
LearningQuick Fixes from Code Repositories
Reudismam Rolim

UFERSA
Pau dos Ferros, RN, Brazil

reudismam.sousa@ufersa.edu.br

Gustavo Soares
Microsoft

Redmond, WA, USA
gsoares@microsoft.com

Rohit Gheyi
UFCG

Campina Grande, PB, Brazil
rohit@dsc.ufcg.edu.br

Titus Barik
Microsoft

Redmond, WA, USA
titus.barik@microsoft.com

Loris D’Antoni
University of Wisconsin

Madison, WI, USA
loris@cs.wisc.edu

ABSTRACT

Code analyzers such as Error Prone and FindBugs detect code pat-
terns symptomatic of bugs, performance issues, or bad style. These
tools express patterns as quick fixes that detect and rewrite un-
wanted code. However, it is difficult to come up with new quick
fixes and decide which ones are useful and frequently appear in real
code. We propose to rely on the collective wisdom of programmers
and learn quick fixes from revision histories in software reposi-
tories. We present Revisar, a tool for discovering common Java
edit patterns in code repositories. Given code repositories and their
revision histories, Revisar (i) identifies code edits from revisions
and (ii) clusters edits into sets that can be described using an edit
pattern. The designers of code analyzers can then inspect the pat-
terns and add the corresponding quick fixes to their tools. We ran
Revisar on nine popular GitHub projects, and it discovered 89 use-
ful edit patterns that appeared in 3 or more projects. Moreover, 64%
of the discovered patterns did not appear in existing tools. We then
conducted a survey with 164 programmers from 124 projects and
found that programmers significantly preferred eight out of the
nine of the discovered patterns. Finally, we submitted 16 pull re-
quests applying our patterns to 9 projects and, at the time of the
writing, programmers accepted 7 (63.6%) of them. The results of
this work aid toolsmiths in discovering quick fixes and making
informed decisions about which quick fixes to prioritize based on
patterns programmers actually apply in practice.

KEYWORDS

Software Engineering, Education, Survey.
ACM Reference Format:

Reudismam Rolim, Gustavo Soares, Rohit Gheyi, Titus Barik, and Loris
D’Antoni. 2021. Learning Quick Fixes from Code Repositories. In Brazilian

Symposium on Software Engineering (SBES ’21), September 27-October 1, 2021,

Joinville, Brazil. ACM, New York, NY, USA, 10 pages. https://doi.org/10.
1145/3474624.3474650

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SBES ’21, September 27-October 1, 2021, Joinville, Brazil

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9061-3/21/09. . . $15.00
https://doi.org/10.1145/3474624.3474650

1 INTRODUCTION

Programmers often detect code patterns that may lead to undesired
behaviors (e.g., inefficiencies) and apply simple code edits to “fix”
these patterns. These patterns are often hard to spot because they
depend on the style and properties of the programming language in
use. Tools such as Error Prone, FindBugs, and PMD help program-
mers by automatically detecting and sometimes removing several
suspicious code patterns, potential bugs, or instances of bad code
style. For example, PMD can detect instances where the method
size is used to check whether a list is empty and proposes to re-
place it with the method isEmpty. For the majority of collections,
these two ways to check emptiness are equivalent, but for some
collections—e.g., ConcurrentSkipListSet—computing the size of
a list is not a constant-time operation [37]. We refer to these kinds
of edit patterns as quick fixes.

All the aforementioned tools rely on a predefined catalog of
quick fixes (usually expressed as rules), each used to detect and
potentially fix a pattern. These catalogs have to be updated often
due to new language features (e.g., new constructs in new Java
versions), new style guidelines, or simply due to the discovery of
new patterns. However, coming up with what edit patterns are
useful and common is a challenging and time-consuming task that
is currently performed in an ad-hoc fashion—i.e., new rules for
quick fixes are added on a as-needed basis.

The lack of a systematic way of discovering new quick fixes
makes it hard for code analyzers to stay up-to-date with the
latest code practices and language features.

For example, consider the edit pattern applied to the Apache
Ant code in Figure 1a. The original code contains three expres-
sions of the form x.equals("str") that compare a variable x
of type string to a string literal "str". Since the variable x may
contain a null value, evaluating this expression may cause a
NullPointerException. In this particular revision, a programmer
from this project addresses the issue by exchanging the order of the
arguments of the equals method—i.e., by calling the method on
the string literal. This edit fixes the issue since the equals method
checks whether the parameter is null. This edit is common and
we discovered it occurs in three industrial open source projects
across GitHub repositories: Apache Ant, Apache Hive, and Google
ExoPlayer. Since the pattern appears in such large repositories, it
could also be useful to other programmers who may not know
about it. Despite its usefulness, a quick fix rule for this edit pattern

https://doi.org/10.1145/3474624.3474650
https://doi.org/10.1145/3474624.3474650
https://doi.org/10.1145/3474624.3474650

SBES ’21, September 27-October 1, 2021, Joinville, Brazil Rolim et al.

Repositories Extracting
AST edits

Clustering
edits

Learning edit
patterns

A

B
C

Pattern
inspection

Edit
pattern

Edit
pattern

Edit
pattern

Figure 2: Revisar’s work-flow.

//...
- } else if (args[i]. equals("--launchdiag ")) {

+ } else if ("--launchdiag ". equals(args[i])) {
launchDiag = true;

- } else if (args[i]. equals("--noclasspath ")
- || args[i]. equals("- noclasspath ")) {

+ } else if ("--noclasspath ". equals(args[i])
+ || "-noclasspath ". equals(args[i])) {

//...

(a) Concrete edits applied to the Apache Ant source code in the project com-

mit history (https://github.com/apache/ant/commit/b7d1e9b).

@BeforeTemplate
boolean b(String v1,
StringLiteral v2) {
return v1.equals(v2);

}

@AfterTemplate
boolean a(String v1,
StringLiteral v2) {
return v2.equals(v1);

}

(b) Abstract quick fix in Refaster-like syntax for edits in Figure 1a.

Figure 1: Revisar (a) mines concrete edits from the code

repository history in a project and (b) discovers abstract

quick fixes from these edits.

is not included in the catalog of largely used code analyzers, such as
FindBugs, and PMD. Remarkably, even though the edit is applied in
Google repositories, this pattern is absent in Error Prone, a Google
code analyzer that is internally used on the Google’s code base.

Key insight Our key insight is that we can “discover” useful
patterns and quick fixes by observing how programmers modify
code in real repositories with large user bases. In particular, we
postulate an edit pattern performed by many programmers across
many projects is likely to reveal a good quick fix.

Our technique In this work, we propose Revisar, a technique
for automatically discovering common Java code edit patterns in
code repositories. Given code repositories as input, Revisar iden-
tifies simple edit patterns by comparing consecutive revisions in
the revision histories. The most common edit patterns—i.e., those
performed across multiple projects—can then be inspected to detect
useful ones and add the corresponding quick fixes to code analyz-
ers. For example, Revisar was able to automatically analyze the
concrete edits in Figure 1a and generate the quick fix in Figure 1b.
We also sent Pull Requests (PRs) applying this quick fix to other
parts of the code in the Apache Ant and Google ExoPlayer projects,
and these PRs were accepted.

Contributions This paper makes the following contributions:
• Revisar, an automatic technique for discovering quick fixes
in large repositories. Revisar uses concepts such as Abstract

Syntax Trees (AST) edits and 𝑑-caps, and it applies the tech-
nique of anti-unification from inductive logic programming
to mine edit patterns (§ 2).

• A mixed-methods evaluation of the Revisar effectiveness
at discovering quick fixes and the quality of the discovered
quick fixes (§ 3 and 4). When ran on nine popular GitHub
projects, Revisar discovered 89 edit patterns appearing in 3
or more projects. Moreover, 64% of the discovered patterns is
absent in existing tools. Through a survey on a subset of the
discovered patterns, we showed programmers significantly
preferred 8/9 (89%) of our patterns. Finally, programmers
accepted 7/11 (63.6%) PRs applying our patterns to their
projects, showing they are willing to apply our patterns.

2 REVISAR

We now describe Revisar, our technique for learning quick fixes
from code repositories. Given repositories as input, Revisar:
(i) identifies concrete code edits by comparing pairs of consecutive
revisions (§ 2.1), (ii) clusters edits into sets that can be described
using the same edit pattern and learns an edit pattern for each
cluster (§ 2.2 and 2.3). Figure 2 shows the work-flow of Revisar.

2.1 Extracting concrete AST edits

The initial input of Revisar is a set 𝑟𝑒𝑣𝑠 = {𝑅1, . . . , 𝑅𝑛} where
each 𝑅𝑖 is a revision history 𝑟1𝑟2 · · · 𝑟𝑘 from a different project
(i.e., a sequence of revisions). For each pair (𝑟𝑖 , 𝑟𝑖+1) of consecutive
revisions, Revisar analyzes the differences between the ASTs1 of 𝑟𝑖
and 𝑟𝑖+1 and uses a Tree Edit Distance (TED) algorithm to identify
a set of tree edits {𝑒1, 𝑒2, ..., 𝑒𝑙 } that when applied to the AST 𝑡𝑖
corresponding to 𝑟𝑖 yields the AST 𝑡𝑖+1 corresponding to 𝑟𝑖+1. In
our setting, an edit is one of the following:
insert(x, p, k): insert a leaf node 𝑥 as 𝑘𝑡ℎ child of parent node 𝑝 .

The current children at positions ≥ 𝑘 are shifted one position
to the right.

delete(x, p, k): delete a leaf node 𝑥 which is the 𝑘𝑡ℎ child of parent
node 𝑝 . The deletion may cause new nodes to become leaves
when all their children are deleted. Therefore we can delete
a whole tree through repeated bottom-up deletions.

update(x, w): replace a leaf node 𝑥 by a leaf node𝑤 .
move(x, p, k): move tree 𝑥 to be the 𝑘𝑡ℎ child of parent node 𝑝 .

The current children at positions ≥ 𝑘 are shifted one position
to the right.

Given a tree 𝑡 , let 𝑠 (𝑡) be the set of nodes in the tree 𝑡 . Intuitively,
solving the TED problem amounts to identifying a partial mapping
𝑀 : 𝑠 (𝑡) ↦→ 𝑠 (𝑡 ′) between source tree 𝑡 and target tree 𝑡 ′ nodes. The
mapping can then be used to detect which nodes are preserved by
the edit and in which positions they appear. When a node 𝑛 ∈ 𝑠 (𝑡)
is not mapped to any 𝑛′ ∈ 𝑠 (𝑡 ′), then 𝑛 was deleted.

Of the many existing tools available for computing tree edits
over Java code, Revisar builds on GumTree [12], a tool that fo-
cuses on finding edits representative of those intended by pro-
grammers instead of just finding the smallest possible set of tree
1Revisar uses Eclipse JDT to extract partial type annotations of the ASTs when it
is possible to extract them. In our implementation, we use these type annotations to
create a richer AST with type information—i.e., every node has a child describing its
type. For simplicity, we omit this detail.

https://github.com/apache/ant/commit/b7d1e9b

LearningQuick Fixes from Code Repositories SBES ’21, September 27-October 1, 2021, Joinville, Brazil

edits. To give an example of edits computed by GumTree, let’s
look at the first two lines in Figure 1a. Figure 3 illustrates the
ASTs corresponding to args[i].equals("–launchdiag") and
"–launchdiag".equals(args[i]), respectively.

MethodInvo

args[i]equals"--launchdiag"

MethodInvo

args[i]equals"--launchdiag"

Figure 3:Before-after version for the first edited line of code.

To produce the modified version of the code in line 2 at Figure 1a,
GumTree learned four edits:
insert("–launchdiag", MethodInvo, 0)
insert(equals, MethodInvo, 1)
delete(equals, MethodInvo, 3)
delete("–launchdiag", MethodInvo, 3)

These edits move the string literal "–launchdiag" and the equals
node so that they appear in front of args[i].

For our purposes, GumTree’s edits are at too low granularity
since they modify nodes instead of expressions. In particular, we
want to detect edits to entire subtrees—e.g., an edit to a method
invocation args[i].equals("–launchdiag") instead of to indi-
vidual nodes inside it. Revisar identifies subtree-level edits by
grouping edits belonging to the same connected components. Con-
cretely, Revisar identifies connected components by analyzing the
parent-child and sibling relationships between the nodes appearing
in the tree edits. Two edits 𝑒1 and 𝑒2 share the same component if
(i) the two nodes 𝑥1 and 𝑥2 modified by 𝑒1 and 𝑒2 have the same
parent, or (ii) the 𝑥1 (resp. 𝑥2) is the parent of 𝑥2 (resp. 𝑥1). For
instance, the previously shown edits are associated to two nodes
𝑥1 = "–launchdiag" and 𝑥2 = equals. These nodes are connected
since they have the same parent node—i.e., the method invocation.

Once the connected components are identified, Revisar can use
them to identify tree-to-tree mappings between subtrees inside
the original and modified trees like the one showed in Figure 3.
We call this mapping a concrete edit. A concrete edit is a pair (𝑖, 𝑜)
consisting of two components (i) the tree 𝑖 in the original version
of the program, and (ii) the tree 𝑜 in the modified version of the
program. This last step completes the first phase of our algorithm,
which, given a set of revisions {𝑅1, . . . , 𝑅𝑛}, outputs a set of concrete
edits {(𝑖1, 𝑜1), . . . , (𝑖𝑘 , 𝑜𝑘)}.

2.2 Clustering concrete edits

We now show how Revisar groups concrete edits into clusters
sharing the same edit pattern. Revisar’s clustering algorithm re-
ceives a set of concrete edits {(𝑖1, 𝑜1) . . . (𝑖𝑛, 𝑜𝑛)} and uses a greedy
approach. The clustering algorithm starts with an empty set of
clusters. Then, for each concrete edit (𝑖𝑘 , 𝑜𝑘) and for each cluster
𝑐 , Revisar checks, using the algorithm from Section 2.3, if adding
(𝑖𝑘 , 𝑜𝑘) to the concrete edits of cluster 𝑐 gives an edit pattern. When
this happens, the cluster 𝑐 is added to a set of cluster candidates
and the cost of adding (𝑖𝑘 , 𝑜𝑘) to 𝑐 is computed. Revisar then adds
(𝑖𝑘 , 𝑜𝑘) to candidate cluster of minimum cost, or it creates a new
cluster with just (𝑖𝑘 , 𝑜𝑘) if no candidate exists. The complexity
of this algorithm is 𝑂 (𝑛2) where 𝑛 is the number of edits since,

for each edit, we have to search which cluster the edit should be
included in. Instead of comparing all permutations of pairs of con-
crete edits, which is prohibitive, we compare an edit against each
cluster. Although we lose precision, we improve performance.

When multiple clusters can receive a new concrete edit, we
use a cost function to choose the appropriate cluster. The cost of
adding an edit (𝑖𝑘 , 𝑜𝑘) to cluster 𝑐 with corresponding template 𝜏
is computed as follows. First, Revisar anti-unifies 𝜏 and the tree
in the concrete edit we are trying to cluster. Let 𝛼𝑘 be the sub-
stitution for the result of the anti-unification and let 𝛼𝑘 (?𝑖) be
the tree substituting hole ?𝑖 . We define the size of a tree as the
number of leaf nodes inside it, which intuitively captures the num-
ber of names and constants in the AST. We denote the cost of
an anti-unification as the sum of the sizes of each 𝛼𝑘 (?𝑖) minus
the total number of holes (the same metric proposed by Bulychev
et al. [6] in the context of clone detection). Intuitively, we want
the sizes of substitutions to be small—i.e., we prefer more specific
templates. For instance, assumewe have a cluster consisting of a sin-
gle tree args[i].equals("–launchdiag"). Upon receiving a new
tree args[i].equals("–noclasspath"), anti-unifying the two
trees yields the template args[i].equals(?1) with substitutions
𝛼1={?1="–launchdiag"} and 𝛼2={?1="–noclasspath"}. We have
concrete nodes "–launchdiag" and "–noclasspath" each of size
one, and a single hole ?1. The cost will be 2 − 1 = 1. The final cost
of adding an edit to a cluster is the sum of the cost to anti-unify 𝜏𝑖
and 𝑖𝑘 and the cost to anti-unify 𝜏𝑜 and 𝑜𝑘 .

Predicting promising clusters For large repositories, the total
number of concrete edits may be huge and it will be unfeasible to
compare all edits to compute the clusters. To address this problem,
Revisar only clusters concrete edits which are “likely” to produce
an edit pattern. In particular, Revisar uses d-caps [2, 11, 35], a
technique for identifying repetitive edits. Given a number𝑑 ≥ 1 and
a template 𝜏 , a 𝑑-cap is a tree-like structure obtained by replacing
all subtrees of depth 𝑑 and left nodes in the template 𝜏 with holes.
The 𝑑-cap works as a hash-index for sets of potential clusters. For
instance, let’s look at the left-hand side of Figure 3, which is the tree
representation of the node args[i].equals("–launchdiag"). A
1-cap replaces all the nodes at depth onewith holes. For our example,
args[i], equals, and "–launchdiag" will be replaced with holes,
outputting the 𝑑-cap ?1.?2(?3). Revisar uses the 𝑑-caps as a pre-
step in the clustering algorithm. For all concrete edits with the
same 𝑑-cap for the input tree 𝑖𝑘 and for the output tree 𝑜𝑘 , Revisar
uses the clustering algorithm described in Section 2.2 to compute
the clusters for all concrete edits in these 𝑑-cap. This heuristic
makes our clustering algorithm practical as it avoids considering
all example combinations. However, it also comes at the cost of
sacrificing completeness—i.e., two concrete edits for which there is
a common edit pattern might be placed in different clusters.

2.3 Learning edit patterns

Once Revisar has identified concrete edits—i.e., pairs of trees
{(𝑖1, 𝑜1) . . . (𝑖𝑛, 𝑜𝑛)}—it tries to group “similar” concrete edits to
generate an edit pattern consistent with all the edits in each group.
An edit pattern is a rule 𝑟 = 𝜏𝑖 ↦→ 𝜏𝑜 with two components: (i) the
template 𝜏𝑖 , which is used to decide whether a subtree 𝑡 in the code
can be transformed using the rule 𝑟 , (ii) the template 𝜏𝑜 , which
describes how the tree matching 𝜏𝑖 should be transformed by 𝑟 .

SBES ’21, September 27-October 1, 2021, Joinville, Brazil Rolim et al.

A template 𝜏 is an AST where leaves can also be holes (variables)
and a tree 𝑡 matches the template 𝜏 if there exists a way to assign
concrete values to the holes in 𝜏 and obtain 𝑡—denoted 𝑡 ∈ 𝐿(𝜏).
Given a template 𝜏 over a set of holes𝐻 , we use 𝛼 to denote a substi-
tution from 𝐻 to concrete trees and 𝛼 (𝜏) to denote the application
of the substitution 𝛼 to the holes in 𝜏 . Figure 4 shows the first two
concrete edits from Figure 1a and the templates 𝜏𝑖 and 𝜏𝑜 describing
the edit pattern obtained from these examples. Here, the template 𝜏𝑖
matches any expression calling the method equals with first argu-
ment args[i] and any possible second argument. The two substi-
tutions 𝛼1={?1="–launchdiag"} and 𝛼2={?1="–noclasspath"}
yield the expressions 𝛼1 (𝜏𝑖) =args[i].equals("–launchdiag")
and 𝛼2 (𝜏𝑖) =args[i].equals("–noclasspath"), respectively.
The template 𝜏𝑜 is similar to 𝜏𝑖 and note that the hole ?1 appearing
in 𝜏𝑜 is the same as the one appearing in 𝜏𝑖 .

args[i].equals("--launchdiag")

args[i].equals(?1) ?1.equals(args[i])

"--launchdiag".equals(args[i])

args[i].equals("--noclasspath") "--noclasspath".equals(args[i])

𝜏𝑖 template 𝜏𝑜 template

Figure 4: Concrete edits and their input-output templates.

Definition 1. Given a set of concrete edits 𝑆 =

{(𝑖1, 𝑜1), . . . , (𝑖𝑛, 𝑜𝑛)}, an edit pattern 𝑟 = 𝜏𝑖 ↦→ 𝜏𝑜 , is consis-

tent with 𝑆 if: (i) the set of holes in 𝜏𝑜 is a subset of the set the holes

appearing in 𝜏𝑖 (ii) for every (𝑖𝑘 , 𝑜𝑘) there exists a substitution 𝛼𝑘
such that 𝛼𝑘 (𝜏𝑖) = 𝑖𝑘 and 𝛼𝑘 (𝜏𝑜) = 𝑜𝑘 .

Our goal now is to compute a template 𝜏𝑖 such that every AST
𝑖 𝑗 can match the template 𝜏𝑖—i.e., 𝑖 𝑗 ∈ 𝐿(𝜏𝑖). In general, the same
set of ASTs can be matched by multiple different templates, which
could contain different numbers of nodes and holes. Typically, a
templatewithmore concrete nodes and fewer holes ismore precise—
i.e., will match fewer concrete ASTs—whereas a template with few
concrete nodes will be more general—e.g., ?1.equals(?2) is more
general than arg[i].equals(?1). Among the possible templates,
we want the least general template, which preserves the maximum
common nodes for a given set of trees. The idea is to preserve
the maximum amount of shared information between the concrete
edits. Even when an edit is too specific, we will obtain the desired
template when provided with appropriate concrete edits. In our
running example, when encountering an expression of the form
x.equals("abc"), we will obtain the desired, more general tem-
plate ?1.equals(?2).

Remarkably, the problem we just described is tightly related to
the notion of anti-unification used in logic programming [2, 3].
Given two trees 𝑡1 and 𝑡2, the anti-unification algorithm produces
the least general template 𝜏 for which there exist substitutions
𝛼1 and 𝛼2 such that 𝛼1 (𝜏) = 𝑡1 and 𝛼2 (𝜏) = 𝑡2. In our tool we use
the implementation of anti-unification from Baumgartner et al. [3],
which runs in linear time. Using this algorithm, we can generate the
least general templates 𝜏𝑖 and 𝜏𝑜 that are consistent with the input
and output trees in the concrete edits. For now, the two templates

will have distinct sets of holes, but each template can contain the
same hole in multiple locations.

At this point, we have the template for the inputs 𝜏𝑖 and the
template for the output 𝜏𝑜 . However, Revisar needs to analyze
whether these templates describe an edit pattern 𝑟 = 𝜏𝑖 ↦→ 𝜏𝑜—i.e.,
whether there is a way to map the holes of 𝜏𝑖 to the ones of 𝜏𝑜 . This
mapping can be computed by finding, for every hole ?2 in 𝜏𝑜 , a hole
?1 in 𝜏𝑖 that applies the same substitution with respect to all the
concrete edits. To illustrate a case where finding a mapping is not
possible, let’s look at Figure 5. Although we can learn templates 𝜏𝑖
and 𝜏𝑜 , these templates cannot describe an edit pattern since it is
impossible to come up with a mapping between the holes of the two
templates that is consistent with all the substitutions. In this case,
the substitution for ?1 in 𝜏𝑖 is incompatible with the substitution
for ?2 in 𝜏𝑜 because "–noclasspath" is mapped to "-main", but
the content of these substituting trees differs. In addition, in our im-
plementation, we avoid to group concrete edits that are compatible,
accordingly to our definition but apply to different methods. For
instance, the concrete edits (args[i].equals("–launchdiag"),
"–launchdiag".equals(args[i])) and
(args[i].equalsIgnoreCase("–launchdiag"),
"–launchdiag".equalsIgnoreCase(args[i])) should not
be in the same cluster since they are applied to the equals and
equalsIgnoreCase methods, respectively.

args[i].equals("--launchdiag")

args[i].equals(?1) ?2.equals(args[i])

"--launchdiag".equals(args[i])

args[i].equals("--noclasspath") "-main".equals(args[i])

𝜏𝑖 template 𝜏𝑜 template

Figure 5: Incompatible concrete edits.

Since the templates are the least general, if no mapping between
the holes exists, there exists no edit pattern consistent with the
concrete edits—i.e., our algorithm, given a set of edits, finds a rule
in our format consistent with the edits if and only if one exists.
Therefore, Revisar finds all correct rules in our format and does
not miss potential ones.

Theorem 1 (Soundness and Completeness). Given a set of

concrete edits 𝑆 = {(𝑖1, 𝑜1), . . . , (𝑖𝑛, 𝑜𝑛)}, Revisar returns an edit

pattern 𝑟 = 𝜏𝑖 ↦→ 𝜏𝑜 consistent with 𝑆 if and only if some edit pattern

𝑟 ′ = 𝜏 ′
𝑖
↦→ 𝜏 ′𝑜 consistent with 𝑆 exists.

3 METHODOLOGY

In this section, we describe our evaluation methodology.2

3.1 Research Questions

We investigate the following three research questions:
RQ1 How effective is Revisar in identifying quick fixes?
RQ2 Do developers prefer quick fixes discovered by Revisar?
RQ3 Do developers adopt quick fixes discovered by Revisar?

2Data available at https://sites.google.com/view/revisar/

https://sites.google.com/view/revisar/

LearningQuick Fixes from Code Repositories SBES ’21, September 27-October 1, 2021, Joinville, Brazil

Table 1: Projects used to detect edit patterns

Project Edits LOC Revisions

Hive 94,921 1,119,579 11,467
Ant 49,680 137,203 13,790
Guava 28,784 325,902 4,633
Drill 26,173 350,756 2,902
ExoPlayer 20,726 85,305 3,875
Giraph 8,836 99,274 1,062
Gson 4,435 24,753 1,393
Truth 3,857 27,427 1,137
Error Prone 3,200 116,023 2,854

Totals 240,612 2,286,222 43,113

The answer to RQ1 characterizes the edit patterns that Revisar
is able to discover, and whether these edit patterns can be framed
in terms of existing code analysis tool rulesets. The answers to RQ2
and RQ3 address whether these identified edit patterns are useful,
for different perspectives: preference (RQ2) and adoption (RQ3).

3.2 Evaluation Methodology for Revisar

Data collectionWe selected 9 popular GitHub Java projects (Ta-
ble 1) from a list of previously studied projects [45]. The project
selection influences quantity and quality of the discovered patterns.
We select mature popular projects with a long history of edits, ex-
perienced developers who detect problems during code reviews,
and several collaborators (avg. 89.11) with different levels of exper-
tise (low expertise collaborators likely submit pull-requests that
need quick fixes). Analyzing many projects is prohibitive given
our resources, thus we selected a subset of projects with various
sizes/domains. We favored projects containing between 1,000 and
15,000 revisions, to have a sample large enough to identify many
patterns but not too big due to the time required to evaluate all
revisions. The projects have size ranging from 24,753 to 1,119,579
lines of code. In total, the sample contains 43,113 revisions.

Benchmarks Revisar found 288,899 single-location edits which
were clustered in 110,384 clusters. Of these clusters, 39,104 con-
tained more than one edit—i.e., Revisar could generalize multiple
examples to a single edit pattern. The 39,104 edit patterns covered
205,934/288,899 single-location edits (71%). The distribution of these
edit patterns is reminiscent of a long-tail one: the most-common
edit pattern having 2,706 concrete edits, 0.06% of the edit patterns
cover 10% of the concrete edits, and 5.3% of the edit patterns cover
20% of the concrete edits.

We performed the experiments on a PC running Windows 10
with a processor Core i7 and 16GB of RAM.We obtained the revision
histories of each repository using JGit3. Revisar took 5 days to
analyze the 9 projects (approximately 10 seconds per commit). Most
of the time is spent checking out revisions, a process that can be
done incrementally for future projects.

Edit pattern sampling To facilitate manual investigation of
these edit patterns, we empirically identified a “Goldilocks” cut-offs
for edit patterns found in 𝑛 or more projects that would allow us
to inspect each patterns (at 𝑛 ≥ 1: 110,384 edit patterns, 2: 1,759, 3:
495, 4: 196; 5: 89, 6: 47, 7: 19, 8: 6, 9: 1). From this distribution, we

choose the 495 patterns found in 3+ projects as a reasonable cut-off
for subsequent analysis.

Analysis Phase I—Spurious pattern elimination To assess the
effectiveness of Revisar, we conducted a filtering exercise to dis-
card spurious edit patterns. Specifically, we discarded edit patterns
involving renaming operations—e.g., renaming the variable obj
to object—and edit patterns in which none of the authors could
identify a logical rationale behind the edit, typically because the
patterns were part of some broader edit sequence—e.g., changing
return true to return null. We eliminated 297 spurious pat-
terns, where 61 of them were renaming operation and, for the rest
of them, we could not identify a logically meaningful pattern.

Phase II—Merging duplicate edit patterns Next, we merged edit
patterns that represented the same logical quick fix. To do so, we
3https://www.eclipse.org/jgit/
employed a technique of negotiated agreement [7] in which the
second and fourth authors collaboratively identified and discarded
logically duplicate edit patterns within the sample. When there was
disagreement about whether two edit patterns were logical dupli-
cates, the authors opted to merge these duplicates, thus penalizing
the effectiveness of Revisar. In other words, this measure is an
upper bound of the number of duplicates within the edit patterns.
We merged 109 duplicated patterns into 17 other patterns.

Phase III—Cataloging edit patterns Finally, we classified each of
the remaining 495-297-109=89 patterns against the eight Java rule-
set from the PMD code analyzer tool (for example, “Performance”).
The full rule-set is shown in Table 2. We targeted the PMD rule-
set because the PMD developers employed a principled process
for designing this rule-set. In particular, a goal of the rule-set was
to make the rule-set useful for reporting by third-party tools and
techniques.4 The first and third authors independently mapped the
edit patterns to one of the PMD rule-sets. We computed Cohen’s
Kappa to assess the measure of agreement, and deferred to the
first author’s judgment to reconcile disagreement. Finally, the first
author used online resources, such as Stack Overflow and analyz-
ers’ documentation to tag each quick fix as being available or not
available in the catalog of an existing tool.

3.3 Developer Survey

We conducted a survey to assess programmers’ judgments about a
subset of our discovered quick fixes.

ParticipantsWe randomly invited 2,000 programmers to partic-
ipate in our survey through e-mail, collected from author metadata
in the commits from 124 popular GitHub Java projects [45], such
as Google and Facebook. We received 164 responses (response rate
8.2%). Through demographic questions, 118 participants (72%) re-
ported having 5+ years of Java experience, and also reported using
tools to flag code patterns, including IntelliJ (72%), Checkstyle (50%),
Sonar (50%), FindBugs (43%), PMD (31%), Eclipse (8%), Error Prone
(7%), and others (8%). We did not compensate responses.

Survey protocol To be within responses of 5-10 minutes, we
presented programmers with 9 out of the 89 edit patterns using
purposive sampling (i.e., we deliberately selected from a design
space of candidate edit patterns to balance patterns found in existing
analysis tools versus new edit patterns identified). This selection
4https://github.com/pmd/pmd/wiki/Rule-Categories

https://www.eclipse.org/jgit/
https://github.com/pmd/pmd/wiki/Rule-Categories

SBES ’21, September 27-October 1, 2021, Joinville, Brazil Rolim et al.

Table 2: Description of the categories and frequency

PMD ruleset Description 𝑛

Best Practices Rules which enforce generally ac-
cepted best practices.

19

Code Style Rules which enforce a specific cod-
ing style.

16

Design Rules which help you discover de-
sign issues.

22

Documentation Rules which are related to code doc-
umentation.

5

Error Prone Rules which detect constructs that
are either broken, extremely confus-
ing or prone to runtime errors.

12

Multithreading Rules which flag issues when deal-
ing with multiple threads of execu-
tion.

2

Performance Rules which flag suboptimal code. 13
Security Rules which flag potential security

flaws.
0

Total 89

allowed us to verify whether programmers chose patterns found in
existing tools as well as to assess their preferences for edit patterns
not found in current tools.

We presented edit patterns as side-by-side left and right panes,
with one pane having the baseline code pattern (“expected bad”)
and the other with the quick fix version of the code pattern (“ex-
pected good”). Each pair was randomized and labeled simply as
pattern A and pattern B, so that programmers could not obviously
identify the quick fix version of the pattern. To assess if develop-
ers preferred the quick fix version of the pattern, we presented a
five-point Likert-type item scale: strongly prefer (A) to strongly
prefer (B). Programmers were allowed to provide an open-ended
comment about their preferences.

Presented edit patternsWe presented programmers with the
following nine edit patterns:

EP1 (Performance) Use characters instead of single-

character strings. In Java, we can represent a character
both as a String or a character. For operations such as
appending a value to a StringBuffer, representing the
value as a character improves performance—e.g., change
sb.append("a") to sb.append(’a’). This edit improved
the performance in Guava by 10-25% [14].

EP2 (Error Prone) Prefer string literal in equals
method. Invoking equals on a null variable
causes a NullPointerException, as discussed. Use
"str".equals(s) instead of s.equals("str").

EP3 (Performance) Avoid FileInputStream and

FileOutputStream. These classes override the finalize
method. As a result, their objects are only cleaned when
the garbage collector performs a sweep [10]. Since Java
7, programmers can use Files.newInputStream and
Files.newOutputStream instead of FileInputStream

and FileOutputStream to improve performance as
recommended in this Java JDK bug-report [19].

EP4 (Best practices) Use the collection isEmpty method

rather than checking the size. The method isEmpty to
check whether a collection is empty is preferred to check-
ing that the size of the collection is zero, as discussed.

EP5 (Multithreading) Prefer StringBuilder to

StringBuffer. These classes have the same API,
but StringBuilder is not synchronized. Since synchro-
nization is rarely used [39], StringBuilder offers high
performance and is designed to replace StringBuffer in
single threaded contexts [39].

EP6 (Code Style) Infer type in generic instance creation.

Since Java 7, programmers can replace type parameters to
invoke the constructor of a generic class with the diamond
operator (<>) [40] and allow inference of type parameters
by the context. This edit ensures the use of generic in-
stead of the deprecated raw types [38]. The benefit of the
diamond operator is clarity since it is more concise.

EP7 (Design)Remove raw types. Raw types are generic types
without type parameters, used in Java versions prior to 5.0.
They ensure compatibility with pre-generics code. Since
type parameters of raw types are unchecked, unsafe code is
caught at runtime [38] and the Java compiler issues warn-
ings for them [38]. Thus, prefer List<String> a = new
ArrayList<>() to List<String> a = new ArrayList().

EP8 (Error Prone) Field, parameter, and variable could be

final. The final modifier can be used in fields, param-
eters, and local variables to indicate they cannot be re-
assigned [41]. This edit improves clarity and it helps with
debugging since it shows what values will change at run-
time. In addition, it allows the compiler and virtual ma-
chine to optimize the code [41]. The edit pattern that adds
the final modifier is included in PMD catalog of rules5.
IDEs such as Eclipse and NetBeans can be configured to
perform this edit automatically on saving.

EP9 (Error Prone) Avoid using strings to represent paths.

Programmers sometimes use String to represent a file
system path even though some classes are specifically
designed for this task—e.g., java.nio.Path. In these cases,
it is useful to change the type of the variable to Path.
First, strings can be combined in an undisciplined way,
which can lead to invalid paths. Second, different operating
systems use different file separators, which can cause bugs.
Since detecting this pattern requires a non-trivial analysis,
code analyzers do not include it as a rule. Thus, use Path
path over String path.

AnalysisWe treated the Likert-type responses as ordinal data
and applied a one-sample Wilcoxon signed-rank test to identify
statistical differences for each of the nine edit patterns (𝛼 = 0.05).
Specifically, the null hypothesis is that the responses are not statisti-
cally different and symmetric around the default value (“it does not
matter”). Rejecting the null hypothesis implies that programmers
have a non-default preference for one code pattern. Because multi-
ple comparisons can inflate the false discovery rate, we compute
5https://pmd.github.io/

https://pmd.github.io/

LearningQuick Fixes from Code Repositories SBES ’21, September 27-October 1, 2021, Joinville, Brazil

Table 3: Programmer preferences for edit patterns

Likert Resp. Pct
1

Pattern Adj-𝑝2 B N QF Distribution
3

50% 50%0%

EP1 .01 49% 18% 33%
EP2 < .001 33% 2% 65%
EP3 .03 36% 18% 46%
EP4 < .001 2% 5% 93%
EP5 < .001 7% 21% 72%
EP6 < .001 10% 1% 89%
EP7 < .001 19% 6% 75%
EP8 < .001 33% 12% 55%
EP9 < .001 15% 16% 69%
1 Likert-type item responses: Strongly prefer or prefer baseline
(B), Neutral (N), Strongly prefer or prefer quick fix (QF).

2 Adjusted 𝑝-value after Benjamini-Hochberg correction.
3 Net stacked distribution removes the Neutral option and shows
the skew between baseline and quick fix preferences. Strongly
prefer baseline, Prefer baseline, Prefer quick fix, Strongly
prefer quick fix.

adjusted p-values using a Benjamini-Hochberg correction [4]. We
present the results for each pair as a net stacked distribution.

3.4 Pull Request Validation

We also submitted PRs to GitHub projects containing the nine quick
fixes from our survey.

Project selection From the nine GitHub projects (Table 1), we
selected five projects that actively considered PRs (Ant, Error Prone,
ExoPlayer, Giraph, and Gson). We supplement these projects with
those of four popular code analyzer tools (Checkstyle, PMD, Sonar-
Qube, and Spotbugs) with the expectation that reviewers of these
pull requests could capably assess the usefulness of the proposed
quick fixes. Thus, we selected a total of nine projects to submit PRs.

Pull requests We deliberately submitted PRs manually that
applied locally to a single region of code preferable within a single
or file to minimize confounds that would be otherwise introduced
in large PRs. In total, we submitted 16 PRs across all projects.

Analysis We recorded the status of the PRs as either open (not
yet accepted), merged (accepted), or rejected (declined to accept
into the project code). We describe these PR submissions through
basic descriptive statistics.

4 RESULTS

4.1 How effective is Revisar in identifying

quick fixes?

Table 2 shows the identified edit patterns and labels them according
to the PMD rule-sets. The discovered patterns covered seven of
the eight PMD categories, and only “Security” was not represented.
The most common rule-sets—with roughly equal frequencies—were
“Design” (22), “Best Practices” (19), “Performance” (13), and “Error
Prone” (12). The results suggest that Revisar is effective at discov-
ering quick fixes across a spectrum of rule-sets.

Cohen’s ^ found “very good” [24] agreement between the raters
for these rule-sets (𝑛 = 89, ^ = 0.82), with disagreement being
primarily attributable to whether an edit pattern is “Best Practice”
or “Error Prone.”

Finally, 57/89 patterns were classified as new ones—i.e., they
were not implemented as quick fixes in existing tools.

Revisar could automatically discover 89 edit patterns that
covered 7/8 PMD categories. 64% of the discovered patterns
did not appear in existing tools.

4.2 Do developers prefer Revisar quick fixes?

A summary of the survey results is presented in Table 3. The
Wilcoxon signed-rank test identified a significant difference in
preference—after Benjamini-Hochberg adjustment—for all nine edit
patterns (at 𝛼 = 0.05). Except for EP1, programmers preferred the
quick fix version of the code from Revisar.

To understand why programmers rejected EP1, we examined the
optional programmer feedback for this edit pattern. We found that
although programmers recognized that passing a character would
have better performance, “slightly more efficient,” and requiring
“less overhead,” these benefits were not significant enough to out-
weigh readability or consistency. For example, five programmers
reported that since the name of the class is StringBuffer, it’s more
consistent to always pass in a String, even if a character would be
more efficient. Other programmers reported that always passing in
a String is just “easier mentally” and requires “less cognitive load.”

Programmers preferred the quick fixes suggested by Revisar
for eight of the nine edit patterns.

4.3 Do developers adopt Revisar quick fixes?

Of the 16 PRs we submitted to GitHub projects, seven of these
were accepted, four were rejected, and the remaining are open at
this writing time (Table 4). SonarQube rejected a PR for EP1, sug-
gesting that changing a String to a Character is purely pedantic.
However, they welcomed additional evidence of the performance
benefits and would be willing to reconsider given such evidence.
Error Prone programmers indicated that EP2 was generally useful,
but not for the particular use case of the PR. SpotBugs rejected
the PR for EP5 because a maintainer did not want to unnecessarily
make the commit history noisy unless the change was in a per-
formance critical path. Finally, Gson rejected a EP8 PR for adding
final to a parameter: namely, because their IntelliJ already high-
lights locals and parameters differently depending on whether they
are assigned to. In other words, the programmers already use an
alternative means to communicate information about effectively
final parameters.

Projects accepted 63.6% of the PRs for the Revisar quick fixes.

5 LIMITATIONS

Each of the three studies have limitations, described here

SBES ’21, September 27-October 1, 2021, Joinville, Brazil Rolim et al.

Table 4: Pull request submissions to projects on GitHub

Pattern Accept (%) Status
1

EP1 1 (33%) PMD Ant SonarQube

EP2 2 (67%) Ant ExoPlayer
Error Prone

EP3 — — Giraph

EP4 2 (100%) Ant PMD

EP5 1 (33%) CheckStyle Ant
Spotbugs

EP6 1 (100%) Giraph

EP7 — — Gson

EP8 0 (0%) Gson

EP9 — — Giraph

Total
2 7 / 11 (63.6%)

1 Accepted, Rejected, Open.
2 Acceptance rate is calculated as accepted pull requests against
accepted and rejected pull requests. Open pull requests are not
included in this calculation.

Evaluation of Revisar We considered only single-location
edit patterns, which are representative of most quick fixes in code
analyzers. Revisar cannot identify dependent patterns—e.g., when
both return type of the method and the return statement must
change together. Also, we only evaluated Java projects; both the
choice of language and projects influences the identified quick
fixes. A threat to construct validity is the difficulty to exhaustively
determine whether a discovered quick fix is actually novel. To
mitigate it, we catalogued popular code analyzers and conducted
searches to find quick fixes. Similarly, given that the categorization
of quick fixes involves human judgments, our results (Table 2)
should be interpreted as useful estimators for Revisar.

Survey study. The survey employed purposive—that is, non-
random—sampling and evaluated only a limited number of quick
fixes that do not cover the entire design space of quick fixes. It
also lacks some categories (e.g., documentation and security). The
documentation category lacks a well-defined edit structure, making
it hard to identify relevant quick fixes, besides those in code ana-
lyzers. The lack of security quick fixes can be due to the projects
selected, since they are mature projects, from large companies, such
as Google, which tends to focus on security problem removal. Thus,
a threat to external validity is that we should be careful and avoid
generalizing the results from this survey to all quick fixes. More-
over, participants in the survey self-reported their experience and
may not necessarily have been experts. A construct threat within
this study is that programmers are not directly evaluating quick
fixes: rather, they are being asked to evaluate two different code
snippets—essentially, the input and output to an editor pattern.
Responses and explanations for their preferences may have been
different had they been explicitly told to evaluate the quick fixes
directly.

PR validation A construct validity threat is that PRs are not
the typical environment that programmers apply quick fixes. Thus,
the acceptance and rejection of PRs are not representative of how
programmers would actually apply quick fixes. Despite this limita-
tion, the study validates that discovered quick fixes are adopted by
projects, and provides explanation in cases for when they are not.

Revisar’s automation Manual inspection can be costly, an
common issue in the field of data mining. All steps of our technique
are automated, except for the inspection of the patterns to classify
them in new and useful patterns. The applicability of quick fixes in
general need to be evaluated, even for quick fixes in code analyers,
since their use depends on developers’ opinion. In our experiments,
we inspected 495 quick fixes in about one day.

Revisar’s scalability The time taken to identify quick fixes
depends on the number of projects, revisions, and edits. Revisar’s
users can choose the accuracy level. A good accuracy needs more
projects, but takes longer to complete. Our technique is not intended
to be used online (i.e., along with code editing). Thus, patterns can
be discovered offline and integrated into code analyzers.

6 DISCUSSION

Generating executable rules Revisar generates AST patterns,
but ideally one wants executable quick fixes that can be added to
code analyzers. When possible, Revisar compiles the generated pat-
terns to executable Refaster rules. Refaster [48] is a rule-language
used in the code analyzer Error Prone. A Refaster rule is described
using (i) a before template to pattern-match target locations, and
(ii) an after template to specify how these locations are transformed,
which are similar to the before and after templates 𝜏𝑖 and 𝜏𝑜 used
by our rules. In general, our rules cannot be always expressed as Re-
faster ones. In particular, Refaster cannot describe edit patterns that
require AST node types. For instance, the edit pattern in Figure 4
requires knowing that an AST node is a StringLiteral and this
AST type cannot be inspected in Refaster. In addition, Refaster can
only modify expressions that appear inside a method body—e.g.,
Refaster cannot modify global field declarations.

Programmers consider trade-offs when applying quick

fixes Programmers’ feedback within our survey suggests trade-
offs that programmers consider when making judgments about
applying quick fixes. For example, for EP1 some programmers pre-
ferred the version of the code with worse performance primarily
because they valued consistency and reduction in cognitive load over
what they felt was relatively small performance improvements.

When programmers significantly preferred quick fixes, they care-
fully evaluated the trade-offs. For example, consider EP2, in which
the quick fix suggests using the equals method on string literals
to prevent an exception. Programmers recognized this benefit but
also argued that the baseline version had better readability. As one
programmer notes, when given a variable, they felt it more natural
to say, “if variable equals value” than “if value equals variable.”

Programmers also indicated unfamiliaritywith new language fea-
tures as a reason to avoid quick fixes (e.g., in EP3). One programmer
noted that newer APIs embed “experience about the shortcomings
of the old API” but they were also hesitant to use this version of the
code without understanding what the shortcomings actually were.

LearningQuick Fixes from Code Repositories SBES ’21, September 27-October 1, 2021, Joinville, Brazil

Finally, using the diamond operator (<>) in EP6 makes the code
simpler, concise, and more readable. Nevertheless, 19% of partic-
ipants still preferred/strongly preferred the less concise baseline
code version. One programmer suggested compatibility with old
versions as a reason for this decision.

Thus, evenwhen automated techniques such as Revisar discover
useful quick fixes, the feedback from our survey suggests that it is
also important to provide programmers with rationale for why and
when the quick fix should be applied. A first-step towards providing
an initial rationale can be to situate quick fixes within an existing
taxonomy, as we did with our discovered quick fixes in Table 2.

Barriers to accepting PRs Although our survey indicated pro-
grammers preferred Revisar quick fixes, maintainers can decline
the corresponding PRs. In our PR study, the maintainers’ com-
ments suggested reasons for declining a quick fix, even when they
recognized the fixes would be generally useful. For instance, the
maintainers of SonarQube declined incorporating the fixes because
it would make the commit history more noisy. Spotbugs was con-
cerned about adopting them without sufficient testing because the
fixes might behave unexpectedly in different JVM. Other projects
like Error Prone have adopted conventions across their entire code
base. Unless these quick fixes are applied universally across the
project, such inertia makes it unlikely that these projects would
adopt a one-off fix—for example, EP2.

Our analysis suggests that when and how a quick fix is surfaced
to the developer is important to its acceptance. It is possible these
maintainers would have applied these rejected quick fixes had they
been revealed as they were writing code, rather than after the fact.

7 RELATEDWORK

Mining quick fixes Cayres et al. [8] show a systematic review of
the techniques to suggest fixes from histories. Brown et al. [5] learn
token-level syntactic transformations from code commits to gener-
ate mutations for mutation testing. Unlike Revisar, they can only
mine token level transformations over a predefined set of syntactic
constructs and cannot unify across multiple concrete edits. Negara
et al. [34] mine code interactions directly from the IDE to detect
quick fixes and find 10 new refactoring patterns. Revisar mines
repositories. Hora et al. [17] create quick fixes by automatically
mining repositories from a system history to detect change rules.
Instead, Revisar mines a set of systems. Hora et al. [16] observe
defects regarding generic and domain-specific checkers by mining
defective lines from commits messages and correlated them with
those from code analyzers. Revisar is not focused only on defects
and mines quick fixes across repositories. Other tools [29, 46] mine
fine-grained repair templates from StackOverflow and the Defect4j
bug data-set. Liu et al. [27] collect a set of fixes from repositories
and apply machine learning techniques to ranking them, based on
recurrent code fixes. Janke and Mäder [18] capture the relational
context of individual edit patterns from repositories. Li et al. [25]
investigate changes that can significantly influence systems and
their uses. Neubig and Gaunt [49] represent edits both in natural
language and code. Marcilio et al. [31] suggest corrections for well-
known problems of code analyzers. In summary, Revisar differs
from prior since we (i) mined quick fixes in a sound and complete

fashion using a rich syntax of edit patterns, (ii) assessed the quality
of the learned patterns and their quick fixes.

Learning transformations from examples Several tech-
niques use examples to learn quick fixes for refactoring [1, 33, 43],
clone removal [32], defect removal [21], learn to fix command-line
errors [9], and complete code [13, 15]. All these techniques rely on
user-given examples that describe the same intended transforma-
tion or on curated labeled data. This extra information allows the
tools to perform more informed types of rule extraction. Instead,
Revisar uses fully unsupervised learning and receives concrete
edits as input that may or may not describe useful transformations.

Program repair Some program repair tools learn useful fixing
strategies by mining curated sets of bug fixes [36], user interactions
with a debugger [20], human-written patches [22, 30], and bug
reports [26]. FixMiner [23] identifies relevant and actionable quick
fixes based on atomic edits, and PARFixMiner [23] performs quick
fixes. DevReplay builds regular expression rules from two revision
history to help applying quick fixes [47]. TBar [28] uses templates
to apply quick fixes to program bugs. Sakkas et al. [44] use a data-
driven strategy to providing feedback for type-errors. Koyuncu et
al. [27] use fixes patterns of code analyzers to generate patches.
Renggli et al. [42] check domain-specific rules, and implement and
automate removal of violations identified by these rules. All these
tools either rely on a predefined set of patches or learn patches from
supervised data. Instead, Revisar analyzes unsupervised sets of
concrete edits and uses a sound and complete technique for mining
a well-defined family of edit patterns. Moreover, Revisar learns
arbitrary quick fixes that can improve code quality not just ones
used to repair buggy code. Since we do not have a notion of correct
edit pattern we also analyze the usefulness of the learned quick
fixes through a comprehensive evaluation and user study, a optional
component in transformations used in program repair.

8 CONCLUSION

We presented Revisar, a technique to learn quick fixes from repos-
itories. Revisar (i) identifies edits by comparing consecutive re-
visions in repositories, (ii) clusters edits into sets that can be ab-
stracted into the same edit pattern, and we used Revisar to mine
quick fixes from nine popular GitHub projects and Revisar suc-
cessfully learned 89 edit patterns that appeared in more than three
projects. To assess whether programmers would like to apply these
quick fixes, we surveyed 164 programmers showing 9 of our quick
fixes. Overall, programmers supported 89% them. We also issued
PRs in various repositories and 63.6% were accepted so far.

The results have several implications for toolsmiths: (i) Revisar
can be used to efficiently collect patterns and their usages in ac-
tual repositories and enable toolsmiths to make informed decisions
about which quick fixes to prioritize based on patterns program-
mers actually apply in practice. (ii) Revisar allows toolsmiths to
discover new quick fixes, without needing their users to explicitly
submit quick fix suggestions. (iii) the results suggest several logi-
cal and useful extensions to aid toolsmiths—e.g., supporting more
complex patterns from code analyzers but are currently beyond the
capabilities of Revisar and designing techniques for automatically
extracting executable quick fixes from mined patterns.

SBES ’21, September 27-October 1, 2021, Joinville, Brazil Rolim et al.

REFERENCES

[1] J. Andersen and J. L. Lawall. 2008. Generic Patch Inference. In Proceedings of the

23rd International Conference on Automated Software Engineering (L’Aquila, AQ,
Italy) (ASE ’08). IEEE Computer Society, Washington, DC, USA, 337–346.

[2] A. Baumgartner and T. Kutsia. 2017. Unranked second-order anti-unification.
Information and Computation 255, 2 (2017), 262 – 286.

[3] A. Baumgartner, T. Kutsia, J. Levy, and M. Villaret. 2017. Higher-Order Pattern
Anti-Unification in Linear Time. Journal of Automated Reasoning 58, 1 (2017),
293–310.

[4] Yoav Benjamini and Yosef Hochberg. 1995. Controlling the False Discovery Rate:
A Practical and Powerful Approach to Multiple Testing. Journal of the Royal
Statistical Society. Series B (Methodological) 57, 1 (1995), 289–300.

[5] David Bingham Brown, Michael Vaughn, Ben Liblit, and Thomas Reps. 2017. The
Care and Feeding of Wild-caught Mutants. In Proceedings of the 2017 11th Joint

Meeting on Foundations of Software Engineering (Paderborn, Germany) (ESEC/FSE
’17). ACM, New York, NY, USA, 511–522.

[6] Peter Bulychev and Marius Minea. 2009. An evaluation of duplicate code detec-
tion using anti-unification. In Proceedings of the 3rd International Workshop On

Software Clones (Kaiserslautern, Germany) (IWSC ’09). Fraunhofer IESE, Kaiser-
slautern, Germany, 1–6.

[7] J. Campbell, C. Quincy, J. Osserman, and O. Pedersen. 2013. Coding in-depth
semistructured interviews. Sociological Methods & Research 42, 3 (2013), 294–320.

[8] Leandro Ungari Cayres, Bruno Santos de Lima, and Rogério Eduardo García.
2019. Learning and Suggesting Source Code Changes from Version History: A
Systematic Review. arXiv: Software Engineering 1, 1 (2019), 1–15.

[9] Loris D’Antoni, Rishabh Singh, and Michael Vaughn. 2017. NoFAQ: Synthesizing
Command Repairs from Examples. In Proceedings of the 11th Joint Meeting on

Foundations of Software Engineering (Paderborn, Germany) (ESEC/FSE’17). ACM,
New York, NY, USA, 582–592.

[10] DZone. 2021. FileInputStream / FileOutputStream Considered Harmful. At https:
//dzone.com/articles/fileinputstream-fileoutputstream-considered-harmful. Ac-
cessed in 2021, July 14.

[11] W. S. Evans, C. W. Fraser, and F. Ma. 2007. Clone Detection via Structural
Abstraction. In Proceedings of 14th Working Conference on Reverse Engineering

(Vancouver, BC, Canada) (WCRE ’07). IEEE, Piscataway, NJ, USA, 150–159.
[12] J. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus. 2014. Fine-

grained and Accurate Source Code Differencing. In Proceedings of the 29th Inter-

national Conference on Automated Software Engineering (Vasteras, Sweden) (ASE
’14). ACM, New York, NY, USA, 313–324.

[13] Mark Gabel and Zhendong Su. 2010. A Study of the Uniqueness of Source Code.
In Proceedings of the 18th International Symposium on Foundations of Software

Engineering (Santa Fe, USA) (FSE ’10). ACM, New York, NY, USA, 147–156.
[14] Google. 2012. Guava. At https://docs.oracle.com/javase/9/docs/api/java/lang/

Float.html. Accessed in 2021, July 14.
[15] Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu.

2012. On the Naturalness of Software. In Proceedings of the 34th International Con-

ference on Software Engineering (Zurich, Switzerland) (ICSE ’12). IEEE, Piscataway,
NJ, USA, 837–847.

[16] A. Hora, N. Anquetil, S. Ducasse, and S. Allier. 2012. Domain specific warn-
ings: Are they any better?. In Proceedings of the 28th International Conference on

Software Maintenance (Trento, Italy) ((ICSM’ 12). IEEE, Piscataway, USA, 441–450.
[17] André Hora, Nicolas Anquetil, Anne Etien, Stéphane Ducasse, and Marco Túlio

Valente. 2015. Automatic detection of system-specific conventions unknown to
developers. Journal of Systems and Software 109, 1 (2015), 192–204.

[18] M. Janke and P. Mader. 2020. Graph Based Mining of Code Change Patterns from
Version Control Commits. Transactions on Software Engineering 1, 1 (2020), 1–16.

[19] Java JDK. 2021. JDK Bug System. At https://bugs.openjdk.java.net/browse/JDK-
8187325. Accessed in 2021, July 14.

[20] D. Jeffrey, M. Feng, N. Gupta, and R. Gupta. 2009. BugFix: A learning-based
tool to assist developers in fixing bugs. In Proceedings of the 17th International

Conference on Program Comprehension (ICPC ’09). IEEE, Piscataway, USA, 70–79.
[21] M. Kessentini, W. Kessentini, H. Sahraoui, M. Boukadoum, and A. Ouni. 2011.

Design Defects Detection and Correction by Example. In Proceedings of the 19th

International Conference on Program Comprehension (ICPC ’11). IEEE, Piscataway,
NJ, USA, 81–90.

[22] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic
Patch Generation Learned from Human-written Patches. In Proceedings of the

35th International Conference on Software Engineering (San Francisco, USA) (ICSE
’13). IEEE, Piscataway, NJ, USA, 802–811.

[23] A. Koyuncu, K. Liu, T. Bissyandé, D. Kim, J. Klein, M. Monperrus, and Y. Le Traon.
2020. FixMiner: Mining relevant fix patterns for automated program repair.
Empirical Software Engineering 25, 3 (2020), 1980–2024.

[24] J. Richard Landis and Gary G. Koch. 1977. The Measurement of Observer Agree-
ment for Categorical Data. Biometrics 33, 1 (1977), 159–174.

[25] Daoyuan Li, Li Li, Dongsun Kim, Tegawendé F. Bissyandé, David Lo, and Yves
Le Traon. 2019. Watch out for this commit! A study of influential software
changes. Journal of Software: Evolution and Process 31, 12 (2019), 1–25.

[26] C. Liu, J. Yang, L. Tan, and M. Hafiz. 2013. R2Fix: Automatically Generating Bug
Fixes from Bug Reports. In Proceedings of the 6th International Conference on

Software Testing, Verification and Validation (Neumunster Abbey, Luxembourg,
French) (ICST ’13). IEEE, Piscataway, NJ, USA, 282–291.

[27] K. Liu, D. Kim, T. Bissyande, S. Yoo, and Y. Traon. 2018. Mining Fix Patterns for
FindBugs Violations. Transactions on Software Engineering 47, 1 (2018), 165–188.

[28] K. Liu, A. Koyuncu, D. Kim, and T. Bissyandé. 2019. TBar: Revisiting Template-
Based Automated Program Repair. In Proceedings of the 28th International Sym-

posium on Software Testing and Analysis (Beijing, China) (ISSTA’ 19). ACM, New
York, NY, USA, 31–42.

[29] X. Liu and H. Zhong. 2018. Mining stackoverflow for program repair. In Pro-

ceedings of the 25th International Conference on Software Analysis, Evolution and

Reengineering (Campobasso, Italy) (SANER ’18). IEEE, Piscataway, USA, 118–129.
[30] Fan Long and Martin Rinard. 2016. Automatic Patch Generation by Learning

Correct Code. Proceedings of the 43rd Symposium on Principles of Programming

Languages 51, 1 (2016), 298–312.
[31] Diego Marcilio, Carlo A. Furia, Rodrigo Bonifácio, and Gustavo Pinto. 2020.

SpongeBugs: Automatically generating fix suggestions in response to static code
analysis warnings. Journal of Systems and Software 168, 1 (2020), 1–20.

[32] Na Meng, Lisa Hua, Miryung Kim, and Kathryn S. McKinley. 2015. Does Au-
tomated Refactoring Obviate Systematic Editing?. In Proceedings of the 37th

International Conference on Software Engineering - Volume 1 (Florence, Italy) (ICSE
’15). IEEE, Piscataway, NJ, USA, 392–402.

[33] Na Meng, Miryung Kim, and Kathryn S. McKinley. 2013. LASE: Locating and
Applying Systematic Edits by Learning from Examples. In Proceedings of the 35th

International Conference on Software Engineering (San Francisco, USA) (ICSE ’13).
IEEE, Piscataway, NJ, USA, 502–511.

[34] Stas Negara, Mihai Codoban, Danny Dig, and Ralph E. Johnson. 2014. Mining
Fine-grained Code Changes to Detect Unknown Change Patterns. In Proceedings

of the 36th International Conference on Software Engineering (Hyderabad, India)
(ICSE’ 14). ACM, New York, NY, USA, 803–813.

[35] Hoan Anh Nguyen, Anh Tuan Nguyen, Tung Thanh Nguyen, Tien N. Nguyen,
and H. Rajan. 2013. A study of repetitiveness of code changes in software evolu-
tion. In Proceedings of the 28th International Conference on Automated Software

Engineering (Silicon Valley, USA) (ASE ’13). IEEE, Piscataway, NJ, USA, 180–190.
[36] Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H. Pham, Jafar Al-Kofahi, and

Tien N. Nguyen. 2010. Recurring Bug Fixes in Object-oriented Programs. In
Proceedings of the 32nd International Conference on Software Engineering (Cape
Town, South Africa) (ICSE ’10). ACM, New York, NY, USA, 315–324.

[37] Oracle. 2021. ConcurrentSkipListSet. At https://docs.oracle.com/javase/7/docs/
api/java/util/concurrent/ConcurrentSkipListSet.html. Accessed in 2021, July 14.

[38] Oracle. 2021. Raw Types. At https://docs.oracle.com/javase/tutorial/java/
generics/rawTypes.html. Accessed in 2021, July 14.

[39] Oracle. 2021. StringBuilder. At https://docs.oracle.com/javase/8/docs/api/java/
lang/StringBuilder.html. Accessed in 2021, July 14.

[40] Oracle. 2021. Type Inference for Generic Instance Creation. At
https://docs.oracle.com/javase/7/docs/technotes/guides/language/type-
inference-generic-instance-creation.html. Accessed in 2021, July 14.

[41] Java Practices. 2021. Use final liberally. At http://www.javapractices.com/topic/
TopicAction.do?Id=23. Accessed in 2021, July 14.

[42] L. Renggli, S. Ducasse, T. Gîrba, and O. Nierstrasz. 2010. Domain-Specific Program
Checking. In Proceedings of the 48th International Conference Objects, Models,

Components, Patterns (Málaga, Spain) (TOOLS’ 10), J. Vitek (Ed.). Springer, Berlin,
Heidelberg, 213–232.

[43] R. Rolim, G. Soares, L. D’Antoni, O. Polozov, S. Gulwani, R. Gheyi, R. Suzuki, and B.
Hartmann. 2017. Learning Syntactic Program Transformations from Examples. In
Proceedings of the 39th International Conference on Software Engineering (Buenos
Aires, Argentina) (ICSE ’17). IEEE, Piscataway, NJ, USA, 404–415.

[44] G. Sakkas, M. Endres, B. Cosman, W. Weimer, and R. Jhala. 2020. Type Error
Feedback via Analytic Program Repair. In Proceedings of the 41st Conference on

Programming Language Design and Implementation (London, UK) (PLDI 2020).
ACM, New York, NY, USA, 16–30.

[45] Danilo Silva, Nikolaos Tsantalis, and Marco Tulio Valente. 2016. Why We Refac-
tor? Confessions of GitHub Contributors. In Proceedings of the 24th International

Symposium on Foundations of Software Engineering (Seattle, WA, USA) (FSE 2016).
Association for Computing Machinery, New York, NY, USA, 858–870.

[46] Victor Sobreira, Thomas Durieux, Fernanda Madeiral, Martin Monperrus, and
Marcelo A. Maia. 2018. Dissection of a Bug Dataset: Anatomy of 395 Patches from
Defects4J. In Proceedings of the 25th International Conference on Software Analysis,

Evolution and Reengineering (SANER ’18). IEEE, Piscataway, USA, 130–140.
[47] Y. Ueda, T. Ishio, A. Ihara, and K. Matsumoto. 2020. DevReplay: Automatic Repair

with Editable Fix Pattern. ArXiv: Software Engineering 1, 1 (2020), 1–15.
[48] Louis Wasserman. 2013. Scalable, Example-based Refactorings with Refaster. In

Proceedings of the 6th Workshop on Refactoring Tools (Indianapolis, USA) (WRT

’13). ACM, New York, NY, USA, 25–28.
[49] Pengcheng Yin, Graham Neubig, Miltiadis Allamanis, Marc Brockschmidt, and

Alexander L. Gaunt. 2019. Learning to Represent Edits. arXiv: Software Engineer-
ing 1, 1 (2019), 1–22.

https://dzone.com/articles/fileinputstream-fileoutputstream-considered-harmful
https://dzone.com/articles/fileinputstream-fileoutputstream-considered-harmful
https://docs.oracle.com/javase/9/docs/api/java/lang/Float.html
https://docs.oracle.com/javase/9/docs/api/java/lang/Float.html
https://bugs.openjdk.java.net/browse/JDK-8187325
https://bugs.openjdk.java.net/browse/JDK-8187325
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentSkipListSet.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentSkipListSet.html
https://docs.oracle.com/javase/tutorial/java/generics/rawTypes.html
https://docs.oracle.com/javase/tutorial/java/generics/rawTypes.html
https://docs.oracle.com/javase/8/docs/api/java/lang/StringBuilder.html
https://docs.oracle.com/javase/8/docs/api/java/lang/StringBuilder.html
https://docs.oracle.com/javase/7/docs/technotes/guides/language/type-inference-generic-instance-creation.html
https://docs.oracle.com/javase/7/docs/technotes/guides/language/type-inference-generic-instance-creation.html
http://www.javapractices.com/topic/TopicAction.do?Id=23
http://www.javapractices.com/topic/TopicAction.do?Id=23

	Abstract
	1 Introduction
	2 Revisar
	2.1 Extracting concrete AST edits
	2.2 Clustering concrete edits
	2.3 Learning edit patterns

	3 Methodology
	3.1 Research Questions
	3.2 Evaluation Methodology for Revisar
	3.3 Developer Survey
	3.4 Pull Request Validation

	4 Results
	4.1 How effective is Revisar in identifying quick fixes?
	4.2 Do developers prefer Revisar quick fixes?
	4.3 Do developers adopt Revisar quick fixes?

	5 Limitations
	6 Discussion
	7 Related Work
	8 Conclusion
	References

