. McMillan. 2018. Learning Abstractions for Program Synthesis. In Computer

Aided Verification, Hana Chockler and Georg Weissenbacher (Eds.). Springer International Publishing, Cham, 407–426.
Henry S. Warren. 2012. Hacker’s Delight (2nd ed.). Addison-Wesley Professional.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 171. Publication date: October 2022.

https://doi.org/10.1007/978-3-662-49122-5_1
https://doi.org/10.1007/978-3-662-49122-5_1
https://doi.org/10.1145/1250734.1250750
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1007/978-3-642-33125-1_10
https://doi.org/10.1007/978-3-642-33125-1_10
https://doi.org/10.1016/j.entcs.2015.02.003
https://doi.org/10.1016/j.entcs.2015.02.003
https://doi.org/10.1007/978-3-642-31424-7_17
https://doi.org/10.1109/ICSE43902.2021.00079
https://doi.org/10.1109/ICSE43902.2021.00079

	Abstract
	1 Introduction
	2 Problem Statement
	3 Positive Examples, Negative Examples, Soundness, and Precision
	3.1 Soundness Queries (CheckSoundness)
	3.2 Precision Queries (CheckPrecision)

	4 An Algorithm to Synthesize a Best L-Transformer
	4.1 Accommodating Competing Objectives
	4.2 Consistency of Positive and Negative Examples
	4.3 Putting It All Together

	5 Implementation
	5.1 Designing a DSL
	5.2 Refinements to Alg. 1

	6 Evaluation
	6.1 Case Study 1: Transformers for the String Domains in SAFEstr
	6.2 Case Study 2: Transformers for Three Fixed-Bitwidth Interval Domains
	6.3 Experience with Designing DSLs

	7 Related Work
	References

