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This paper develops a new framework for program synthesis, called semantics-guided synthesis (SemGuS), that

allows a user to provide both the syntax and the semantics for the constructs in the language. SemGuS accepts

a recursively defined big-step semantics, which allows it, for example, to be used to specify and solve synthesis

problems over an imperative programming language that may contain loops with unbounded behavior. The

customizable nature of SemGuS also allows synthesis problems to be defined over a non-standard semantics,

such as an abstract semantics. In addition to the SemGuS framework, we develop an algorithm for solving

SemGuS problems that is capable of both synthesizing programs and proving unrealizability, by encoding a

SemGuS problem as a proof search over Constrained Horn Clauses: in particular, our approach is the first

that we are aware of that can prove unrealizabilty for synthesis problems that involve imperative programs

with unbounded loops, over an infinite syntactic search space. We implemented the technique in a tool called

MESSY, and applied it to SyGuS problems (i.e., over expressions), synthesis problems over an imperative

programming language, and synthesis problems over regular expressions.
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1 INTRODUCTION

Program synthesis refers to the task of finding a program within a given search space that meets
a given behavioral specification (typically a logical formula or a set of input-output examples).
Program synthesis has been studied from a variety of perspectives, which have led to great practical
advances in specific domains [Feser et al. 2015; Gulwani 2011; Phothilimthana et al. 2019].
The proliferation of domain-specific synthesis tools has led to numerous attempts to build

frameworks that allow one to define and solve synthesis problems in a general fashion. Tools such
as Sketch [Solar-Lezama 2013] and Rosette [Torlak and Bodík 2014] have introduced the notion
of a solver-aided language, which allows one to define a synthesis problem using a specialized
language and then solve the specified problem using a constraint solver. To retain the ability to
solve practical problems, these tools have restricted their languages in ways that enable the use of
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constraint-based synthesis methodsÐe.g., Sketch and Rosette do not allow arbitrary search spaces
involving programs of unbounded size.

While solver-aided languages made synthesis more łprogrammable”, their mutual incompatibility
and language restrictions led to a natural question: Can we define synthesis problems in a language-

agnostic way? This question was partly answered by the framework of of syntax-guided synthesis
(SyGuS) [Alur et al. 2013], which provides a logical framework for defining synthesis problems.
In a SyGuS problem, the search space is described using a context-free grammar of terms from a
given theory, and the behavioral specification is expressed using a formula in that same logical
theory. The unified logical format offered by SyGuS spurred researchers to design synthesizers
that could solve problems defined in the SyGuS format [Alur et al. 2017b; Reynolds et al. 2015],
and these solvers compete annually in SyGuS competitions [Alur et al. 2017a]. However, SyGuS
introduced its own limitation: namely, that the semantics of SyGuS problems are limited to those
from a fixed theory, such as linear integer arithmetic (LIA) or bitvectors. This limitation has created
a gap between the two approaches: solver-aided languages are unable to express SyGuS problems
with infinite search spaces, while SyGuS cannot express problems with semantics outside of a
supported theory, such as imperative programs containing loops (which could be modeled using
tools like Sketch and Rosette).

The SemGuS Framework. In this paper, we bridge this gap and present a new synthesis framework,
called semantics-guided synthesis (SemGuS), that attempts to encompass and generalize the two
approaches. Like SyGuS, the goal of SemGuS is to provide a general, logical framework that expresses
the core computational problem of program synthesis [Alur et al. 2013], without being tied to
a specific solution or implementation. However, in addition to a syntactic search space and a
behavioral specification, SemGuS also allows the user to define the semantics of constructs in the
grammar in terms of a set of inference rulesÐhence the name łsemantics-guided synthesis”.
By a framework, we mean the conceptual underpinnings that allows one to build a tool to

automate the creation of solutions for problems in some domain. The canonical example is the
theory of parsing, which provides the underpinnings of the tool yacc [Johnson 1975], which
automates the construction of parsers.
For example, consider the problem that yacc addresses.

• An instance of a parsing problem, Parse(L,s), has two parameters: L, a context-free language;
and s , a string to be parsed. String s changes more frequently than language L.

• Context-free grammars are a formalism for specifying context-free languages.
• Create a tool that implements the following specification:
– Input: a context-free grammar that describes language L.
– Output: a parser, yyparse(), such that invoking yyparse() on s computes Parse(L,s).

Thus, a framework for synthesis should follow a similar scheme.

• An instance of a synthesis problem Synthesize(L, J·KL,φ) has three parameters: L, a formal
language; J·KL , a semantics to ascribe to L; and φ, a behavioral specification for some desired
member of L. The behavioral specification φ changes more frequently than L and J·KL .

• Let Fsyntax and Fsemantics be appropriate formalisms for specifying L and J·KL , respectively.
• Create a tool that implements the following specification:
– Input: an Fsyntax specification of a language’s syntax, and an Fsemantics specification of the
language’s semantics.

– Output: a function SynthL,J·KL
(·) such that SynthL,J·KL

(φ) computes Synthesize(L, J·KL,φ).
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As in SyGuS, the formalism Fsyntax used in SemGuS is regular-tree grammars. In SemGuS, Fsemantics

is Constrained Horn Clauses, which are a class of logical formulas that are expressive enough
to define a recursive big-step semantics. (In contrast, SyGuS has no explicit formalism Fsemantics;
instead, it relies on a shallow embedding into some decidable theory.)
The flexibility of Constrained Horn Clauses allows SemGuS to address synthesis problems for

imperative programming languages. In ğ2, we show how the semantics of assignments and while
loops can be defined in SemGuS. The customizable aspect of the semantics also provides a natural
way to define synthesis problems over an alternative semantics (see ğ4). In essence, SemGuS extends
the łlogical framework” of SyGuS towards semantics, resulting in a framework that is capable of
defining SyGuS problems, as well as problems that currently require a solver-aided language.

Solving SemGuS Problems. Following the definition of the SemGuS framework, this paper develops
a method for solving general SemGuS problems capable of producing two-sided answers to a problem:
either synthesizing a solution, or proving that the problem is unrealizable, i.e., has no solution.
Proving the unrealizability of synthesis problems has applications in synthesizing programs that
are optimized with respect to some metric [Hu and D’Antoni 2018], and can be employed in tandem
with general synthesis algorithms as well. However, existing program synthesizers are generally
unable to prove unrealizability, and focus only on synthesizing terms.
Although SemGuS can be used for much more than imperative program synthesis, solving

SemGuS problems over an imperative programming language illustrates many of the challenges in
computing solutions to general SemGuS problems:

Reasoning while lacking a direct background theory. Unlike SyGuS, in which problems are
defined over decidable theories, such as linear integer arithmetic, SemGuS over an imperative
programming language must deal with factors such as state, and there is typically no decidable
theory of the programming language involved.

Loops. Loops provide a double challenge in the context of program synthesis: each loop could have
(i) an infinite number of syntactic elaborations (of the condition and the loop-body), each of
which may execute for (ii) an arbitrary number of iterations. Thus, a synthesis algorithm
must reason about sets of loop-body elaborations instead of individual onesÐotherwise, the
search space becomes intractable. Existing constraint-based methods often deal with loops
by setting an unrolling bound, which is a factor that limits the kinds of synthesis problems
they can define or solve: SemGuS explicitly avoids this approach.

In ğ2 and ğ5, we show that an entire SemGuS problemÐsyntax, semantics, and behavioral
specificationÐcan be encoded using CHCs, effectively reducing program synthesis into a proof-
search problem that can be solved with off-the-shelf CHC solvers, such as Z3 [DeMoura and Bjùrner
2008].1 If a proof for the specification exists within the CHC-encoded syntax and semantic rules, the
SemGuS problem is realizable, and the proof identifies a specific term satisfying the specification. If,
on the other hand, the solver can prove that the specification is unsatisfiable using the given rules,
then the problem is unrealizable. SemGuS is semantics-guided not only in the sense that it accepts
a semantics, but in this proof-search step as well: among the lemmas established during the proof
search (by an external solver), some may involve the semantics supplied to SemGuS by the user.

Contributions. This paper makes the following contributions:

• The SemGuS framework, which allows the user to supply inference rules that specify the
syntax and semantics of the target language. In particular, the SemGuS framework can be
used to specify synthesis problems over an imperative programming language (ğ4).

1In general, the problem of finding a solution to a set of CHCs is undecidable.
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Start ::= while B do S 1

B ::= E < E 2

S ::= S ; S 3 | x := E 4 | y := E 5

E ::= x 6 | y 7 | E & E 8 | E | E 9

Fig. 1. Example grammar Gex .

• A constraint-based approach for solving SemGuS problems using CHCs (ğ2 and ğ5), capable of
producing both a synthesized program for realizable problems, and a proof of unrealizability
for unrealizable ones.

• Multiple instantiations of the frameworkÐwith different kinds of semanticsÐthat express
variant SemGuS problems whose solutions can sometimes be obtained more efficiently (ğ6).

• An implementation of a SemGuS solver using Z3 [De Moura and Bjùrner 2008; Komuravelli
et al. 2016], called MESSY. We instantiate MESSY to come with a variety of semantics out-of-
the-box, allowing users to easily define and solve SemGuS problems. Moreover,MESSY is the
first tool capable of both (i) solving synthesis problems, and (ii) proving unrealizability for
imperative-language problems involving a search space with an infinite number of programs.

ğ3 provides background material. ğ9 discusses related work. ğ10 concludes. A longer version of
this paper, containing proofs for the various theorems, is available on arXiv [Kim et al. 2020].

2 MOTIVATING EXAMPLE

Consider the problem of synthesizing an imperative program that stores the bitwise-xor of two
variables x andy in the variable x , using only bitwise-and and bitwise-or operations and no auxiliary
variables. We show how one can define this problem in SemGuS and prove it unrealizable.

2.1 Defining a SemGuS Problem

The first contribution of this paper is the SemGuS framework (ğ4). A SemGuS problem is defined
using three components: (i) a search space given by a regular tree grammar G, (ii) a semantics for
the grammar G, and (iii) a specification of the desired behavior of the program.

Supplying SemGuS with a grammar. In this example, the grammar Gex in Figure 1 describes a
language of single-loop programs that can contain an arbitrary number of assignments to x and
y, but involve only bitwise-and and bitwise-or operations. In the figure, the numbers in the black
circles are used as unique identifiers for each production. Note that SyGuS cannot describe the
language L(Gex ) due to the presence of assignments and loops.

Supplying SemGuS with a semantics. The next component of a SemGuS problem is a semantics
for terms in the language L(Gex ). There are many possible ways to define the formal semantics of
an imperative language. For example, if we let Γ, Γ1, and Γ2 denote valuations of the variables x and
y, Equation (1) defines a semantics that a user might give for the term łwhile b do s”.

JbK(Γ, true) JsK(Γ, Γ1) Jwhile b do sK(Γ1, Γ2)

Jwhile b do sK(Γ, Γ2)
semWTrue

(1)

Equation (1) is a commonway to define program semantics, but it contains some ambiguities, such
as themethod of defining the semantic function J·K. SemGuS takes an extra level of formalization and
requires that semantic rules such as semWTrue are expressed using logical relations and Constrained

Horn Clauses (CHCs), which are implications that are defined over logical relations and a single
logical constraint. As an example, we show how semWTrue can be expressed as a CHC in SemGuS.
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In SemGuS, semantics can be specified in a compositional fashion by associating each production

in the grammar with one or more semantic rules,2 with the additional constraint that each rule
must be expressible as a CHC. To express the semantics of terms, which are derived from each
nonterminal in a production, we assume that each nonterminal N has a corresponding logical
relation semN , which represents the behavior of the semantic function J·K in Equation (1). We refer
to these relations as semantic relations. For example, the expression semB (⟨Γ,b⟩,vb ) corresponds
to the premise JbK(Γ,vb ): the semantic relation semB tells us that executing the term b ∈ L(B) on
incoming state Γ results in a value vb .

semB (⟨Γ,b⟩, true) semS (⟨Γ, s⟩, Γ1) semStart(⟨Γ1,while b do s⟩, Γ2)

semStart(⟨Γ,while b do s⟩, Γ2)
semWTrue

Start→while B do S 1 (2)

Equation (2) uses semantic relations to express the same semantics as Equation (1), and fits our
criterion of using CHCs as semantic rules: the relations semB, semS , and semStar t represent the
semantics of terms, while the whole of Equation (2) can be read as a CHC.
SemGuS assumes the supplied semantics are of the form in Equation (2): that is, the semantic

relations model the semantics of terms, and each semantic inference rule is a CHC.3 This assumption
is not restrictive, nor does it impose a complex formatÐCHCs are expressive enough to model
a recursively defined big-step semantics. Rather than restricting the kinds of problems SemGuS
supports, these restrictions mainly exist to formalize the meaning of the word łsemantics”.

Supplying SemGuS with a behavioral specification. The behavioral specification of SemGuS states
what property the target program should satisfy. One can provide a logical formula that relates the
input and output valuations of the program variables, or alternatively, provide a set of examples,
which is the kind of specification our algorithm for solving SemGuS problems relies upon.4

For our example, suppose that the specification is given as the set of input valuations [(6, 9),
(44, 247), (14, 15)] (each representing the values of x and y, respectively), which produce the output
values [15, 219, 1] (each representing the final value of x). Call this example set Eex . In ğ2.2, we
show how our algorithm (implemented inMESSY) can synthesize a valid solution on a subset of Eex ,
namely, [(6, 9)]with output [15], where bitwise-xor is equivalent to bitwise-or, i.e., this sub-problem
is realizable. We then describe how our algorithm proves that no program in the language of L(Gex )
can compute the bitwise-xor for all the examples in Eex , i.e., that the problem is unrealizable.

2.2 Solving SemGuS Problems

The second contribution of this paper is a procedure for solving SemGuS problems (ğ5). To solve
a SemGuS problem, this paper utilizes two key ideas: (i) both the syntax and the semantics of a
synthesis problem can be described using Constrained Horn Clauses, and, (ii) one can phrase the
synthesis problem as a proof search over CHCs.

Syntax and Semantic Rules. Describing a grammar using CHCs is a straightforward process:
taking the production Start → while B do S 1 as an example, the production states that one
can obtain a valid term for the nonterminal Start using valid terms for nonterminals B and S .

2The ability to define multiple semantic rules for a production is useful when defining semantics for productions such as

Start → while b do s , which is commonly equipped with two rules that describe looping and loop termination.
3For clarity, we sometimes use the format from Equation (1) when introducing semantics for SemGuS to work with (ğ6).
4Given a logical specification, one can always generate a set of examples and add more examples as needed through a

technique known as counterexample-guided inductive synthesis (CEGIS), which is applied in many synthesizers.
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synE (x ) synE (y)

synB (x < y)

synE (x ) synE (y)

synE (x | y)

synS (x := x | y)

synStart (t )

(6 < 9) = true

semB (⟨(6, 9), x < y ⟩, ⟨true⟩)

6 | 9 = 15

semE (⟨(6, 9), x | y ⟩, ⟨15⟩)

semS (⟨(6, 9), x := x | y ⟩, ⟨(15, 9)⟩)

(15 < 9) = false

semB (⟨(15, 9), x < y ⟩, ⟨false⟩)

semStart (⟨(15, 9), t ⟩, ⟨(15, 9)⟩)

semStart (⟨(6, 9), t ⟩, ⟨(15, y
′)⟩)

Query
Realizable

Fig. 2. The full proof tree for synthesizing the bitwise-xor of x and y from the input example [(x,y)] = [(6, 9)]

with output [15], using the grammar Gex . The term t = (while x < y do x := x | y) satisfies the one example

provided: the loop iterates once to set x to 15.

Equation (3) encodes this property as a CHC.

synB (b) synS (s)

synStart(while b do s)
syntaxStart→while B do S 1

(3)

The logical relations synB , synS , and synStar t in Equation (3) model whether the supplied arguments
are valid terms that may be derived from the corresponding nonterminals B, S, and Start. We refer
to relations such as synS as syntax relations, and rules such as Equation (3) as syntax rules.
ğ2.1 illustrated how the programming-language semantics can be expressed using CHCs; in

tandem with the syntax rules, they represent the semantics of all possible programs in the language.

Specification Query. The final step to solving a SemGuS problem is to create a query that encodes
the behavioral specification, asking whether any of the programs generated by the grammar is
consistent with the specification on the set of input examples E. This question is posed via the
Query rule below, which checks for the existence of a term t that satisfies the syntax rules and the
semantic rules, each instantiated with input ei ∈ E and corresponding output value oi .

5

synStart(t)
∧

ei ∈E semStart(⟨ei , t⟩,oi )

Realizable
Query

(4)

Generally, one could choose to use symbolic variables for oi instead of concrete output examples,
by adding an additional premise

∧
ei ∈Eψ (ei ,oi ) to ensure that the input-output pair ei ,oi meets the

specificationψ . In this section, we consider concrete output examples for ease of presentation.
Expressing the entire SemGuS problem as a set of inference rules and a query effectively reduces

solving the SemGuS problem to a proof search to establish that Realizable holds using the given
inference rules. If one can prove that the premises of Equation (4) hold, then the SemGuS problem is
realizable, and the term t is a concrete answer to the problem. If there exists no proof for Realizable
using the inference rules, then the SemGuS problem is unrealizable.

Synthesizing Programs. To see how a valid program is synthesized based on our construction,
consider the problem of synthesizing a program that computes the bitwise-xor of x and y, specified
using the singleton example set [(x,y)] = [(6, 9)] and output [15]. In this case, the CHC solver is
responsible for finding a term t that satisfies the conjunction of the relations (and, as stated above,
also corresponds to proving):

synStart(t) semStart(⟨(6, 9), t⟩, ⟨(15,y
′)⟩)

The semStart literal states that the final value of x should be 15, and, via free variable y ′, that we
do not care about the final value of y. (The reason why the final value of y is also present in
the relation is because nonterminal Start represents a statement, and thus the relation semStart

must track changes to both x and y.) For this input/output pair, bitwise-xor is indistinguishable

5In practice, we encode terms into an alternative representation because SMT solvers have difficulties when terms are

expressed directly. This encoding is presented in §5.
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from bitwise-or ( | ), making the problem realizable: the term t = (while x < y do x := x | y) is
a solution. Figure 2 shows how such a solution corresponds to a proof in our system of CHCs,
where the syntax premise synStart(t) ensures that t is indeed a valid term, and the semantic premise
semStart(⟨(6, 9), t⟩, ⟨(15,y

′)⟩) ensures that the semantics of t matches the specification. Our tool
MESSY (which is based on Z3 [De Moura and Bjùrner 2008] and its CHC solver Spacer [Komuravelli
et al. 2016]) succeeds in deriving the proof tree in Figure 2, from which the term t is then extracted.

Proving Unrealizability. To see how a SemGuS problem is proved unrealizable, recall our full
example set Eex , for which the solver must find some term t that satisfies the relations:

synStart(t) semStart(⟨(6, 9), t⟩, (15,y
′
1))

semStart(⟨(44, 247), t⟩, (219,y
′
2)) semStart(⟨(14, 15), t⟩, (1,y

′
3))

Put another way, the solver must establish that there exists no term t that satisfies all four relations
at onceÐi.e., that Realizable is unsatisfiableÐto prove the problem unrealizable.
Note that our algorithm does not provide additional machinery to reason about loops. Instead,

we rely on the CHC solver to discover lemmas about sets of loopsÐas opposed to single loopsÐto
prune the search space. When attempting to find a proof tree for Realizable consistent with the
examples in Eex , the CHC solver Spacer eventually proves the following invariant for the third
example, namely (14, 15) → 1: łFor all values of x that are reachable from the nonterminal Start,
x & 4 = 4 always holds”. The lemma x & 4 = 4 implies that in the theory of fixed-length bitvectors,
the third bit of x must always be true when the loop terminates. This condition conflicts with
the output 1 (in which the third bit is false), which shows that the third example can never be
satisfiedÐwhich, in turn, implies that the synthesis problem is unrealizable! Note that this lemma
is an invariant of the nonterminal StartÐi.e., an invariant of all programs derivable from StartÐnot
just some specific program derivable from Start.
One might be tempted to give an operational reading of the Query rule as following

the paradigm of generate and test: synStart(t) generates t , which then must pass the tests
semStart(⟨I1, t⟩,O1) . . . semStart(⟨In, t⟩,On). However, the ability of Spacer to prove lemmas of the
sort discussed above means thatMESSY is not merely enumerating and testing individual programs.
On the contrary, the technique for solving SemGuS problems infers lemmas about the behavior of
multiple programs in the language of the grammar, and uses them to prune the search space!

2.3 Instantiating SemGuS with Other Semantics

The procedure described in the previous section gives a general way to solve SemGuS problems, but
also suffers from several limitations. For example, one might have to prove a large number of sem
relations from the premise of the Query rule if there are a large number of input-output examples;
or, because solving CHCs is still difficult in general, the problem may simply be too difficult to
solve. As a third contribution, we show how, thanks to its generality, SemGuS can be supplied with
alternative semantics to address some of these challenges (ğ6). As an example, here we show how
to supply SemGuS with an abstract semantics to prove unrealizability more efficiently.

Consider again the problem of proving that synthesizing a bitwise-xor program from the grammar
Gex is unrealizable. As described in ğ2.2, the lemma used to prove this fact states that the third bit
of x under the example (14, 15) → 1 is always set to true, conflicting with the output 1. While we
proved this problem unrealizable using a precise semantics, it is also possible to prove unrealizability
using an abstract domain. For example, consider the abstract domain B3, which only tracks the
value of the third bit of every variable, using the values true, false, and ⊤ (top), where ⊤ represents
the scenario in which the third bit may be either true or false: i.e., the semantics may be imprecise.
Then, one could supply an abstract semantics for a term e1 & e2 (the bitwise-and of e1 and e2),
created from the production E → E & E, as:
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Je1K
#(Γ#,v#

1) Je2K
#(Γ#,v#

2) v#
= (if (v#

1 = ⊤ ∨v#
2 = ⊤) then ⊤ else v#

1 & v#
2)

Je1 & e2K
#(Γ#,v#)

And#
(5)

The final premise in Equation (5) represents the abstract transformer of bitwise-and B3, which
sends the computation to ⊤ if any of v#

1 or v
#
2 , the abstract values for v1 and v2, are ⊤, or computes

the exact value otherwise. ⊤ can be generated in B3 by operators such as +, which always loses
precision because it does not track carry bit values from the second position.
From a SemGuS point of view, an abstract semantics is merely a different semantics, which

allows SemGuS problems with abstract semantics such as B3 to be solved using the same algorithm
described in ğ2.2. Although B3 is more lightweight compared to the precise semantics discussed in
ğ2.1, it is sufficient to prove the unrealizability of synthesizing bitwise-xor from GexÐtherefore
resulting in a more efficient solving procedure.

In ğ6, we show how other semantics, such as an underapproximating one, can be supplied to the
SemGuS framework, each with their advantages. These semantics illustrate one of the benefits of
allowing a user to supply their own semantics in SemGuSÐin addition to a wider range of definable
problems, one can also describe specific strategies to optimize the synthesis problem at hand!

3 PRELIMINARIES

In this section, we provide some background information on concepts that we build upon for the
rest of the paper. ğ3.1 provides background on Horn Clauses, which are used in ğ5 to define our
procedure for solving SemGuS problems. ğ3.2 is about trees, regular tree grammars, and program
semantics, which are required for our definition of the SemGuS problem in ğ4.

3.1 Constrained Horn Clauses

Constrained Horn Clauses (CHCs) are a class of logical rules that we use to formalize the concept of
semantics, as well as use in our algorithm for solving SemGuS problems.

Definition 3.1 (Constrained Horn Clauses.). A Constrained Horn Clause is a first-order formula
of the form ∀®x, ®x1, . . . , ®xn .(ϕ ∧ R1( ®x1) ∧ · · · ∧ Rn( ®xn) =⇒ H (®x)), where ϕ is a constraint over
some background theory that may contain variables from ®x, ®x1, . . . , ®xn , and R1, . . . ,Rn and H are
uninterpreted relations.

CHCs often allow first-order terms directly in their arguments, which can be viewed as a form
of syntactic sugar with respect to Definition 3.1: for a first-order formula f (x), one can rewrite
R(f (x)) to R(y) and add the constraint f (x) = y to ϕ. For the remainder of the paper, we assume
that CHCs allow first-order terms as their arguments.

Example 3.2. Equations (6) and (7) give an example of how the syntax and semantic rules from
ğ2 can be interpreted as CHCs.

∀b, s . synB (b) ∧ synS (s) =⇒ synStart(while b do s) (6)

∀Γ, Γ1, Γ2,b, s . (vb = true) ∧ semB (⟨Γ,b⟩,vb )

∧ semS (⟨Γ, s⟩, Γ1) ∧ semStart(⟨Γ1,while b do s⟩, Γ2)

=⇒ semStart(⟨Γ,while b do s⟩, Γ2)

(7)

Syntax and semantic relations such as synB or semStar t are expressed as uninterpreted relations,
while atomic semantic operations such as addition are represented using the constraint ϕ.
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CHCs occur frequently in program verification, and many efficient algorithms for solving CHCs
have been developed [Blanc et al. 2013; Komuravelli et al. 2016; McMillan and Rybalchenko 2013].
In terms of CHC solving, the proof search described in ğ2 is augmented with an extra CHC
Realizable =⇒ false, which asserts ¬Realizable. If there exists an interpretation of the syntax and
semantic relations that can derive Realizable, then the system of CHCs is not validÐand, as shown
in ğ2, one can extract a program from the proof tree for Realizable. If Realizable cannot be derived
from any interpretation of the syntax and semantic relations, the system of CHCs is valid, which
corresponds to unrealizability. In this paper, we use the (un)satisfiability of Realizable itself, instead
of the validity of the augmented CHC problem, to illustrate our algorithm.

3.2 Trees, Tree Grammars, and Semantics

A ranked alphabet is a tuple (Σ, rkΣ), where Σ is a finite set of symbols, and rkΣ : Σ → N associates
a rank to each symbol. For everym ≥ 0, the set of all symbols in Σ with rankm is denoted by Σ

(m).
In our examples, a ranked alphabet is specified by showing the set Σ and attaching the respective
rank to every symbol as a superscriptÐe.g., Σ = {+(2), c(0)}. (For brevity, the superscript is often
omitted.) We use TΣ to denote the set of all (ranked) trees over ΣÐi.e., TΣ is the smallest set such
that (i) Σ(0) ⊆ TΣ, (ii) if σ

(k ) ∈ Σ
(k ) and t1, . . . , tk ∈ TΣ, then σ

(k )(t1, · · · , tk ) ∈ TΣ. In what follows,
we assume a fixed ranked alphabet (Σ, rkΣ).

In this paper, we focus on typed regular tree grammars, in which each nonterminal and each
symbol is associated with a type. There is a finite set of types {τ1, . . . , τk }. Associated with each
symbol σ (i) ∈ Σ

(i), there is a type assignment aσ (i ) = (τ0, τ1, . . . , τi ), where τ0 is called the left-hand-
side type and τ1, . . . , τi are called the right-hand-side types. Tree grammars are similar to word
grammars, but generate trees over a ranked alphabet instead of words.

Definition 3.3 (Regular tree grammar). A typed regular tree grammar (RTG) is a tuple G =
(N , Σ, S,a, δ ), where N is a finite set of non-terminal symbols of arity 0; Σ is a ranked alphabet;
S ∈ N is an initial nonterminal; a is a type assignment that gives types for members of Σ ∪ N ; and
δ is a finite set of productions of the form A0 → σ (i)(A1, ...,Ai ), where for 1 ≤ j ≤ i , each Aj ∈ N
is a nonterminal such that if aσ (i ) = (τ0, τ1, ..., τi ) then aAj

= τj .

Given a tree t ∈ TΣ∪N , applying a production r = A→ β to t produces the tree t ′ resulting from
replacing the leftmost occurrence of A in t with the right-hand side β . A tree t ∈ TΣ is generated by
the grammar GÐdenoted by t ∈ L(G)Ðiff it can be obtained by applying a sequence of productions
r1 · · · rn to the tree whose root is the initial non-terminal S .

Figure 1 from ğ2 shows an example of a typed regular tree grammar. For readability, the grammar
does not contain explicit symbolsÐe.g., the production Start → while B do S should be more
correctly stated as a production Start → while(B, S), where while is a binary symbol. We will use
the former notation for readability, and assume that all expressions are well-typed.

We note that terms can be represented using trees of productions, which makes it easier to dis-
tinguish terms created by different productions with identical operators: we use this representation
in our tool MESSY.

Example 3.4. Recall the grammar Gex from Figure 1, where each production is labeled with
a unique identifier n . The term łwhile x < x do x := y” can be represented using the tree
Tree 1 (Tree 2 ( 6 , 6 ), Tree 4 ( 7 )). The first child tree Tree 2 ( 6 , 6 ) represents the condition łx < x”,
while the second child tree Tree 4 ( 7 ) represents the assignment łx := y”.

When defining a SemGuS problem, one has to provide a semantics for the productions in the RTG.
The semantic definitions are allowed to use terms from a theory T (e.g., linear integer arithmetic).
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Definition 3.5 (Production-based semantics). Given an RTG (N , Σ, S,a, δ ) and a theory T , a se-
mantics for the grammar is a function J·K that maps every production A0 → σ (i)(A1, ...,Ai ) of
type aσ (i ) = (τ0, τ1, ..., τi ) to a set of Constrained Horn Clauses of the form ϕ ∧ semA1

(Γ1, tA1
, ϒ1) ∧

· · · semAi (Γi , tAi , ϒi ) =⇒ semA0
(Γ0, tA0

, ϒ0), where semA0
, semA1

, · · · semAi are uninterpreted rela-
tions, Γ0, Γ1, · · · Γi are variables that represent state, tAk is a variable that represents a term t ∈ L(Ak ),
ϒ0, ϒ1, · · · ϒi are variables of type τ0, τ1, · · · τi , and ϕ is a constraint within the theory T .

The function J·K can be lifted to trees as follows: for every subtree t ′ of t , if t ′ = σ (i)(t1, ..., ti ), then

Jt ′K = Jσ (i)K(Jt1K, . . . , JtiK). In practice, the type signatures for Γ and ϒ are nearly unrestrictedÐone
has great flexibility in defining for each production (i) the kind of program state that is tracked in
Γ, as well as (ii) the kind of value returned in ϒ. This approach allows one to use arbitrary CHCs to
define the semantics, as long as it contains the term t as an argument.

Example 3.6. The semantics for the statement nonterminal S , from Figure 1 and Equation (2),
uses the product type Int × Int for both Γ and ϒ.

As is common in many semantic definitions, Def. 3.5 defines the semantics of terms in the
grammar inductively. This ability to equip the grammar with customized semantics is the defining
characteristic that distinguishes SemGuS from SyGuS. In SyGuS, the underlying theoryÐe.g., LIAÐis
what corresponds to the specified semantics. In SemGuS, the semantics can be any Constrained
Horn Clause defined over the relations semA0

, semA1
, · · · semAi .

Example 3.7. The big-step semantics of simple imperative languages can be expressed using rules
like the one illustrated in Equation (2), which inductively defines the semantic of the production
Start → while B do S through the semantic relations for nonterminals B and S .

4 SEMANTICS-GUIDED SYNTHESIS AND ITS PROPERTIES

We now provide a formal definition of the Semantics-Guided Synthesis problem:

Definition 4.1 (SemGuS). A SemGuS problem over a theory T is a tuple sem = (G,∀x .ψ (x, f (x))),
where G is a regular tree grammar with a production-based semantics J·K, and ∀x .ψ (x, Jf K(x))
is a Boolean formula over the theory T that specifies the desired behavior of f , where f is a
free second-order variable. A solution to the SemGuS problem sem is a term s ∈ L(G) such that
∀x .ψ (x, JsK(x)) holds. We say that sem is realizable if a solution exists and unrealizable otherwise.

Example 4.2. The problem of synthesizing a program for bitwise-xor described in ğ2 can be
written as a SemGuS problem sem = (Gex ,∀x,y. f (x,y) = x ⊕ y) (with ⊕ denoting bitwise-xor),
where Gex is equipped with a semantics that contains the rule given in Equation (2).

Example 4.2 gives an example of a SemGuS problem where the grammar is equipped with a
semantics that one would normally expect for imperative programs. Definition 4.1, which defines
SemGuS problems, shows that SemGuS can be instantiated with different kinds of semantics, as
long as the semantics satisfies the definition of a production-based semantics (Definition 3.5). This
feature allows SemGuS problems to be instantiated with a semantics that is approximate with
respect to some original semantics. An approximate semantics can be used to efficiently compute
one-sided answers to the original problemÐeither synthesis or unrealizabilityÐdepending on the
relation between the approximating and the original semantics.

4.1 Unrealizability of SemGuS Problems with Overapproximating Abstract Semantics

In this section, we see how an overapproximating semantics can be used to prove unrealizability.
An overapproximating semantics overapproximates the set of reachable states with respect to an

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 30. Publication date: January 2021.



Semantics-Guided Synthesis 30:11

original program semantics; in essence, they are an abstract semantics [Cousot and Cousot 1992],
and we use the latter term for the rest of the paper. More specifically, we show that if a SemGuS
problem sem = (G,ψ (x, f (x))) is unrealizable when G is equipped with an abstract semantics, then
sem is unrealizable when equipped with the original semantics as well.

Definition 4.3. For a grammarG equipped with a semantics J·K, we say J·K# is an abstract semantics

for G with respect to J·K if there exists an abstraction function α and a concretization function γ ,
such that for all t ∈ L(G), if JtK(Γ,v) holds, then JtK#(α(Γ),α(v)) holds, and Γ ∈ γ (α(Γ)),v ∈ γ (α(v)),
i.e., α and γ form a Galois connection.

In SemGuS, an abstract semantics J·K# overapproximates the set of values that are obtainable by
synthesizing a term from the grammar, again with respect to the original semantics J·K. Because the
set of values is overapproximated, a term synthesized using the abstract semantics may not satisfy
the specification when executed with the standard semantics. However, by showing the desired
output is absent from the set of obtainable values, one can prove unrealizability in a sound manner!

Theorem 4.4 (Soundness of Abstract Semantics for Unrealizability). For a SemGuS prob-

lem sem = (G,∀x .ψ (x, f (x))), if sem is unrealizable whenG is equipped with an abstract semantics

J·K#, then sem is also unrealizable when G is equipped with J·K.

Equipping a SemGuS problem with an abstract semantics still results in a SemGuS problem,
which can be solved using the procedure described in §5. Much like how abstract semantics are
used for efficient program verification, an abstract semantics can sometimes be used to prove the
unrealizability of a SemGuS problem with the original semantics in a much more efficient manner.

4.2 Solving Realizable SemGuS Problems with Underapproximating Semantics

In this section, we show that an underapproximating semantics, can be used to synthesize solutions
to realizable SemGuS problems.

Definition 4.5. For a grammar G equipped with a semantics J·K, we say J·K♭ underapproximates

J·K onG , or that J·K♭ is an underapproximating semantics forG with respect to J·K, if for every term

t ∈ L(G), every state Γ, and every value v on which J·K♭ is defined, JtK♭(Γ,v) = JtK(Γ,v).

Intuitively, an underapproximating semantics is defined as a subset of the original semantics.
Outside of the subset upon which it is defined, an underapproximating semantics is undefined,
which does not mean that a term can evaluate to any value, but rather that a term cannot evaluate

to any value. More precisely, one cannot prove any theorems about the relation JtK♭(Γ,v) if J·K♭ is
undefined on t, Γ, and v . Instead, an underapproximate semantics is precise on the subset upon

which it is defined, i.e., JtK♭(Γ,v) = JtK(Γ,v) if J·K♭ is defined on t, Γ, and v .
In SemGuS, an underapproximating semantics corresponds to a problem where synthesized terms

only have meaning if their semantics is defined on the input-output examples. For the subset of
terms for which the semantics is defined, the semantics is exact, which allows underapproximating
semantics to be used for program synthesis. Because there may be an answer to the problem outside
the defined subset, an underapproximating semantics cannot be used for unrealizability.

Theorem 4.6 (Soundness of Underapproximating Semantics for Synthesis). For a SemGuS

problem sem = (G,∀x .ψ (x, f (x))), if sem is realizable with solution t when G is equipped with an

underapproximating semantics J·K♭ , then t is also a solution for sem when G is equipped with J·K.

An underapproximate semantics indirectly restricts the search space for program synthesis. This
restriction is not necessarily related to the grammar supplied to a SemGuS problem, but may have
a semantic meaningÐfor example, a bound on the number of possible loop iterations.
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As is the case with an abstract semantics, SemGuS can be supplied with an underapproximate
semantics to yield a relatively more efficient procedure for program synthesis, as illustrated in ğ6.3.

5 SOLVING SEMANTICS-GUIDED SYNTHESIS PROBLEMS VIA CONSTRAINED

HORN CLAUSES

This section presents a general procedure for encoding SemGuS problems so that they can be
solved by answering a query over Constrained Horn Clauses, which in turn can be solved by an
off-the-shelf CHC solver.

ğ5.1 describes how general SemGuS problems can be solved by solving SemGuS-with-examples
problems in tandem with counterexample-guided inductive synthesis; it also states the correctness
of our solving procedure. ğ5.2 presents a method for using flattened representations of terms as
opposed to trees, to avoid the use of algebraic datatypes in SMT solvers.

5.1 Solving SemGuS Problems with Counterexample-Guided Inductive Synthesis

Counterexample-guided inductive synthesis (CEGIS) is a widely implemented algorithm in program
synthesizers. The core idea of CEGIS is that instead of searching for a term that satisfies the
specification for the entire input space, the synthesizer searches for a solution that satisfies the
specification on a finite set of examples E. A verifier then attempts to prove that the solution is
also correct on the universally quantified specification; if not, a counterexample is added to the set
of examples. The algorithm then repeats. The main advantage of CEGIS is that it eliminates the
universal quantifier over the space of program inputs, yielding a simpler problem.

The algorithm sketched in ğ2, as well as the one presented in ğ5.2, is designed to solve SemGuS-
with-examples problems, which are SemGuS problems where the specification is given in terms
of a set of examples E, and has the form

∧
x ∈Eψ (x, Jf K(x)). To solve general SemGuS problems,

the SemGuS-with-examples algorithm can then be embedded within a CEGIS loop, where the
specification is given in terms of the set of counterexamples accumulated by CEGIS.

The general idea of using CHCs to describe the syntax and semantics of a SemGuS-with-examples
problem sem = (G,∀x ∈ E.ψ (x, f (x))) has already been described in ğ2: Equation (3) and Equa-
tion (2) show how the syntax and the semantics of a production Start → while B do S can be
written as CHCs, and it is straightforward to describe other productions in this manner as well.

The final query that describes the specification can be formally written as the following rule.

synStart(t)
∧

ei ∈E semStart(⟨ei , t⟩,oi )
∧

ei ∈Eψ (ei ,oi )

Realizable
Query

(8)

Realizable is the final theorem that shows whether the given SemGuS-with-examples problem
is realizable or not. If the CHC solver finds a proof for Realizable , then the problem is realizable
and the program t is a solution. If the solver can establish that Realizable is unsatisfiable, then the
problem is unrealizable. The correctness of our algorithm can be stated as the following theorem:

Theorem 5.1 (Soundness and Completeness). Consider a SemGuS-with-examples problem

sem = (G,∀x ∈ E.ψ (x, f (x))), equipped with semantic rules Rsem , a specification set E, and theQuery

rule (Equation (8)). Let the CHC form of G be Rsyn . Then, Realizable is a theorem over Rsem and

Rsyn if and only if the SemGuS-with-examples problem sem is realizable. Moreover, if Realizable is a

theorem, then the value of t in the Query rule satisfies t ∈ L(G) and ∀x ∈ E.ψ (x, JtK(x)).

Theorem 5.1 can be proved by proving the correctness of the syntax rules via structural induction.
As shown in prior work [Solar-Lezama 2013], the CEGIS algorithm is often powerful enough

for program synthesis, where a term synthesized for the given examples generalizes to the entire
space of possible inputs. Prior work on unrealizability [Hu et al. 2019, 2020] also shows that CEGIS

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 30. Publication date: January 2021.



Semantics-Guided Synthesis 30:13

is often powerful enough to prove that a synthesis problem is unrealizableÐi.e., the problem does
not admit a solution even when only a finite number of examples are considered.

Example 5.2. The problem of synthesizing a program for bitwise-xor described in ğ2 can be
written as a SemGuS-with-examples problem sem = (Gex ,∀x ,y∈Eex f (x,y) = x ⊕ y), where Eex =
[(6, 9), (44, 247), (14, 15)]. As seen in ğ2, Eex is sufficient to prove that sem is unrealizable.

In particular, for a SemGuS problem sem, the CEGIS algorithm is sound but incomplete for
unrealizability [Hu et al. 2019]. As discussed in ğ8, CEGIS is still able to synthesize solutions to, or
prove unrealizability of, many SemGuS problems. However, this procedure is incomplete.

Theorem 5.3 (CEGIS for unrealizability [Hu et al. 2019]). Let semE be a SemGuS-with-

examples problem identical to sem, but where the specification is given over the input examples E. If

semE is unrealizable, then sem is unrealizable as well. However, there exists an unrealizable SemGuS

problem sem for which semE is realizable for any finite set of examples E.

5.2 Using Flattened Representations of Terms to Solve SemGuS Problems

While it is possible to solve SemGuS-with-examples problems using terms encoded as trees using
the scheme given in ğ3.2, current solvers sometimes fail to return an answer depending on how
well they can handle trees encoded as algebraic datatypes. In this section, we show how to alleviate
this problem by using a flattened representation of terms, which we refer to as a listing.6 The idea is
that a term t can be encoded using a pre-order listing Lt of the productions applied to derive t .

Example 5.4. Consider once more the term t = while (x < x) do x := x from Example 3.4,
constructed from the grammar Gex in Figure 1. The pre-order listing of productions applied to
derive t is [ 1 , 2 , 6 , 6 , 4 , 6 ], where Start → while B do S 1 is the first production applied to
the nonterminal Start , the next production B → E < E 2 is applied next, and the remaining
productions are applied in left-to-right order as well.

Following the list representation of terms, the next step is to modify the syntax relations and
rules to operate over lists. Equation (9) describes the syntax rule generated using a flattened
representation of terms for the production A0 → σ (A1, · · · ,Ai ) n .

synAi (Lin,Li ) synAi−1 (Li ,Li−1) · · · synA1
(L2,L1)

synA0
(Lin, n :: L1)

syntaxList
A0→σ (A1, · · · ,Ai ) n (9)

There are several things to notice about Equation (9). First, the syntax relation synN now ranges
over two listings (term representations) as opposed to a single term, where the first listing may be
interpreted as an incoming listing and the second an outgoing listing. Here, the relations should
evaluate to true if and only if the outgoing listing is equivalent to the pre-order representation of
the term concatenated to the incoming listing.
Second, the outgoing listing of a nonterminal is passed as the incoming listing of the next

nonterminal in right-to-left order, followed by prepending the number of the production to the head
of the listing. This algorithm effectively creates a pre-order representation of a term by performing
a post-order traversal, appending each production encountered to the head of the listing.

Example 5.5. Consider Equation (3) from ğ2, which describes the syntax rule for the production
Start → while B do S 1 . Using a list representation of terms, the rule would be modified to:

synS (Lin,L2) synB (L2,L1)

synStart(Lin, 1 :: L1)
syntaxList

Start→while B do S 1 (10)

6Listings may be implemented as lists or arrays in an SMT solver.
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Equation (10) traverses the nonterminals B, S in right-to-left order, then prepends the identifier 1

to the head of the list L1.

Having encoded a pre-order representation of a term, the semantic rules must interpret this
representation accordingly as well. The semantic relations now also range over 4 elements: an
incoming listing Lin and an incoming state Γ, followed by an outgoing listing Lout and a resulting
value v . They should evaluate to true if and only if for the list Lt such that Lin = Lt + +Lout ,
JtK(Γ,v) also evaluates to true for the corresponding term t .
Keeping that in mind, a semantic rule that uses a flattened representation of

terms for the production A0 → σ (A1, · · · ,Ai ) n , equipped with the semantics
ϕ ∧ semA1

(⟨Γ1, t1⟩,v1), · · · , semAi (⟨Γi , ti ⟩,vi ) =⇒ semA0
(⟨Γ, t⟩,v0) is described in Equation (11).

ϕ semA1
(⟨Γ1,L1⟩, ⟨v1,L2⟩) · · · semAi (⟨Γi ,Li ⟩, ⟨vi ,Lout ⟩)

semA0
(⟨Γ, n :: L1⟩, ⟨v0,Lout ⟩)

semList
A0→σ (A1, · · · ,Ai ) n (11)

Because the syntax rules have encoded terms as a pre-order listing, the semantic rules are free to
interpret the current production by checking the head of the list, then compute values for subterms
in left-to-right order. The actual semantics of the production remains encoded in ϕ.

Example 5.6. Consider Equation (2) from ğ2, which describes the semantic rule for the production
Start → while B do S 1 . Using a list representation of terms, the rule would be modified to:

semB (⟨Γ,L1⟩, ⟨true,L2⟩) semS (⟨Γ,L2⟩, ⟨Γ1,Lout ⟩) semStart(⟨Γ1, 1 :: L1⟩, ⟨Γ2,Lout ⟩)

semStart(⟨Γ, 1 :: L1⟩, ⟨Γ2,Lout ⟩) (12)

The list 1 :: Lin represents the entire term for while B do S in preorderÐthe tailing list Lout

represents the part that comes after while B do S .

Theorem 5.7 (Correctness of Listings). Let RList
sem be a set of semantic rules using a flat-

tened representation of terms, created from the set of semantic rules Rsem . For any nonterminal

N , semN (⟨Γ,Lin⟩, ⟨v,Lout ⟩) is a theorem of RList
sem iff semN (⟨Γ, t⟩,v) is a theorem of Rsem , and

Lin = LtLout (i.e., concat(Lt , Lout )) where Lt is the pre-order listing of a term t ∈ L(N ).

Theorem 5.7 states the correctness of the flattened term representations, and can be proved using
induction on the height of the derivation tree. The specification query is similar to the one given in
Equation (8), except that the new syntactic and semantic relations are used in place of the old ones.

6 INSTANTIATING SEMGUS WITH VARIOUS SEMANTICS

We now proceed to showcase the capabilities of the SemGuS framework by instantiating it with a
variety of semantics to solve imperative program-synthesis problems. In ğ6.1, ğ6.2, and ğ6.3, we
are concerned with various different semantics for the imperative programming language Gimpv ,
from Figure 3. Values inGimpv range over integers, bitvectors, Boolean values, and arrays.Gimpv

contains most common imperative structures, such as assignments, branches and loops. Imperative
grammars that use the same operators but different productions can be viewed as being derived
from Gimpv , which means that the techniques introduced in this section are applicable to any

imperative grammar, as long as they use a subset of the operators in Gimpv .
In ğ6.1, we discuss how to instantiate an imperative SemGuS problem with an alternative exact

semantics. This semantics, called a vectorized semantics, sidesteps the problem of having to consider
multiple examples separately. In ğ6.2, we show how SemGuS can be instantiated with an abstract

semantics to prove the unrealizablity of a synthesis problem, and in ğ6.3, how an underapproximating

semantics can be used to more efficiently compute solutions for a realizable problem.
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Stmt S ::= x := E | x := C | arr [E] := E | S ; S | if B then S else S | while B do S

BVExpr C ::= x | 0̄ | 1̄ | C & C | (C | C) | !C | C +C | if B then C else C

IntExpr E ::= x | 0 | 1 | x | E + E | if B then E else E | arr [E]
BoolExpr B ::= true | false | ¬B | B ∧ B | E < E | C < C

Fig. 3. The general imperative grammar GImpv that we are interested in.

Finally, in ğ6.4, we sketch how SemGuS can be instantiated with a semantics for regular expres-
sions to create a tool to synthesize regexes from positive and negative examples.

6.1 Instantiating SemGuS with an Alternative Exact Semantics

A straightforward way of instantiating a SemGuS problem is to supply SemGuS with a standard
semantics, as discussed in ğ2 and ğ5. For example, the three rules in Figure 4a are standard semantic
rules that define the semantics of the terms łx := e” and łwhile b do s”. These semantics operate
over a single state, and compute exact values for all terms in the program.
However, this straightforward approach induces a substantial drawback in the Query rule in

Equation (8). In each premise of the Query rule, the solver must re-derive proof trees for each
example, even though they are all structurally similar due to sharing the same term representation.

Tomitigate this inefficiency, we develop a different exact semantics, called the vectorized semantics,
and show that SemGuS can be instantiated with this semantics as well. The vectorized semantics
modifies the semantics of standard imperative programs to accommodate and execute multiple
examples simultaneously in the form of vectors. This idea allows us to merge the examples, as well
as the semantic premises semN (⟨T, e1⟩,o1), · · · , semN (⟨T, en⟩,on) of the Query rule, into a single
semantic premise semN (⟨T, ®e⟩, ®o), where ®e and ®o represent the vectorized input-output examples.
The main challenge in defining a vectorized semantics is that, in the presence of loops and

conditionals, different examples can cause a given loop to run a different number of times, and can
take different branches of an if-statement. Here, we note that SemGuS is not the cause of these
challenges, nor does it require the vectorized semantics; rather, SemGuS is what provides us with
the possibility of defining different semantics that are better suited to solving the task at hand.

The three rules in Figure 4b present the big-step semantics for the terms x := e and while b do s ,
the terms that are most relevant to overcoming these challenges. The most interesting rule here
is WTrueE. This rule states that as long as one of the examples in the vector makes the guard b
true, the body of the loop should be entered. However, only the variable valuations that make the

guard true are updated in the loop-body s (the proj(®Γ, ®vb ) operator sets all valuations for which the
guard is false to the special value ⊥). The whole process is repeated (using the projected vector of
valuations) until all entries of ®vb are ⊥, as stated inWFalseE. Finally, the vector of valuations in the
bottom of the rule contains the merge of valuations for which the guard was false, and valuations
®Γ2 that resulted from running the loop on the valuations proj(®Γ, ®vb ) for which the guard was true.
When supplying vectorized semantics to a SemGuS-with-examples problem, one should supply

a single vectorized example that contains all the examples from the original example set. Aside
from this difference in how examples should be supplied, the vectorized semantics can be treated
just like any other semantics, meaning that the CHC-based solving procedure from ğ2 and ğ5 still
holds. Moreover, as stated at the start of this section, the vectorized semantics illustrated above can
be generated automatically for all subgrammars of Gimpv , which allows it to be used as a general
optimization for solving imperative SemGuS problems (as our tool MESSY does).
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JeK(Γ,v) Γr = Γ[x 7→ v]

Jx := eK(Γ, Γr )
Assign

JbK(Γ,vb ) vb = false

Jwhile b do sK(Γ, Γ)
WFalse

JbK(Γ,vb ) vb = true JsK(Γ, Γ1) Jwhile b do sK(Γ1, Γ2)

Jwhile b do sK(Γ, Γ2)
WTrue

(a) Standard semantic rules for the terms x := e and while b do s in L(GImpv), where the semantic function is

denoted by J·K.

JeKE(®Γ, ®v) ∀i . ®Γr [i] = ®Γ[i][x 7→ ®v[i]]

Jx := eKE(®Γ, ®Γr )
AssignE

JbKE(®Γ,vb ) ∀i . ®vb [i] = false

Jwhile b do sKE(®Γ, ®Γ)
WFalseE

JbKE(®Γ, ®vb ) ∃i . ®vb [i] = true JsKE(proj(®Γ, ®vb ), ®Γ1) Jwhile b do sKE(®Γ1, ®Γ2)

Jwhile b do sKE(®Γ,merge(proj(®Γ,¬®vb ), proj(®Γ2, ®vb )))
WTrueE

proj(®Γ, ®vb ) ≜ [if ®vb [0] then ®Γ[0] else ⊥, · · · , if ®vb [n − 1] then ®Γ[n − 1] else ⊥]

merge(proj(®Γ,¬®vb ), proj(®Γ
′
, ®vb )) ≜

[if ®vb [0] then ®Γ[0] else ®Γ′[0], · · · , if ®vb [n − 1] then ®Γ[n − 1] else ®Γ′[n − 1]]

(b) Sample vectorized semantic rules for the terms x := e and while b do s in L(GImpv), where the (vectorized)

semantic function is denoted by J·KE. ⊥ is a special state that ignores all computation performed.

Fig. 4. Standard and vectorized semantics for the terms x := e and while b do s .

6.2 Using Abstract Semantics in SemGuS to Prove Unrealizability

In this section, we show how the grammarGimpv can be instantiated with an abstract semantics to
prove the unrealizability of SemGuS problems, following the idea introduced in ğ4.1.
There are many abstract semantics with which one can equip a language. Here, we use the

abstract domain Bi presented in ğ2.3 as an example, which tracks only the i-th bit of a variable
using three values: true, false and ⊤ (the join of true and false).

Example 6.1. Recall Equation (5), which represents the abstract semantics for a term e1 & e2 from
Gex of ğ2, using the abstract domain B3. The right-hand side of the final premise describes the
abstract semantic function J&K# for the operator &, which sends the computation to ⊤ if any of v#

1

or v#
2 are ⊤, and computes the exact value otherwise. Note how the semantic relations, as well as

the structure of the semantic rule, remain unchangedÐfrom the viewpoint of SemGuS, an abstract
semantics expressed using CHCs is merely a different semantics supplied to SemGuS, for which
one can apply the same solving procedure as given in ğ2 and ğ5.

Different abstract domains have different degrees of efficiency and precision in SemGuS. To see
why, consider how one would deal with branches using the abstract domain described above. This
particular abstract domain cannot handle comparisons well because it only tracks a single bit, and
thus it is almost always the case that one does not know which branch to take in an if-statement.
There are two possible approaches in this situationÐone may just choose to assign ⊤ to the result
of the branch, or one may try and execute both branches and assign their join to the result. This
problem arises for both if-then-else statements and loops. As an example, two different rules for
loop iteration are described in Example 6.2.

Example 6.2. Equations (13) and (14) present different abstract semantics for the termwhile b do s

from Gex of ğ2, using the abstract domain B3, which tracks only the third bit of each variable.
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JbK#(Γ#,v#
b
) JsK#(Γ#, Γ#1 ) Jwhile b do sK#(Γ#1 , Γ

#
2 ) Γ

#
r = ⊤

Jwhile b do sK#(Γ#, Γ#r )
WTrue#Havoc (13)

JbK#(Γ#,v#
b
) JsK#(Γ#, Γ#1 ) Jwhile b do sK#(Γ#1 , Γ

#
2 ) Γ

#
r = join(Γ#, Γ#2 )

Jwhile b do sK#(Γ#, Γ#r )
WTrue#Join

(14)

In both scenarios, the value of vb will be ⊤ because knowing only the third bit does not give us
enough information to resolve a condition of the term łe < e” from Gex . In this situation, the
rule WTrueHavoc simply gives up and assigns ⊤ to the resulting value Γr . On the other hand,the
ruleWTrueJoin attempts to preserve some precision by assigning the join of when the condition
evaluates to true (Γ2, as the loop iterates in this case) and when the condition evaluates to false (Γ,
as the loop body does not execute). If both Γ and Γ2 contain x

#
= true, then WTruejoin is capable of

inferring that the result of while b do s also has x# = true, whileWTrueHavoc cannot.

The semantics expressed by WTrueJoin is more precise and more expensive than the first option.
For the example in ğ2, an abstract semantics using WTrueHavoc will fail to prove unrealizability
of synthesizing bitwise-xor, because it cannot resolve the branch of the loop. On the other hand,
the added precision from WTrueJoin succeeds in proving unrealizability, showing how different
abstract domains can solve different SemGuS problems.

In general, there are many different abstract domains that one could use for a SemGuS problem,
as well as automated methods [Wang et al. 2018a, 2017] to discover them. An interesting line of
future work would be to design an algorithm for extracting abstract domains from SemGuS proofs
(like we did in our selection of the domain Bi ) to solve other SemGuS problems more efficiently.

6.3 Using Underapproximating Semantics in SemGuS for Program Synthesis

In this section, we demonstrate how SemGuS can be equippedwith an underapproximating semantics

to perform program synthesis, following the idea from ğ4.2. Example 6.3 shows an underapprox-
imating semantics that sets a bound on the number of times each loop may be executed, as in
bounded model checking [Clarke et al. 2003]. The change to the semantics is simpleÐone simply
adds a bound to the state and decreases the bound by one each time a loop iteration is performed.

Example 6.3. Equations (15) and (16) present an underapproximating semantics for the term
while b do s , where the number of loop iterations is bounded by a fresh variable i .

JbK♭(⟨Γ, i⟩, true) i > 0 JsK♭(⟨Γ, i⟩, ⟨Γ′, i⟩) Jwhile b do sK♭(⟨Γ′, i−1⟩, ⟨Γr , i−1⟩)

Jwhile b do sK♭(⟨Γ, i⟩, ⟨Γr , i⟩)
WTrue♭

(15)

JbK♭(⟨Γ, i⟩, false) i > 0

Jwhile b do sK♭(⟨Γ, i⟩, ⟨Γ, i⟩)
WFalse♭

(16)

One can see how these rules are underapproximating by considering why one is unable to
build a proof tree for a loop that must execute more iterations than the unrolling bound. For

example, let the unrolling bound be i = 1. To prove that Jwhile b do sK♭(⟨Γ, 1⟩, ⟨Γr , 1⟩), i.e., the
conclusion with i = 1, one would also require a proof for the final premise in the rule, namely

Jwhile b do sK♭(⟨Γ′, 0⟩, ⟨Γr , 0⟩). However, a proof of Jwhile b do sK♭(⟨Γ′, 0⟩, ⟨Γr , 0⟩) requires that
0 > 0 due to the third premise i > 0, which is unsatisfiable. Thus, nothing can be proved about

Jwhile b do sK♭(⟨Γ′, 0⟩, ⟨Γr , 0⟩)Ðcorresponding to the fact that Jwhile b do sK♭(⟨Γ′, 0⟩, ⟨Γr , 0⟩), and
any relations that rely on this premise, are undefined.

In contrast, the semantics described by Equation (15) match exactly the standard semantics of a
while loop for a loop that executes fewer iterations than the unrolling bound.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 30. Publication date: January 2021.



30:18 Jinwoo Kim, Qinheping Hu, Loris D’Antoni, and Thomas Reps

The constraints that make a semantics underapproximatingÐfor example, i > 0 in Example 6.3Ð
can be encoded in the constraint element ϕ of a CHC.

6.4 Instantiating SemGuS to Synthesize Regular Expressions

In this section, we move away from imperative programs and show how one can use the SemGuS
framework to solve problems from a different domainÐnamely, regular expressions. For convenience,
in this section we revert to expressing semantics as CHCs (as done in ğ2). We assume a standard
grammar for regular expressions.

Regex ∋ R ::= c | ϵ | ϕ | (R | R) | R · R | R∗

Encoding semantics for regular expressions via CHCs poses an interesting challenge, in that the
semantics often involves nondeterminism, either when dealing with Kleene star, or findingmatching
substrings for concatenation. Generally, nondeterminism is naturally dealt with when using only
positive examples, where, for example, the existence of a proof of the relation semR (⟨ω, r ⟩, true),
where ω is the string to match and r a regex, ensures that there exists a run of r that accepts ω.
However, nondeterminism mixes poorly with negative examples, which specify strings that a regex
should reject: the existence of a proof of the relation semR (⟨ω, r ⟩, false) merely states that there
exists a run of r that rejects ω, whereas the semantics of regular expressions dictate that no run of
r should accept ω for ω to be rejected.

Fortunately, the expressiveness of CHCs and SemGuS allows us to develop an alternative, deter-
ministic semantics for regexes. Given an input string ω of length n, the semantics is expressed in
terms of (n + 1)-by-(n + 1) upper-triangular matrices of Boolean variables: in matrix X , an element
X [i, j] indicates whether the considered regex matches the substring ω[i, j] (as presented in [Pan
et al. 2019]). Then, given regexes r1 and r2 that return the matrices X1 and X2, respectively, the
semantics of concatenation is Boolean matrix multiplicationÐi.e., X1 · X2Ðwhere the element-
multiplication operation is logical-and, and element-addition is logical-or. For the regex r ∗, the
entire set of substrings of ω matched by r ∗ can be computed by taking X 0

+ X 1
+ · · ·Xn , where X

is the matrix for substring acceptance by r , and the + operator denotes pointwise logical-or of the
operand matrices. The + operator is also the interpretation of alternation in regular expressions.

This approach gives us a deterministic semantics for regular expressions, but another interesting
challenge lies in how these semantics should be concretely embedded in an SMT solver. One could
simply choose to encode the semantics directly using the theory of strings; some SMT solvers
also directly support regular expressions as part of their theories. However, it is also the case that
strings are poorly supported at best, especially in CHC solversÐin our experiments, Z3 would often
throw segmentation faults when asked to solve CHCs that contained strings.

For this reason, we again exploit the generality of SemGuS, and develop a more solver-friendly
semantics by encoding strings as sequences of integers. The base cases for regular expressionsÐ
matching single characters, ϵ , and ϕÐcan be encoded using equality between integers, and the rest
of the semantics is compositional. Figure 5 shows the final rule for the term r ∗: the input string
is encoded as a sequence of integers s0, s1, · · · , sn . The output is a matrix of Boolean variables X
as described above: the output argument of Starϵ shows the substring matrix that matches ϵ (i.e.,
the identity matrix I ). The input parameter k in Star iterates through Star to compute X k , along
with the outputs of semR which show how concatenation is computed by matrix multiplication. A
regular expression r accepts ω iff in Xr , the matrix for r , Xr [0,n] = true.

7 IMPLEMENTION AND OPTIMIZATIONS

In this section, we describe our implementation of MESSY, a solver for SemGuS problems, as well
as some optimizations that were applied in MESSY.
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semR (⟨(s0, s1, · · · , sn ), 0, r
∗ ⟩, I )

Starϵ

semR (⟨(s0, s1, · · · , sn ), k , r ⟩, X ) semR (⟨(s0, s1, · · · , sn ), k − 1, r ∗ ⟩, Xk−1)

semR (⟨(s0, s1, · · · , sn ), k , r
∗ ⟩, X · Xk−1 + Xk−1)

Star

Fig. 5. Semantics for the regular expression r∗, where (s0, s1, · · · sn ) represents a sequence of integers that

encodes the input string.

7.1 Implementing MESSY

At a high level, MESSY accepts SemGuS problems and encodes them as CHCs using the encoding
in §5. It then passes the CHCs to Z3 [De Moura and Bjùrner 2008], which performs the actual proof
search and produces an answer. The output from Z3 is either UNSAT, which means the problem is
unrealizable, or a proof for Realizable from Equation (8) using the inference rules from the SemGuS
problem: in this case,MESSY can extract a solution to the SemGuS problem from the proof.7 We
note that the capability of MESSY to synthesize programs also allows it to perform CEGIS for
both program synthesis and unrealizability, which is unsupported in previous work on proving
unrealizability [Hu et al. 2019, 2020].
We report here that Z3 itself varied in performance depending on whether particular internal

flags were enabled.8 While enabling these flags are the default setting for Z3 and result in better
performance, they also made it difficult to recover the term representation from the output of Z3
(which is required to synthesize a term). Thus, during our evaluation in ğ8, we disabled the flags;
MESSY can also be configured to run with the flags enabled.
In ğ5, we looked at different ways of translating SemGuS problems into CHCs depending on

whether trees or listings are used to represent terms. MESSY supports three configurations for
representing termsÐa configuration that uses algebraic datatypes to model trees, and two configura-
tions that respectively use lists and arrays to encode listings. In addition,MESSY also implements a
SemGuS-specific optimization called the fused semantics , described in ğ7.2. For regular expressions,
MESSY simply implements the semantics in ğ6.4 with terms encoded as arrays.

We also implemented an enumerative solver that uses the same CHC formalism, but replaces the
syntax relations with concrete term representations (encoded using arrays) instead. This solver
enumerates terms and checks whether they are correct using the given semanticsÐi.e., for each
enumerated term the CHCs are then again passed to Z3, which will verify whether the given term
is correct or not. The enumerative solver can be treated as a baseline alternative solver for SemGuS
problems that plugs into MESSY (which is responsible for generating CHC scripts for Z3 to solve).
As presented throughout our paper, MESSY supports various SemGuS problems defined over

many different domains and term representations. Implementing a new domain for SemGuS prob-
lems consists of two steps: a theoretical step where one develops a semantics for the domain on
paper, then an implementation step to actually implement the domain. The generality of SemGuS
often results in the first step requiring much more thought and effort: as shown in ğ8, different
ways of encoding semantics can lead to big differences in performance, and one must also consider
the correctness of the semantics with respect to CHC solving, as discussed in ğ6.4.

On the other hand, once the first step is completed, or if one is able to use a standard semantics,
expressing the semantics as concrete semantics is a routine task. For example, the vectorized
semantics detailed in ğ6.1 totals around 350 lines of code in our implementation; the regex semantics
from ğ6.4 totals around 100 lines,9 whichmostly implement patternmatching on terms and encoding

7Z3 may also time out, or produce an error for various reasons, for example when dealing with algebraic datatypes.
8The particular flags are fp.xform.slice, fp.xform.inline_linear, and fp.xform.inline_eager.
9The semantics were written in a DSL we designed to interface with the SMT-LIB CHC format for easy development.
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SMT queries. Moreover, given a library of various semantics for operators, defining a new SemGuS

problem is just as easy as defining a SyGuS problem.

7.2 Optimizing Imperative SemGuS Problems with Fused Semantics

MESSY offers an optimization that utilizes a slightly different method of encoding syntax and
semantic rules: instead of building a term using the syntax rules and propagating it through the
semantic rules separately, one can also think of a scheme where the semantics of a term is executed
on-the-fly while the term is being constructed. We refer to this kind of encoding as the fused

semantics. Fused semantics are different from supplying SemGuSwith a different semantics, because
they are derived from an original semantics that SemGuS is supplied with. Instead, one may think
of them as an optimization for SemGuS problems over subgrammars of Gimpv .
The key idea for fused semantics is to modify the syntax relations so that they can check

semantics as well as the syntactic structure, and modify the syntax rules accordingly as well. Thus,
a syntax relation is now defined over three inputsÐa term t , an input state Γ, and an output value
v . The relation should evaluate to true if and only if t is a valid term, and JtK(Γ,v) is also true.
Generally, the syntax rule for a production A0 → σ (A1, · · · ,Ai ) n , again equipped with the
semantics ϕ ∧ semA1 (⟨Γ1, t1⟩,v1), · · · , semAi (⟨Γi , ti ⟩,vi ) =⇒ semA0 (⟨Γ, t⟩,v0), can be generated
in the form of Equation (17): the structure of Equation (17) matches exactly the structure of the
supplied semantics (using the listing representation of terms).

ϕ synfused
A1

(⟨Γ1,Lin⟩, ⟨v1,Lmid ⟩) · · · syn
fused
Ai

(⟨Γi ,Lmid ⟩, ⟨vi ,Lout ⟩)

synfused
A0

(⟨Γ,Lin⟩, ⟨v, n :: Lout ⟩)
syntax fused

A0→σ (A1, · · · ,Ai ) n

(17)
One may ask how the fused semantics is different from a set of CHCs where the syntax relations

have been eliminated, and the ordinary semantic rules implicitly check the syntax of a term while
computing its semantics as well. They are indeed similar, but there is a subtle difference in the
order of the arguments: the semantics from Equation (17) have Lin as the first argument, and
Lout as the second; whereas ordinary semantic rules have the list order reversed.10 Intuitively,
the specification of the fused semantics constructs a term while computing the semantics on the
fly, while the specification of the ordinary semantics can only compute the semantics for a fully
constructed term.

The new encoding presented in Equation (17) is enough to allow only the syntax rules to describe
both the syntax and semantics of terms within a SemGuS problem, provided that the grammar
does not contain productions with while loops. However, productions that contain loops, such as
N → while B do S n , require a separate procedure because there must be a guarantee that the
same loop body is synthesized for each iteration. To ensure that the same loop body is synthesized,
one can either impose an additional constraint that states that each synthesized loop body must be
identical, or more simply, one can apply the semantic relations described from §5 instead.

synfused
B

(⟨Γ,b⟩, true) synfused
S

(⟨Γ, s⟩, Γ1) semN (⟨Γ1,while b do s⟩, Γ2)

synfused
N

(⟨Γ,while b do s⟩, Γ2)
syntax fused

N→while B do S n

(18)
Consider the rule given in Equation (18). Note that the first two relations from the premise are
syntax relations that both synthesize a term and execute its semantics. In contrast, the third relation
is a semantic relation, which is defined identically to the semantic relations in §2. The semantic
relations do not suffer from the problem of having to synthesize the same loop body over multiple

10This subtle difference also has a difference in performanceÐsyntax-relation-less CHCs perform similarly to SemGuS

problems with syntax relations, which perform worse compared to the fused semantics as shown in ğ8.
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iterations. The idea here is that the syntax relations synthesize the loop body on the first iteration,
then pass the representation to the semantic relations for subsequent iterations.
Finally, multiple semN premises in theQuery rule must be rewritten as synfused

N
as well; when

using non-vectorized semantics, this approach raises the same problem of potentially synthesizing
different solutions for each example, and necessitates a constraint to ensure that all generated
representations are identical. Although it is possible to use fused semantics for non-vectorized
semantics in this way, MESSY employs the fused semantics as an optimization to vectorized
semantics only, which does not suffer from this problem, because there is only a single vector of
examples.

8 EVALUATION

In this section, we evaluate the feasibility of our algorithm to solve SemGuS problems through our
implementation MESSY. Specifically, we investigate the following four issues:

Q1: We evaluate the effectiveness of MESSY on SyGuS benchmarks.
Q2: We evaluate the effectiveness of MESSY on imperative program-synthesis problems.
Q3: We evaluate the effectiveness of the optimizations discussed in ğ5 and ğ7.
Q4: We evaluate the effectiveness of approximate semantics supplied to MESSY.
Q5: We evaluate the effectiveness of MESSY on regular-expression benchmarks.

Overall, our evaluation is tilted towards proving unrealizability compared to synthesizing pro-
grams. This is because because there already exist many program synthesizers that incorporate
multiple years of engineering effort [Barrett et al. 2011; Reynolds et al. 2015; Solar-Lezama 2013]; it
is beyond the scope of this paper and MESSY to directly compete with these synthesizers.

8.1 Benchmarks

We performed our evaluation using three sets of benchmarks.
The first set consists of 132 unrealizable variants of the 60 LIA (Linear Integer Arithmetic)

benchmarks from the LIA SyGuS competition track. These benchmarks were generated by Hu et
al. [Hu et al. 2019] and have been used as benchmarks for unrealizability in previous work [Hu
et al. 2019, 2020]. These benchmarks originate from SyGuS problems where the goal is to prove
that a synthesized solution is optimal with respect to some metric [Hu and D’Antoni 2018] (e.g.,
minimizing the number of If-Then-Else operators). One can prove optimality by proving that a
solution with a lower score is unrealizable.
In each of the benchmarks, the grammar that specifies the search space is recursive, and hence

generates infinitely many LIA terms. These benchmarks are unrealizable because they contain
grammars that restrict how many times a certain operator (e.g., plus or if-then-else) can appear in
the solution. To see how effective MESSY is as a synthesizer, we also test MESSY on the 60 original
LIA SyGuS benchmarks in ğ8.2. These benchmarks have a completely unrestricted grammar, as
opposed to the 132 unrealizable variants generated from them.
The second set consists of 289 imperative SemGuS problems defined over various fragments of

the imperative grammar Gimpv . Out of these, 36 benchmarks were created by hand from common
imperative programming questions, such as synthesizing a Fibonacci function or swapping variables
using bitwise-xor. The remaining 253 benchmarks were derived by using the 30 benchmarks
employed in a previous paper on synthesizing imperative programs via enumeration [So and Oh
2017] as a template. Out of the 30 templates, we ignored 7 that contained division, on which Z3
would return an error, and derived 11 benchmarks from each of the 23 remaining templates for a
total of 253 benchmarks. The 23 base templates consist largely of two categories: those that compute
a function over a range of numbers 1 to n using a loop (such as factorials or sums), and those that
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Table 1. Number of solved benchmarks for various configurations of MESSY, alongside results forNay, ESolver,

CVC4, and SIMPL. ✗ indicates cases where the tool is non-applicable. SIMPL could only be evaluated on 23

realizable imperative benchmarks, because SIMPL cannot accept a grammar.

Solver
SyGuS Imperative Regex

Realizable Unrealizable Realizable Unrealizable Realizable

Nay ✗ 70 ✗ ✗ ✗

ESolver 6 ✗ ✗ ✗ ✗

CVC4 59 ✗ ✗ ✗ ✗

SIMPL ✗ ✗ 23∗ ✗ ✗

AlphaRegex ✗ ✗ ✗ ✗ 25

M
E
S
S
Y

Total 4 66 8 112 5
Fused Trees 3 66 5 31 ✗

Fused Lists 4 66 5 62 ✗

Fused Arrays 2 64 6 91 ✗

Vectorized Arrays 2 66 5 56 ✗

Individual 0 56 3 10 0
Abstract ✗ 18 ✗ 37 ✗

Underapproximate ✗ ✗ 6 ✗ ✗

Enumerative ✗ ✗ 2 ✗ 5

Total benchmarks 60 132 67 222 25

compute a function over an array, again using a loop to iterate (such as finding the maximum
element of an array, or adding two arrays together). To derive our benchmarks, we first instantiated
SemGuS with the problem specification and the unbounded grammar Gimpv with a restriction on
the number of loops: the grammar in this case replicates the templates used to specify the search
space from [So and Oh 2017]. Then, various restrictions were imposed on the grammar, such as
limiting the number of statements allowed, or limiting the kinds of expressions that can occur as
the loop condition. Out of the 11 benchmarks generated from each template, 2 were designed to be
realizable, and 9 to be unrealizable. We developed our own set of benchmarks this way because the
unrealizability of imperative programs is a previously unstudied field.
The final set of benchmarks consists of the 25 regular-expression problems from textbooks

on automata theory, where the specification is given as a set of positive and negative examples,
averaging around 10 examples total [Lee et al. 2016].
Each benchmark was given 10 minutes to complete on a machine with a 2.6GHz Intel Xeon

processor with 32GB of RAM, with version 4.8.9 of Z3 as the external CHC solver. We note that the
front-end processing step, to encode a SemGuS problem into CHCs, took less than 3 minutes for all
of our benchmarks and configurations combined; the 10-minute timeout was separate from the
front-end processing step, and devoted entirely to CHC solving.

Table 1 summarizes the numbers of solved benchmarks for various configurations of MESSY we
tested, as well as comparisons for Nay [Hu et al. 2020], ESolver [Alur et al. 2017b], CVC4 [Reynolds
et al. 2015], SIMPL [So and Oh 2017], and AlphaRegex [Lee et al. 2016].

8.2 Q1: Evaluating MESSY on SyGuS Benchmarks

In this section, we evaluate the effectiveness of MESSY on SyGuS benchmarks by comparing it
against Nay, the state-of-the-art tool for proving unrealizablity for SyGuS problems, and against
the SyGuS synthesizers CVC4, which was run using the default settings from SyGuS-COMP
2019 [Reynolds et al. 2019], and ESolver. It is worth noting that both CVC4 and ESolver solve
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synthesis problems directly, while MESSY relies on an external CEGIS loop to generate examples.
We did not test the enumerative SemGuS solver described in ğ7 for SyGuS benchmarks, because
ESolver already serves as a basic enumerator.
Like MESSY, Nay checks the (un)realizability of a SyGuS problem when the specification is

given as a set of examples; unlike MESSY, however, Nay cannot synthesize a solution for realizable
problems.We used the set of 132 unrealizable SyGuS benchmarks described in ğ8.1 for evaluation.We
report thatMESSY or Nay solves a problem if it can solve a problem using any of its configurationsÐ
for MESSY, this encompasses the three different term representations, as well as the different
semantics that SemGuS can be instantiated with.
We implemented a CEGIS algorithm forMESSY, and compared it against the CEGIS algorithm

of Nay. Because Nay is incapable of synthesizing an answer to realizable a SyGuS problem, the
CEGIS loop of Nay relies on an external synthesizer ESolver to produce a term. BecauseMESSY

and Nay rely on different methods to produce counterexamples, their CEGIS iterations may differ.
With the standard CEGIS algorithm, MESSY can prove 61/132 benchmarks unrealizable, while

Nay can do so for 65/132. Nay also provides a modified łrandom” variant of CEGIS that allows
random examples to be added to the set of counterexamples throughout the CEGIS loop. Using this
technique, Nay can prove unrealizability for an additional 5 benchmarks. We ranMESSY on the
same set of examples produced using this technique; it was able to prove unrealizability for the
same 5 benchmarks as well, for a total of 66/132 benchmarks. There are 67 benchmarks where both
solvers timed outÐstuck at some iteration of the CEGIS loop. On 17 of them, MESSY can complete
more iterations of the CEGIS loop than Nay (avg. 6.1 forMESSY vs. 4.8 for Nay). On 13 of them,
Nay can progress further (avg. 2.2 forMESSY vs. 3.1 for Nay). The two solvers were stuck at the
same iteration on the rest of the benchmarks.
Next, we compared the abilities of MESSY as a SyGuS synthesizer on the 60 original LIA

benchmarks uponwhich the unrealizable benchmarks were derived.MESSY solved 4/60 benchmarks.
This number is comparable to ESolver, which solved 6/60 benchmarks and was the winner of the
first SyGuS competition in 2014. Moreover,MESSY solved one benchmark that ESolver could not
solve. While MESSY is not competitive with current SyGuS solvers, such as CVC4 [Reynolds et al.
2015], which solved 59/60 benchmarks, the fact that its performance is already comparable with an
early version of a SyGuS solver is encouraging, and one might hope that more efficient algorithms
for synthesizing solutions to SemGuS problems are possible in the future.11

MESSYwas efficient at proving unrealizability: 56 out of the 66 benchmarks solved were solved in
under 10 seconds, and MESSY also has comparable runtimes with Nay. For synthesizing programs,
ESolver solved all solvable benchmarks in under two minutes each, whileMESSY required 6 minutes
for two of the solved benchmarks.
To answer Q1: MESSY is quite effective on unrealizable SyGuS problems, to a degree that is

comparable with Nay, and can also synthesize solutions for realizable SyGuS problems: in particular,
MESSY is more general than previous tools as it can solve non-SyGuS problems, and can produce
two-sided answers to synthesis problem.

8.3 Q2: Evaluating MESSY on Imperative Synthesis Benchmarks

In this section, we evaluate the effectiveness of MESSY by seeing how well it can deal with
imperative synthesis benchmarks. We consider SemGuS-with-examples problems, as opposed to
ordinary SemGuS problems, due to the challenges of checking whether an imperative program

11We also note that the LIA SyGuS benchmarks have an entirely free grammar and are single-invocation, which allows

CVC4 to use a specialized method involving quantifier elimination to synthesize programs.
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Start ::= while B do S

S ::= x := E | y := E | S ; S
E ::= x | y | E + E | E − E
B ::= E < E

(a) A grammar for a benchmark where the goal is to

synthesize a program adding integers from 1 to n.

Start ::= while B do S

S ::= x := E | S ; S
E ::= x | y | E + E | 0 | 1 | −1
B ::= E < E

(b) A grammar for a benchmark where the goal is

to synthesize a program resulting in x == y.

Fig. 6. Grammars for example benchmarks that were proved unrealizable.

satisfies a specification or not (which makes it difficult to implement a CEGIS loop). In principle,
one could implement a CEGIS loop using an external verifier.
Out of our 289 imperative benchmarks, a total of 67 were designed to be realizable, while the

remaining 222 were designed to be unrealizable. As shown in Table 1, MESSY solved 8/67 realizable
benchmarks, and 112/222 unrealizable benchmarks, for a total of 120 benchmarks solved.

Out of the 120 solved benchmarks, 10 benchmarksÐ2 realizable, and 8 unrealizableÐwere those
with infinite syntactic search spaces and also contained the possibility of an infinite loop. MESSY
also solved 15 benchmarks that did not contain loops, but nevertheless had infinite syntactic search
spaces. Overall, MESSY had more success with proving unrealizability than synthesizing programs
for both SyGuS and imperative benchmarks, especially when a simple lemma proved sufficient for
showing unrealizablity of the whole SemGuS problem (such as the example given in ğ2).

One benchmark proved unrealizable in a similar manner uses the grammar shown in Figure 6a,
where the specification was to compute the sum of integers from 1 to x and store it in y. Here,
Z3 inferred the lemma that for the input example [(x,y)] = [(2, 0)], the values of x and y remain
even regardless of the program being considered, because the constant 1 is not present in the
grammarÐand thus cannot reach the correct output y = 3.

An example of a lemma that makes use of multiple input examples comes from a benchmark that
uses the grammar shown in Figure 6b, where the goal was to set x to be equal to y by modifying
x in a while loop. This problem is unrealizable because the value of x can increase or decrease
as the loop iterates, but cannot do both (based on what input is given). When given the input
examples [(x,y)] = [(12, 20), (20, 12)], Z3 infers the lemma that ultimately when the loop terminates,
łx > 12 or x < 20”. If x > 12, the second example is unsatisfiable, and if x < 20, the first example is
unsatisfiableÐthus Z3 is able to prove the whole synthesis problem as unrealizable.

Another reason why MESSY performs better on unrealizable problems is in part due to how the
generated CHCs are dealt with internally in Z3Ðas described above, Z3 proves unrealizability by
discovering a lemma that conflicts with the specification. For realizable problems, however, Z3
in the worst case must conduct a search over all possible concrete terms from a possibly infinite
search space, in a process similar to generate-and-test. The authors are unsure of whether Z3 is
capable of discovering lemmas that can be used to prune the search space for realizable benchmarks;
regardless of the answer, the results suggest that program execution expressed as CHC solving
introduces overhead that is large enough to make synthesis relatively more difficult compared to
proving unrealizability.

The baseline enumerative solver for SemGuS succeeded in solving only 2 realizable benchmarks.
Interestingly, the runtimes for enumerative scripts (each of which verifies a candidate term) dis-
played a high amount of variance, with some scripts terminating in under a second, and others
exceeding the timeout of 10 minutes. There was no clear pattern behind the variation, except that
terms containing loops tended to time out more compared to those that did not contain loops. This
result is in line with the hypothesis about overhead in program execution expressed as CHC solving
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aboveÐit seems that the internal algorithms of a CHC solver suffer for the relatively simpler task
of checking whether a proof tree is correct.
In contrast, SIMPL [So and Oh 2017], whose benchmarks we use in our evaluation of MESSY,

employs a strategy of performing static analysis in tandem with enumeration; SIMPL also employs
heuristics that prefer smaller programs, and directly executes candidates to see if the specification
is met. This enumerative approach makes SIMPL perform better as a synthesizer: SIMPL solves the
full set of 23 realizable benchmarks upon which our benchmarks are based, whileMESSY can solve
none. However, SIMPL is incapable of proving unrealizability, because it is based on enumeration.
One also cannot express a syntactic search space in SIMPL outside of simple templates, which
prevented us from running the rest of our realizable benchmarks on SIMPL.
MESSY took less than 10 seconds to solve 82/120 benchmarks, and the other 12 benchmarks

required more than a minute to complete. Whether a benchmark contained an unbounded loop or
an infinite search space seemed to have little correlation with the runtimes: there were finite-search
space benchmarks that took over a minute to complete, and benchmarks with both unbounded loops
and infinite search spaces that took less than a second to complete. This phenomenon suggests the
importance of discovered lemmas in solving SemGuS problems: given a strong lemma, a SemGuS
problem can be solved quickly, even with infinite loops and search spaces. On the other hand,
without a lemma, the problem can take a long time to solve even if the search space is finite.

To answer Q2: MESSY is capable of solving SemGuS problems with infinite search spaces and

imperative semantics, especially if the given problem is unrealizable. Notably, MESSY is the first tool
that can prove unrealizablity for imperative synthesis problems.

8.4 Q3: Evaluating Optimized Methods for Solving SemGuS Problems

In this section, we compare the effectiveness of the various optimizations we described in §5 and
§7 for solving SemGuS problems. Specifically, we investigate the following two issues:

(1) We assess the effectiveness of the flattened term representation from ğ5.2, by comparing the
performance of MESSY configured to use trees, lists, and arrays as the term representation.

(2) We assess the effectiveness of vectorized and fused semantics, by comparing the performance
of MESSY on (i) individual semantics, (ii) vectorized but non-fused semantics, and (iii)
vectorized and fused semantics.

Effectiveness of Flattened Term Representations. To evaluate the effectiveness of the three term
representations, we supplied SemGuS with vectorized semantics and enabled the fused-semantic-
optimization, the configuration that yielded the overall best results in our evaluation. In this section,
we say that a particular term representation łsolved” a benchmark if Z3 was able to solve the CHCs
produced by encoding the SemGuS problem using the given term representation.
The ‘Fused Trees’, ‘Fused Lists’, and ‘Fused Arrays’ rows of Table 1 summarize the results for

the different term representations: for SyGuS benchmarks, all three representations were similar.
For imperative benchmarks, the array representation is clearly better compared to the list and
tree representations: in particular, the tree representation could only solve one benchmark that
the array representation could not solve, while the list representation solved a strict subset of the
benchmarks solved by the array representation.

Figures 7a and 7b compare the performances of the list versus tree representations, and the list
versus array representations, on imperative benchmarks solved by at least one of the representations.

As mentioned in ğ5.2, we suspect the differences between the different term representations is
due to the fact that support for algebraic datatypes in Z3 still remains relatively limited.12 When

12In our correspondence of the authors of Z3 and Spacer, they mentioned that using inductive datatypes with the Horn

Clause solver was highly experimental.
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Fig. 7. Runtime comparisons for various configurations of MESSY. Bar graphs on the outer axes show the

distribution of the data points. 600 seconds indicates a timeout.

the tree or list representations were used, Z3 terminated with the error łstuck on a lemma” far
more often than when the array representation was used.
To answer part (1) of Q3: Flattened term representations are indeed effective, especially when

using arrays to avoid the use of algebraic datatypes altogether.

Effectiveness of the Vectorized and Fused Semantics. To evaluate the effectiveness of the vectorized
and fused semantics optimizations, we compared them against each other, and against individual
semantics that are not vectorized nor fused (corresponding to the łstandard” form of semantics
mentioned in ğ6). We note that while the vectorized semantics is actually a different semantics
that SemGuS can be supplied with, MESSY can automatically vectorize the semantics for any
subgrammar of Gimpv as an optimization; thus we treat it as an optimization for our evaluation.

Individual semantics vs. Non-fused vectorized semantics. Using a list representation of terms, the
individual semantics could solve 56 unrealizable SyGuS benchmarks, a strict subset of the 66 solved
by the vectorized semantics. For imperative benchmarks, the individual semantics could only solve
3 realizable and 10 unrealizable benchmarks, compared to 5 realizable and 62 unrealizable when
using the vectorized semantics.

Non-fused vectorized semantics vs. Fused vectorized semantics. The łFused Arrays” and łNon-
Fused Arrays” rows of Table 1 describe the number of solved benchmarks: again, performance for
the SyGuS benchmarks was similar. For imperative benchmarks, the non-fused vectorized array
semantics solved 5 realizable and 56 unrealizable benchmarks, compared to 6 realizable and 91
unrealizable for the fused vectorized array semantics.

Figure 7c compares the results of the non-fused vectorized versus the fused vectorized semantics
using array representations: while the fused semantics solve more benchmarks, the graph suggests
that the fused semantics are not strictly better than the non-fused semantics. In particular, there
are 11 unrealizable benchmarks that only the non-fused semantics can solve.

When using a list representation, the difference becomes less pronouncedÐthe non-fused vector-
ized semantics can solve 4 realizable and 58 unrealizable benchmarks, compared to 5 realizable and
62 unrealizable for fused vectorized list semantics. We think the reason is again the limited support
in Z3 for algebraic datatypes, which remains the main bottleneck when using list representations.
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To answer part (2) of Q3: The fused vectorized semantics is effective as an optimization, especially

for imperative benchmarks, but there exist some benchmarks for which the non-fused vectorized

semantics performs better. Both are consistently better than the individual semantics.

8.5 Q4: Evaluating SemGuS and MESSY with Approximate Semantics

We evaluated how well MESSY performs when it is instantiated using an approximate semantics
to produce one-sided answers to either synthesis or unrealizability. In this section, we focus on
identifying the number of new benchmarks that an approximate semantics can solve compared
to the standard version of the semantics. This approach is motivated by the fact that the nature
of an approximate semantics can sometimes change the kind of answer that can be obtainedÐfor
example, using an abstract semantics for an unrealizable problem might make it realizableÐand
thus a direct performance comparison makes little sense.
Both an abstract and underapproximating semantics were implemented using arrays as the

term representation, with the fused-semantics and vectorizing optimizations, which displayed the
best overall performance in ğ8.4. The new benchmarks solved are ones that the exact, fused and
vectorized array semantics was unable to solve.

Abstract semantics for unrealizability. To test the capabilities of abstract semantics, we imple-
mented five variants of the abstract domain B3 from §6.2, where each domain tracked the first,
second, third, fourth, and fifth bit of variables, respectively. This choice was driven by the fact that
most of the input examples for our imperative synthesis benchmarks were small, between 0 to 31.
The łAbstract” row of Table 1 describes the number of benchmarks solved using the abstract

semantics. The abstract semantics did not make a difference for the SyGuS benchmarks; all bench-
marks that were solved by the abstract semantics were also solvable by the exact semantics. However,
for the imperative benchmarks, the abstract semantics was able to solve 17 unrealizable benchmarks
that the exact semantics could not solve. Using abstract semantics yielded faster runtimes: the
abstract semantics timed out for at most 15 benchmarks regardless of the variant of abstract domain,
compared to over 200 for the exact semantics (although realizability results in the abstract semantics
have no meaning).
One reason that the abstract semantics failed to make a difference on the SyGuS benchmarks

could be that the SyGuS benchmarks themselves used inputs with very small values, often between
0 and 7: the abstract semantics were able to prove some SyGuS benchmarks as unrealizable using
the lower bits, but nothing new. In addition, the abstract domains that we used do not work well
in the presence of addition, because carry bits often render a result to be ⊤. All of our SyGuS
benchmarks contain addition, while some imperative benchmarks do not.

Underapproximating semantics for program synthesis. For the underapproximating semantics, we
implemented the technique of bounding the number of loop-unrollings from ğ6.3, and experimented
with loop bounds of 10, 50, and 100. We only compare the imperative benchmarks here, because
the SyGuS benchmarks do not contain loops. The łUnderapproximate” row of Table 1 describes the
number of benchmarks solved using this semantics. The bound semantics was able to synthesize
one more program compared to the non-bound semantics. Interestingly, MESSY succeeded in
synthesizing the program (to compute the factorial function using a while loop) when the bound
was set to 100, but not when the bound was 10 or 50. The small difference in performance may
be due to the fact thatMESSY generally performs worse as a synthesizer than a tool for proving
unrealizability. The results also tell us that synthesizing imperative programs is difficult, even
without the presence of infinite loops: it could be because unrolled loops still pose a significant
burden when trying to compute the semantics of an imperative program, especially because our
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approach must ultimately prove that a candidate term satisfies the specification using semantics
encoded as CHCs (which is likely to be slower compared to direct execution).
To answer Q4: Abstract semantics allows MESSY to solve many more unrealizable SemGuS

problems compared to using only exact semantics. The bound underapproximating semantics did allow

MESSY to solve more realizable SemGuS problems, but the improvement was small.

8.6 Q5: Evaluating SemGuS and MESSY on Regular Expressions

Finally, we evaluated the effectiveness of MESSY on regular-expression benchmarks. The final col-
umn of Table 1 displays the results: the CHC-solving approach failed to solve any of the benchmarks
within 10 minutes, while the enumerative approach described in ğ7 solved 5 benchmarks. This is
an interesting case where the enumerative approach outperformed the CHC-solving approach.

The most likely hypothesis for this behavior is that the iterative nature of the Star rule in Figure 5
(due to the unrolling parameter k), as well as the behavior of strings themselves, mixes poorly with
the overarching principle of finding a powerful lemma or invariant. In addition, we did not impose
restrictions on the grammar for regular expressions, which made all benchmarks realizable.
The enumerative solver, while succeeding in solving 5 benchmarks, displayed behavior similar

to what it displayed when solving imperative benchmarks: the variance between termination times
was high, without a clear pattern behind the variance. In contrast, AlphaRegex [Lee et al. 2016],
from which we took our benchmarks, reports being able to solve all 25 benchmarks; we believe this
difference is due to the overhead in using a CHC solver instead of an automaton to check regexes,
as well as the additional enumeration optimizations that AlphaRegex employs.
To answer Q5: Regular-expression synthesis problems can be expressed in MESSY.MESSY could

solve some of the benchmarks using enumeration, but none of the benchmarks using the CHC-
solving method. The most likely explanation for this behavior is the difficulty of finding good
lemmas for regex problems, upon which MESSYÐmore specifically, Z3 and SpacerÐheavily relies.

9 RELATED WORK

General Synthesis Frameworks. Sketch [Solar-Lezama 2013] and Rosette [Torlak and Bodík 2014]
are both solver-aided languages, where one specifies a synthesis problem using a domain-specific
language, which is translated into an SMT problem. FlashMeta [Polozov and Gulwani 2015] is a
synthesis framework that allows one to specify the semantics of operators in the language using
witness functions, which roughly correspond to the łinverse” semantics of operators. In these tools,
the way synthesis problems are defined is directly tied with how they are solved: one needs to
develop non-standard inverse semantics for FlashMeta, or phrase the synthesis problem within
the language of Sketch or Rosette, which are requirements imposed by their particular synthesis
algorithms. Due to these reasons, these tools disallow defining (and therefore solving) synthesis
problems involving infinite search spaces.
The first attempt to unify these frameworks into a logical one was provided by SyGuS [Alur

et al. 2013]. However, SyGuS is not general enough as it cannot express synthesis problems over
arbitrary syntactic constructs that do not lie inside a decidable SMT theory. SemGuS, on the other
hand, provides a logical way to define synthesis problems with custom semantics. Moreover, the
solving procedure for SemGuS is motivated by the definition, not the other way around.13

Customizing Semantics in SyGuS. SyGuS allows one to provide semantics for user-defined terms,
but the support is limited to functions/operators that can be used in the grammar. Concretely, if
we consider our formalization of semantics (Definition 3.5), the degree of customization available

13One may argue that semantics expressed as a CHC is a restriction, but as stated in ğ1, they are more of a formalization.

One may also assume a different surface syntax, such as the format in Equation (1); a translation to CHCs is straightforward.
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in SyGuS is limited to customizing the constraint ϕ to a formula expressible in the background
theory.14 This limitation prevents SyGuS from expressing imperative program-synthesis problems;
SemGuS eases this restriction by allowing one to replace ϕ with any first-order formula, as well as
introduce new relations or arguments for the relations.

CVC4 also has a setting where one can encode a grammar via algebraic datatypes, and build an
interpretation of these datatypes in terms of a background theory T into an SMT solver [Reynolds
et al. 2015]. This feature is designed to extend the SMT-based synthesis approach of CVC4 towards
grammars, and like SyGuS, is restricted to what one can express within the theory T . Semantics
in SemGuS and MESSY are expressed using CHCs, which allow us to express a wider variety
of semantics, and the solving procedure is a proof search over CHCs as opposed to solving a
universally quantified SMT formula (as in CVC4).

Synthesis for Imperative Programs. There have been attempts at designing synthesizers specif-
ically for imperative programs. Existing tools require the user to provide templates that specify
most of the program [Solar-Lezama 2013; Srivastava et al. 2010]; the tools then resort to various
constraint-solving techniques to complete missing parts of the template, which often do not contain
loops [Srivastava et al. 2010].

SIMPL [So and Oh 2017] can synthesize imperative programs from input-output examples and a
template that specifies most of the program. SIMPL employs a simple enumeration-based strategy,
and uses abstract interpretation to rule out templates that will not result in a solution. Because
SIMPL is based on enumeration, it performs well as a synthesizer. However, unlike MESSY, SIMPL
cannot restrict the terms allowed in a program and it cannot establish that a problem is unrealizable.

Unrealizability. Nope [Hu et al. 2019] and Nay [Hu et al. 2020] are, to the best of our knowledge,
the only two tools that can prove unrealizability for SyGuS benchmarks in which the grammar can
generate infinitely many terms. Because Nay consistently outperforms Nope, we only compare
against Nay in our evaluation.MESSY can solve synthesis problems over any specified language,
including imperative languages, whereas both Nope and Nay can only solve SyGuS problems. One
variant of Nay also uses Constrained Horn Clauses, which are used to encode the problem of
solving a set of equations that describes the sets of possible outputs of the program. In MESSY, the
constraints are used for describing both the syntax and the semantics of the programs in the search
space. Because of the syntactic constraints, MESSY can extract the synthesized program when the
problem is realizable, which Nay is unable to do.
There exist other tools that are capable of proving unrealizability in limited situations, such as

CVC4 [Reynolds et al. 2015] or DryadSynth [Alur et al. 2017a]. However, CVC4 can only prove
unrealizability when the grammar is completely unrestricted [Hu et al. 2019, 2020]. DryadSynth
does not accept a grammar as part of its specification; MESSY is the only tool that can perform
synthesis and unrealizabilty for general SemGuS problems.

The Use of Semantics in Program Synthesis. Synthesis using abstraction refinement (SYN-
GAR) [Wang et al. 2018b] uses predicate abstraction to prune the search space of a synthesis-
from-examples problem. SYNGAR builds a tree automaton representing all trees in the search
space that are correct with respect to an abstract semantics expressed using predicate abstraction.
SYNGAR can be viewed as a special case of SemGuS in which predicate abstraction is used to
overapproximate the semantics of terms in the programming language. SYNGAR’s approach is tied
to the use of an abstract semantics that can be expressed using a finite abstract domain, whereas

14To be precise, this formula is further limited to a formula of the form v0 = f (v1, · · · , vi ), where f is a non-recursive

function expressible in the background theory. Notably, this prevents expressing relations between v1, · · · , vi , the results

of nonterminals in the RHS.
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our approach extends to infinite domains. In particular, with our approach, one can express the
concrete semantics of a programming language.
FlashMeta [Polozov and Gulwani 2015], is also a way of using semantics in program synthesis.

The Use of Horn Clauses in Program Synthesis. In Inductive Logic Programming (ILP) [Lavrač and
Džeroski 1994; Muggleton 1991; Quinlan 1990], given background knowledge, typically in the form
of Horn Clauses, the goal of ILP is to learn the defining formula for a logical relation that agrees with
a given classification of input examples. Both ILP and our framework use Horn Clauses to specify
background knowledgeÐwhich for our algorithm consists of the syntax and semantics of the target
programming language. However, the respective goals for the output answer are different: (i) In ILP,
the goal is to create a Horn-Clause program as the answer. (ii) In our algorithm for SemGuS, the
goal is to create a program in the language that has been specified via the background knowledge.
Whether ILP techniques can be adapted to SemGuS is left for future work.

10 CONCLUSION AND FUTURE WORK

This paper develops SemGuS, a new framework for program synthesis that allows one to specify
both the syntax and the semantics of a synthesis problem. SemGuS can be used for specifying
synthesis problems over an imperative programming language; it also allows one to work with a
variety of different semantics that may be better suited to solve a synthesis problem efficiently. The
paper also presents a general procedure for solving SemGuS problems capable of both program
synthesis and proving unrealizability, and an implementation MESSY to solve SemGuS problems.

SemGuS opens many future directions of work.

Inferring Lemmas for SemGuS. As mentioned in ğ2, our procedure for solving SemGuS problems
relies on an external CHC solver to infer lemmas over sets of programs in the syntactic search
space, using the semantics of terms. While we have relied on an external solver (Z3) to perform
this inference for us, it is also unclear to what degree CHC solvers are capable of discovering
lemmas to prune a syntactic search space. An algorithm to explicitly infer lemmas and prune parts
of the search space would be especially useful in enhancing our solving algorithm as a synthesizer,
allowingMESSY to compete with state-of-the-art synthesizers as well.

SemGuS with Abstract Domains. As discussed in ğ6.3, SemGuS provides a natural framework
for discovering and composing abstract domains for program synthesis. Coupled with the fact
that lemmas play an important role in solving SemGuS problems, a system for inferring lemmas
efficiently using abstract domains, and vice versa, has the potential to make SemGuS solvers more
efficient. We have already witnessed this in our paper: the abstract domain Bi in ğ6.2 was inspired
by the lemma from ğ2.2, which in turn proved the benchmark from Figure 6b unrealizable.

Specialized Solvers for SemGuS. One limitation of our approach was that the synthesis procedure
was quite inefficient, especially for regular expressions. Since SemGuS now gives us a way to
specify synthesis problems, is it possible to develop solvers that are specialized for specific SemGuS
scenarios? An example of such an approach could be a better enumerative solver, which does not
rely on CHC solving but employs a separate algorithm to check the validity of proof trees.
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