
Privacy-Preserving Protocols for of Edit Distance and
Other Dynamic Programming Algorithms

Anonymous submission

Abstract

The edit distance between two strings is the minimum number of delete, insert, and replace operations
needed to convert one string into another. Computational biology tasks such as comparing genome
sequences of two individuals rely heavily on the dynamic programming algorithm for computing edit
distances as well as the algorithms for related string-alignment problems. A genome sequence may
reveal a lot of sensitive information about an individual. Therefore, it is important to develop methods
for analyzing and comparing such sequences that are both cryptographically secure and efficient for
practical use.

We present several protocols for securely computing the edit distance between two strings so that
the owner of each string does not learn anything about the other string except the edit distance. Our
protocols are provably secure in the standard multi-party computation paradigm of modern cryptography.
Experimental evaluation of our prototype implementation demonstrates that it can be feasibly applied to
strings of up to several hundred characters in length, whichis sufficient for many practical scenarios.
We also discuss how to generalize our protocol to other problems for which there exist efficient dynamic
programming algorithms.

1 Introduction

The ease of access to information due to the Internet has brought privacy concerns to the forefront [3, 22].
Therefore, there is considerable interest in developing techniques [2, 6, 19] and protocols to address these
privacy concerns. Specifically, privacy-preserving protocols [4, 5, 12, 14] that allow multiple parties to
perform computations without revealing their private inputs have been the subject of much interest.

One of the fundamental cryptographic primitives for designing privacy-preserving protocols issecure
function evaluation (SFE). A protocol for SFE enables two partiesA andB with respective inputsx and
y to jointly compute a functionf(x, y) while preserving the privacy of their respective inputs,i.e., A does
not learn anything from the protocol execution beyond what is revealed by her own inputx and the result
f(x, y); a similar condition holds forB.

One of the seminal results in secure multi-party computation, due to Yao [23] and Goldreich, Micali, and
Wigderson [9], is that for any efficiently computable (i.e., probabilistic polynomial-time) functionf , there
exists an efficient protocol for securely evaluatingf . Details of this result can be found in standard textbooks
on secure multi-party computation [8, chapter 7]. Generic constructions, however, are not always practical.
Therefore, there has been much interest in developing special-purpose constructions for specific problems
such as privacy-preserving auctions, surveys, and so on [4,5, 12, 14]. In this paper, we consider the problem
of privately computing edit distances between two strings.The algorithm for computing edit distance and
its variants are widely used in several areas, such as computational biology. We also demonstrate how the
key ideas in our privacy-preserving protocol for computingedit distances are applicable to other dynamic
programming algorithms.

1

Theedit distancebetween two stringsα andβ (denoted byδ(α, β)) is the minimum number ofdelete,
insert, andreplace operations needed to convertα into β. We consider private computation of edit distance,
i.e., user Alice hasα, user Bob hasβ, and they want to jointly computeδ(α, β) without revealing their
individual strings, and present three protocols for solving this problem. Our first protocol is a straightforward
implementation of standard protocols for secure circuit evaluation. The key novel idea behind the other
two protocols is to randomly split the table of values maintained by the dynamic programming algorithm
between the two parties. Protocol 3 also exploits the structure of the table of values used by the algorithm
for computing edit distance. Many other problems can be efficiently solved by dynamic programming
algorithms [1, Chapter 15]. We discuss how the key ideas behind our protocols can be used to construct
efficient privacy-preserving protocols for these problems.

Edit distance computation and related string alignment problems are the basic tasks in many computa-
tional biology algorithms (e.g., see [11, Chapter 11]). Therefore, a privacy-preserving edit distance protocol
can serve as a fundamental building block in many applications that are legally required to preserve privacy
of individual genome sequences. We evaluate a prototype implementation of our protocols, and demonstrate
that they can be feasibly applied to problems of realistic size.

To summarize, this paper makes the following contributions:

• We address the problem of securely computing edit distance between two strings. We present three
protocols in Section 3. Section 4 also discusses how our protocols can be adapted to construct privacy-
preserving protocols for problems that can be efficiently solved using dynamic programming.

• We have implemented all three protocols and present our evaluation in Section 6. Our experimental
results demonstrate that, using one of our protocols, it is feasible to securely compute edit distances of
strings of length up to a few hundred. Since genome sequencesare only a few hundred base pairs long,
our protocol can be applied to genome sequence comparison and related computational problems in
molecular biology.

Related work: The literature on privacy-preserving protocols is vast. Toour knowledge, however, this is
the first paper that investigates the problem of privately computing edit distances between two strings. In a
related paper, Szajdaet al. [21] consider distributed computation of the Smith-Waterman genome compari-
son algorithm [20]. Szajdaet al. decompose the problem into several sub-problems, which aredistributed
to several participants. The intuition is that each participant solves a sub-problem and thus cannot infer
the inputs for the original problem. However, Szajdaet al. did not provide a formal proof of privacy of
their protocol. In this paper, we give aprovably secureprotocol for privacy-preserving edit distance com-
putation, with cryptographic security guarantees. Moreover, our protocol can be adapted to other dynamic
programming algorithms.

2 Edit Distance between Two Strings

Let α andβ be two strings over an alphabetΣ. Let the lengths of the two stringsα andβ (denoted by| α |
and| β |) ben andm, respectively. The edit-distance between the two stringsα andβ (denoted byδ(α, β))
is the minimum number of edit operations (delete, insert, andreplace) needed to transformα into β. We
will describe a dynamic programming algorithm to computeδ(α, β), which executes in timeO(nm). The
description of the algorithm for computing edit-distance is based on the discussion in [11].

2

• ComputeD(i, 0) andD(0, j) for 1 ≤ i ≤ n and1 ≤ j ≤ m using equation 1.

• ComputeD(i, j) for 1 ≤ i ≤ n and1 ≤ j ≤ m in row major order using equation 3. In other words,
we first compute all entries for row1, then row2, and so on.

• The edit distanceδ(α, β) is equal toD(n,m).

Figure 1: Algorithm for computing edit distance.

Given a stringα, let α[1 · · · i] denote the firsti characters ofα. The dynamic programming algorithm
maintains a(n+1)×(m+1) matrixD(0 · · · n, 0 · · ·m), whereD(i, j) is the edit distance betweenα[1 · · · i]
andβ[1 · · · j].

For the base case, we have the following:

D(i, 0) = i , 0 ≤ i ≤ n (1)

D(0, j) = j , 0 ≤ j ≤ m (2)

Next we describe a recursive relationship between the valueD(i, j) and the entries ofD with indices smaller
thani andj. The(i, j)-th entryD(i, j) of the matrix is computed as follows:

D(i, j) = min[D(i − 1, j) + 1,D(i, j − 1) + 1,D(i − 1, j − 1) + t(i, j)] (3)

wheret(i, j) is defined to have value1 if α(i) 6= β(j), and has value0 if α(i) = β(j). Thei-th character of
a stringα is denoted byα(i). The entire algorithm for computing edit distance is shown in Figure 1.

3 Privacy-Preserving Edit Distance Computation

Alice A has the stringα and BobB has the stringβ, with | α |= n and| β |= m. A andB want to jointly
compute the edit distanceδ(α, β) between the two strings without revealing the strings.

3.1 Cryptographic toolkit

In our protocols below, we will employ several standard cryptographic techniques.

Oblivious transfer. The first technique isoblivious transfer, originally proposed by Rabin [18]. Informally,
a 1-out-of-n oblivious transfer (we will denote it asOT n

1) is a protocol between two parties, the Chooser
and the Sender. The Sender’s inputs into the protocol aren valuesv1, . . . , vn. The Chooser’s input is an
indexi such that1 ≤ i ≤ n. As a result of the protocol, the Chooser receivesvi, but does not learn anything
about the rest of the Sender’s values. The Sender learns nothing. Our protocols do not depend on a particular
implementation of oblivious transfer; therefore, we simply assume that we have access to a cryptographic
primitive implementingOT n

1 . In our implementations, we rely on Fairplay [15] and Naor-Pinkas oblivious
transfer construction [16].

Secure circuit evaluation.We will also employ two standard methods for secure circuit evaluation: Yao’s
“garbled circuits” method and secure computation with shares. Consider any (arithmetic or Boolean) circuit
C, and two parties, Alice and Bob, who wish to evaluateC on their respective inputsx andy. In Yao’s

3

“garbled circuits” method, originally proposed in [23], Alice securely transforms the circuit so that Bob
can evaluate it obliviously,i.e., without learning Alice’s inputs into the circuit or the values on any internal
circuit wire except the output wires.

Alice does this by generating two random keys for each circuit wire, one representing0 on that wire,
the other representing1. The keys encoding Alice’s own inputs into the circuit she simply sends to Bob.
The keys encoding Bob’s inputs are transferred to Bob via theOT 2

1 protocol. For each of Bob’s input wires,
where Bob acts as the chooser using his circuit input bit as his input intoOT 2

1 , and Alice acts as the sender
with the two wire keys for that wire as her inputs intoOT 2

1 . Alice produces the “garbled” truth table for
each circuit gate in such a way that Bob, if he knows the wire keys encoding the values on the gate input
wires, can decrypt exactly one row of the garbled truth tableand obtain the key encoding the value of the
output wire. Yao’s protocol maintains the invariant that for every circuit wire, Bob learnsexactly onewire
key.

Because wire keys are random and the mapping from wire keys tovalues is not known to Bob (except
for the wire keys corresponding to his own inputs), this doesnot leak any information about actual wire
values. The circuit can thus be evaluated “obliviously.” Tosave space, we omit the details. A complete
description of Yao’s method and security proofs can be foundin [13].

The second standard method issecure computation with shares(SCWS). Details of this method can be
found in [8, Chapter 7]. This protocol maintains the invariant that, for every circuit wirew, Alice learns a
random values and Bob learnsbw − s, wherebw is the bit value of the wire. Therefore, Alice’s and Bob’s
shares add up tobw, but because the shares are random, neither party knows the actual wire value. For each
output wire of the circuit, Alice and Bob combine their shares to reconstruct the circuit output. Either Yao’s
“garbled circuits” method, or SCWS can be used to securely and privately evaluate any circuitC.

Additively homomorphic encryption. Let (G,E,D,M) be a public-key encryption scheme, whereG is
the key generation function,E andD are the encryption and decryption functions, andM is the message
space respectively. We will assume that:

• The encryption scheme issemantically secure[10]. Informally, this means that the ciphertext leaks
no useful information about the plaintext even after the adversary has previously observed many
plaintext-ciphertext pairs on plaintexts of his choice.

• There exists a computational functiong such that for allm ∈ M andα ∈ M , m1 ∈ E(m) implies that
g(m1, α) ∈ E(mα). With any semantically secure encryption scheme, encrypting the same message
twice will yield different ciphertexts, soE(m) denotes the set of ciphertexts that can be obtained by
encryptingm. 1

• There exists a computable functionf such that for all messagesm1 andm2, the following property
holds:

f(E(m1), E(m2)) = E(m1 + m2)

There are several encryption scheme that satisfy these properties, of which Paillier’s encryption scheme
is perhaps the most famous [17]. Since we will use the encryption scheme as a black-box cryptographic
primitive, we omit the details of the scheme.

We present three protocols. Protocol 1 is the most straight forward and uses the standard method for
secure circuit evaluation. However, protocol 1 generates very large circuits. Protocol 2 uses homomorphic

1Of course, to successfully decrypt two different messagesm andm
′, setsE(m) andE(m′) should be disjoint.

4

Number of rounds Circuits generated by the protocol
Protocol 1 Uses1 round Circuit for problem of size(n,m)

Protocol 2 Usesnm rounds Uses circuit for “minimum-of-three”
Protocol 3 Uses approximatelynm

k2 rounds Circuit for problem of size(k, k)

Figure 2: Characteristics of various protocols for problemof size(n,m).

encryption in combination with the SWCS protocol. Protocol2 generates very simple circuits, but uses
multiple rounds. Protocol 3 exploits the structure of the problem, i.e., divides the matrixD into a grid of
sizek and only computes values on the grid. Figure 2 shows the characteristics for the various protocols for
problem of size(n,m), i.e., the two strings are of sizen andm.

3.2 Protocol 1

Recall that the edit-distance algorithm maintains a(n + 1) × (m + 1) matrix D(0 · · · n, 0 · · ·m), where
D(i, j) is the edit distance betweenα[1 · · · i] andβ[1 · · · j]. Let α andβ be two strings over an alphabet.
Note thatα andβ can be expressed as bit stringsbit(α) andbit(β) of lengthqn andqm, whereq is equal
to ⌈log2(| Σ |)⌉.

The base case and recursive equation for computingD(i, j) were given in equation 1. LetCD(i,j) be the
circuit for computingD(i, j) with inputs corresponding to bit representation ofα[1, · · · , i] andβ[1, · · · , j].
Assume that we have computedCD(i−i,j), CD(i,j−1), andCD(i−1,j−1). Using the recursive equation given
above one can compute the circuitCD(i,j). The circuitCD(i,j) computesD(i, j) by combining (i) the equal-
ity testing circuit fort(i, j), (ii) three “add-1” circuits, and (iii) two “select-smaller-value” circuits. The
inputs to the circuitCD(i,j) are bit representations ofα[1, · · · , i], β[1, · · · , j] and the outputs of circuits
CD(i,j−1), CD(i−1,j), and,CD(i−1,j−1). Once we have the circuit representationCD(n,m) for the edit dis-
tance problem, we can computeCD(n,m)(α, β) in a privacy-preserving manner using standard algorithms
for secure circuit evaluation (see section 3.1).

3.3 Protocol 2

This protocol will rely on secure circuit evaluation with random shares (SCWS). Alice and Bob will each
maintain a(n + 1) × (m + 1) matrix DA andDB , respectively. The protocol will maintain the invariant
that every value in the matrixD is randomly shared between Alice and Bob, that is, for all0 ≤ i ≤ n and
0 ≤ j ≤ m we have that

D(i, j) = DA(i, j) + DB(i, j)

Before the protocol starts, Alice picks an instance of the additively homomorphic encryption scheme
(G,E,D,M), and generates public and private keys usingG. We assume that Bob has Alice’s authentic
public key.

Alice fills in DA(i, 0) andDA(0, j) with random values and sends it to Bob. Bob fillsDB(i, 0) with
i − DA(i, 0) andDB(0, j) with j − DA(0, j).2

2Each random value must be at least 80 bits longer than any value which might appear in a matrix cell,i.e., at leastlog(n+m)+
80 bits long. This ensures that adding this random value to the actual value statistically hides the latter. (With modular arithmetic
over a small group, the random shares would have been shorterand perfectly, rather than statistically, hiding, but in this protocol
we will be adding random values homomorphically under encryption, and the homomorphic encryption schemes in question do not
allow modular arithmetic with short moduli on plaintexts.)In the rest of this protocol, all arithmetic is over integers.

5

Recall that the recursive equation for computingD(i, j) was

D(i, j) = min[D(i − 1, j) + 1,D(i, j − 1) + 1,D(i − 1, j − 1) + t(i, j)]

wheret(i, j) is defined to have value1 if α(i) 6= β(j), and has value0 if α(i) = β(j). Thei-th character
of a stringα is denoted byα(i). Let x(i, j) = D(i − 1, j) + 1, y(i, j) = D(i, j − 1) + 1 andz(i, j) =
D(i− 1, j − 1)+ t(i, j) be the three terms appearing in recursive equation shown above. Assume that Alice
and Bob have computed random shares forD(i − 1, j) andD(i, j − 1) andD(i − 1, j − 1). Next we will
show how to compute random shares for three termsx(i, j), y(i, j) andz(i, j) involved in the recursive
equation.

• Computing random shares ofx(i, j):
The random sharexA(i, j) of A for the termx(i, j) is DA(i − 1, j). The random sharexA(i, j) of B

for the termx(i, j) is DB(i − 1, j) + 1.

• Computing random shares ofy(i, j):
The random shareyA(i, j) of A for the termy(i, j) is DA(i, j − 1). The random shareyA(i, j) of B

for the termy(i, j) is DB(i, j − 1) + 1.

• Computing random shares ofz(i, j):
Computing the random shareszA(i, j) andzB(i, j) of the termz(i, j) is tricky. For this computation,
we will rely on additive homomorphism of the encryption scheme. Alice encryptsDA(i − 1, j − 1)
and sendseA = E(DA(i − 1), j − 1)) to Bob. Bob encryptseB = E(DB(i − 1, j − 1)) and
computesf(eA, eB). Recall thatf is a computable function such thatf(E(m1), E(m2)) is equal
to E(m1 + m2). Notice that because of the homomorphic property of the encryption we have the
following:

f(eA, eB) = E(DA(i − 1, j − 1) + DB(i − 1, j − 1))

= E(D(i − 1, j − 1))

Bob also generates an(log(n + m) + 80)-bit long random numberr, and computesE(1 − r) and
E(−r). Computingf(f(eA, eB), E(1 − r)), Bob obtainsE(D(i − 1, j − 1) + 1 − r). Similarly, by
computingf(f(eA, eB), E(−r)), Bob obtainsE(D(i − 1, j − 1) − r).

Recall that the strings are over an alphabetΣ = {1, · · · , w}. Bob createsw messages(m1, · · · ,mw)
as follows:

mk =

{

E(D(i − 1, j − 1) + 1 − r) if k 6= β(j)
E(D(i − 1, j − 1) − r) if k = β(j)

Bob’s random sharezB(i, j) for termz(i, j) is r.

Alice and Bob execute a1-out-of-w oblivious transferOTw
1 protocol (see section 3.1) with Bob acting

as the sender on inputs(m1, · · · ,mw) and Alice acting as the chooser on inputα(i). As a result of
theOTw

1 protocol, Alice obtains the messagemα(i). Observe that ifα(i) = β(j), then Alice obtains
E(D(i − 1, j − 1) − r); otherwise, Alice obtainsE(D(i − 1, j − 1) + 1 − r). Alice decryptsmαi

,
and sets the plaintext as her sharezA(i, j) of termz(i, j).

• Computing random shares ofD(i, j):
Now Alice and Bob execute the standard protocol for secure computation with shares (see sec-
tion 3.1) to compute random shares of min[x(i, j), y(i, j), z(i, j)]. The circuit in question is a simple
“minimum-of-three” circuit implementing min[a, b, c] of three valuesa, b, c.

6

After the last iteration, Alice sends to Bob her random shareDA(n,m) and Bob sends Alice his random
shareDB(n,m). This enables both Alice and Bob to reconstruct the edit distance asDA(n,m)+DB(n,m).

Optimization. The above protocol requires an1-out-of-w oblivious transfer in each iteration, which is
expensive in terms of both computation and communications.Even using amortization techniques of [16],
the entire protocol will requirew + nm modular exponentiations, and(w − 1)nm modular multiplications.

We now describe an optimized version of the protocol which only requiresq instances of1-out-of-2
oblivious transfers in each iteration, whereq = ⌈log2 w⌉.

1. Bob computesE(D(i−1, j−1)+1−r) andE(D(i−1, j−1)−r) as before. He also generates two
random keysk0 andk1, and sendsEk0(E(D(i− 1, j − 1)+1− r)) andEk1(E(D(i− 1, j − 1)− r))
to Alice in random order,i.e., he usesk0 to encrypt one of the ciphertexts andk1 to encrypt the other,
and shuffles the doubly encrypted ciphertexts randomly.

2. Bob creates the standard Yao garbled circuit (see section3.1) for testing equality ofα(i) andβ(j),
usingk0 as the wire key encoding0 on the output wire, andk1 as the wire key encoding1 on the
output wire.

3. Bob sends the encrypted circuit to Alice, and they executethe standard Yao protocol. Transferring the
encoding of Alice’s input from Bob to Alice only requiresq instances of1-out-of-2 oblivious transfer,
because the bit representation ofα(i) is q bits long (recall thatq = ⌈log2 w⌉).

4. Alice evaluates the garbled circuit, obtaining eitherk0, ork1 - she does not know which. She uses this
key to decrypt exactly one of the two ciphertexts sent by Bob,and obtains eitherE(D(i− 1, j − 1) +
1 − r) or E(D(i − 1, j − 1) − r). She decrypts the inner ciphertext with her private key, andsets the
resulting plaintext to be her random sharezA(i, j).

3.4 Protocol 3

Protocol 1 requiresnq executions ofOT 2
1 , whereq = ⌈log2(| Σ |)⌉, but has to compute a large circuit

CD(n,m). Protocol 2 requiresnmq executions ofOT 2
1 , but only has to compute much smaller circuits for

equality testing and returning the minimum of three values.Because oblivious transfers are likely to be
the computation and communication bottleneck in practice,Protocol 1 is time efficient, Protocol 2 is space
efficient.

In this section, we present a hybrid of protocols 1 and 2. In this protocol, we only compute the values
D(i, j) in the matrixD that lie on a grid.

Recall that the algorithm to compute the edit distance maintains a(n + 1) × (m + 1) matrix D. Let k
be a number that divides bothn andm, i.e., k | n andk | m.3 The following set of values constitute a grid
of granularityk.

{D(i, j) | 0 ≤ i ≤ n andj ∈ {0, k, 2k, · · · , m
k
k}}

{D(i, j) | i ∈ {0, k, 2k, · · · , n
k
k} and0 ≤ j ≤ m}

Given an elementD(i, j), therectangleof lengthl and widthw with D(i, j) at the top right corner (denoted

3Our protocol can be easily extended to remove the assumptionthatk divides bothn andm.

7

A

BC

D

X

YZ

W

Figure 3: Example grid.

by rect(D(i, j), l, w)) is the union of the following four sets of points:

{D(i, j − l),D(i, j − l + 1), · · · ,D(i, j − 1),D(i, j)} = top(D(i, j), l, w)
{D(i − w, j − l),D(i − w, j − l + 1), · · · ,D(i − w, j − 1),D(i − w, j)} = bottom(D(i, j), l, w)
{D(i − w, j),D(i − w + 1, j), · · · ,D(i − 1, j),D(i, j)} = right(D(i, j), l, w)
{D(i − w, j − l),D(i − w + 1, j − l), · · · ,D(i − 1, j − l),D(i, j − l)} = left(D(i, j), l, w)

The above four sets of points correspond to the top, bottom, right, and left sides of the rectanglerect(D(i, j), l, w).
Therefore, we denote these set of points astop(D(i, j), l, w), bottom(D(i, j), l, w), right(D(i, j), l, w),
andleft(D(i, j), l, w), respectively. We have the following lemma:

Lemma 1 D(i, j), can be expressed as a function ofbottom(D(i, j), l, w), left(D(i, j), l, w), α[i − l +
1 · · · i], andβ[j − w + 1 · · · j].

Proof sketch: The proof is by simultaneous induction onl andw. For l = 1 andw = 1 the results follows
using the following recursive relationship:

D(i, j) = min[D(i − 1, j) + 1,D(i, j − 1) + 1,D(i − 1, j − 1) + t(i, j)]

The induction step is tedious but simple. The induction stepcan also be used to obtain the function referred
to in the statement of the lemma.2

Protocol 3 is described in Figure 4 and proceeds in two steps.In the first step, we compute random
shares of all values of the typeD(i, 0) andD(0, j) that correspond to the base case. In the second step, we
compute all other values on the grid using the recurrence implicit in the proof of Lemma 1.

Consider the grid shown in Figure 3. First, the random sharesof the values that correspond to left and
bottom edge of the grid are computed. Now let us say we want to compute the random shares of the value
corresponding to pointA. Using lemma 1, the value corresponding to pointA can be expressed as a function
of values corresponding to sidesCB andDC, α[CB], andβ[DC] (we are abusing the notation slightly by
usingCB to denote all indices that lie on the segmentCB).

8

• Compute the random shares for the initial values:
Compute the random shares for the following values:

D(i, 0) = i , 0 ≤ i ≤ n

D(0, j) = j , 0 ≤ j ≤ m

• Compute the random shares for values on the grid:
We compute the random shares for all values on the grid in the row-major order. Consider a valueD(i, j)
on the grid and the rectanglerect(D(i, j,), l, w) with l = i − k⌊ i−1

k
⌋ andw = i − k⌊ i−1

k
⌋. The reader

can check that all values in the gridrect(D(i, j,), l, w) lie on the grid of granularityk. Let CD(i,j) be the
circuit for computingD(i, j) in terms of inputsbottom(D(i, j), l, w), left(D(i, j), l, w), α[i − l + 1 · · · i],
andβ[j − w + 1 · · · j]. Note that circuitCD(i,j) can be constructed by essentially mimicking the proof
of lemma 1. Recall that we also have random shares for the values in the setbottom(D(i, j), l, w) and
left(D(i, j), l, w). Now using the protocol for secure computation with shares we can compute the random
shares forD(i, j)

Figure 4: Protocol 3.

4 Extensions

We describe how our protocol can be extended to yield a privacy-preserving version of the Smith-Waterman
genome sequence algorithm [20]. We also describe how our protocol suggests a strategy for constructing
privacy-preserving protocols for problems for which efficient dynamic-programming algorithms exist.

4.1 The Smith-Waterman Algorithm

We first describe the genome sequence comparison algorithm by Smith and Waterman [20]. We then discuss
how our protocols for privately computing edit distances can be adapted for the Smith-Waterman algorithm.
As before, letα andβ be two strings over the alphabetΣ. The Smith-Waterman algorithm uses two function:
a cost functionc and a gap functiong. The cost functionc : Σ × Σ → ℜ associates a costc(u, v) with each
pair (u, v). Typically, c(u, v) has the following form:

c(u, v) =

{

a if u = v

−b if u 6= v

If a symbol is deleted or inserted, a special symbol− is inserted. For example, if the fourth symbol is
deleted from CTGTTA it is written as CTG−TA. A sequence of− is called agap. Gaps are scored using a
gap functiong, which typically has anaffineform:

g(k) = x + y(k − 1)

In the equation given abovek is the size of the gap (number of consecutive− in a sequence) andx > 0 and
y > 0 are two constants.

DefineH(i, j) as the following equation:

max{0,∆(α[x · · · i], β[y · · · j]) for 1 ≤ x ≤ i and1 ≤ y ≤ j}

9

Recall thatα[x · · · i] is represents the stringα[x]α[x + 1] · · ·α[i]. The distance between stringsα[x · · · i]
andβ[y · · · j] according the cost functionc and gap functiong is denoted by∆(α[x · · · i], β[y · · · j]). The
Smith-Watermandistance between the two stringsα and β (denoted byδSW (α, β)) is simply H(n,m),
wheren andm are lengths of the two stringsα andβ. ValuesH(i, 0) andH(0, j) are defined to be zero for
0 ≤ i ≤ n and0 ≤ j ≤ m. For1 ≤ i ≤ n and1 ≤ j ≤ m, H(i, j) is defined using the following recursive
equation:

H(i, j) = max

[

0, max
1≤o≤i

{H(i − o, j) − g(o)},

max
1≤l≤j

{H(i, j − l) − g(l)},H(i − 1, j − 1) + c(α[i], β[j])

]

Next we discuss how the three privacy-preserving protocolsfor computing the edit distance between
two strings can be adapted for computing the Smith-Watermandistance. Protocol1 can be easily adapted
for computing the Smith-Waterman distance. As before we compute a circuitCH(i,j) for computingH(i, j)
using the recursive equation. Protocol3 can also be easily adapted for computing the Smith-Waterman
distance. The key observation is that ifH(i, j) lies on the grid then the values used in the recursive equation

{H(i − o, j) | 1 ≤ o ≤ i}
{H(i, j − l) | 1 ≤ l ≤ j}

also lie on the grid. Protocol2 uses homomorphic encryption in conjunction with SWCS and thus requires
some substantial changes As before, Alice and Bob will each maintain a(n + 1)× (m + 1) matrixHA and
HB, respectively, with the following invariant:

H(i, j) = HA(i, j) + HB(i, j)

Let x(i, j), y(i, j) andz(i, j) be the last three terms in the recursive equation forH(i, j). It is pretty clear
how to split the first term (which is0) in the equation. The random shares forx(i, j) andy(i, j) can be
computed using the SWCS protocol and a circuit formax. Once the random shares forx(i, j), y(i, j), and
z(i, j) are computed, the random shares forH(i, j) can be computed using the “maximum-of-four” circuit
and the SWCS protocol. We will next focus on computing the random shares ofz(i, j). For this computation,
we will rely on additive homomorphism of the encryption scheme. Alice encryptsHA(i − 1, j − 1) and
sendseA = E(HA(i−1, j −1)) to Bob. Bob encryptseB = E(HB(i−1, j −1)) and computesf(eA, eB).
Notice that because of the homomorphic property of the encryption we have the following:

f(eA, eB) = E(HA(i − 1, j − 1) + HB(i − 1, j − 1))

= E(H(i − 1, j − 1))

Bob also generates an(log(n+m)+80)-bit long random numberr, and computesE(−r). Since the strings
are over an alphabetΣ = {1, · · · , w}, Bob createsw messages(m1, · · · ,mw), wheremk is the following
message

E(H(i − 1, j − 1) + c(k, β(j)) − r) .

Bob’s random sharezB(i, j) for term z(i, j) is r. The reader can check that all the messagesmi can be
computed using the homomorphic property of the encryption scheme.

Alice and Bob execute a1-out-of-w oblivious transferOTw
1 protocol (see section 3.1) with Bob acting

as the sender on inputs(m1, · · · ,mw) and Alice acting as the chooser on inputα(i). As a result of theOTw
1

protocol, Alice obtains the messagemα(i). Observe that Alice obtainsE(H(i−1, j−1)+c(α(i), β(j))−r),
and sets the plaintext as her sharezA(i, j) of termz(i, j). We leave optimization of this protocol as future
work.

10

4.2 Dynamic Programming Algorithms

We claim that our algorithm for privacy-preserving protocol for computing edit distance between two strings
suggests a strategy for designing privacy-preserving protocols for problems that have efficient dynamic-
programming algorithms. LetP(x, y) be a problem with two inputsx and y, e.g., for the problem of
computing edit-distance between two strings the inputsx and y are the strings. Typically, a dynamic-
programming algorithmAP for problemP has the following components:

• A setS of sub-problems and a dependency relationR ⊆ S×S between the sub-problems. Intuitively,
(s, s′) ∈ R means that the sub-problems′ depends on the sub-problems. If there is a dependency
betweens ands′, we write it ass → s′. In the case of the problem of computing edit-distance between
two stringsα andβ of lengthn andm, the set of sub-problems is[0, · · · , n]× [0, · · · ,m]. For all sub-
problems(i, j) such thati 6= 0 andj 6= 0, we have the following dependencies:(i − 1, j) → (i, j),
(i, j − 1) → (i, j), and(i − 1, j − 1) → (i, j). Thebase sub-problemsares ∈ S such that they have
no dependencies. For the edit-distance problem, the base sub-problems are:

{(i, 0) | 0 ≤ i ≤ n}
{(0, j) | 0 ≤ j ≤ m}

We also assume that there is a unique root sub-problemroot ∈ S such that there does not exist
a sub-problem that depends onroot . For the edit-distance problem the unique root sub-problemis
(n,m).

• Each sub-problems is assigned a valueval(s). The goal is to computeval(root). The functionval
from S to ℜ assigns values to sub-problems, such that it satisfies the following properties:

– For all the base sub-problemss ∈ S, val(s) is defined.

– Let s ∈ S be a non-base sub-problem. Definepred(s) as all the predecessors ofs, i.e. the set
pred(s) is defined as{s′ | s′ → s}. Assume thatpred(s) is equal to{s1, · · · , sk}. There is
a recursive functionf definingval(s) in terms ofval(s1), val(s2), · · · , val(sk), s(x), ands(y),
wheres(x) ands(y) are parts of the inputx andy that are relevant to the sub-problems. In case
of the edit-distance problemval((i, j)) is equal toD(i, j). The value for the base and non-base
sub problems for the edit-distance problems was defined in equations 1 and 3 in Section 2.

Consider a problemP(x, y) with two inputsx andy. Assume that problemP has a dynamic-programming
algorithmAP with the space of sub-problemsS. We describe of how we can design a privacy-preserving
protocols forP(x, y), where Alice has inputx and Bob has inputy.
Protocol 1: Recall thatval : S → ℜ assigns a value to each sub-problem. Lets be a sub-problem andCs

be the circuit with inputss(x) ands(y) that computesval(s). The circuitCs can be constructed using the
recursive equationf for defining the value of non-base sub-problems and the circuits for sub-problemss′

that are predecessors ofs. Assume that we have constructed a circuitCroot for the root sub-problem. Using
the circuitCroot and standard protocols we can privately compute theval(root).
Protocol 2: In this protocol we randomly splitval(s) for all sub-problems. We denote the two shares of
val(s) by valA(s) andvalB(s). Assume that we have randomly splitval(s) for all base sub-problemss.
Consider a sub-problems such thatpred(s) = {s1, · · · , sk}. Assume that we have computed random
sharesvalA(si) andvalB(si) for val(si) (where1 ≤ i ≤ k). Recall that we have the following recursive
equation describingval(s):

val(s) = f(val(s1), · · · , val(sk), s(x), s(y))

11

Since we have computed the random shares forval(si) (1 ≤ i ≤ k), we can compute the random shares of
val(s). At the end of the protocol,valA(root) + valB(root) gives the desired result.
Protocol 3: Recall that protocol 3 was a hybrid between protocol 1 and 2. However, protocol 3 heavily
depends on the structure of the spaceS of sub-problems. For example, for the edit-distance problem,
protocol 3 heavily used the matrix structure of space of sub-problems.

5 Security Proofs

Our protocols are secure in the so calledsemi-honestmodel of secure computation,i.e., under the assumption
that both participants faithfully follow the protocol specification. To achieve security in themaliciousmodel,
where participants may deviate arbitrarily from protocol specification, participants would need to commit
to their respective inputs prior to protocol start and then prove in zero knowledge that they follow protocol
specification. There exist generic techniques for “compiling” any protocol which is secure in the semi-honest
model into one that is secure in the malicious model [8, section 7.4].

In our case, it is not clear whether security in the maliciousmodel offers significant advantages over
security in the semi-honest model. For example, there is no external validation of the parties’ inputs. Even
if the protocol forces the party to run the protocol on previously committed inputs (which requires zero-
knowledge proofs and imposes a heavy overhead), this does not guarantee that the input was not maliciously
chosen in the first place

Security of Protocols 1 and 3 follows directly from (i) security of subprotocols performed using standard
methods for secure multi-party computation, and (ii) composition theorem for the semi-honest model [8,
Theorem 7.3.3]. Proofs are standard and omitted for brevity.

Security of Protocol 2 is proved via a standard simulation proof in the semi-honest model. For each
protocol participant, we demonstrate the existence of an efficient simulator algorithm which, with access to
this participant’s input and output, produces a simulationwhich is computationally indistinguishable from
this participants’s “view” of the protocol (informally, a “view” is a record of sent and received messages).

We give the proof for the unoptimized version of Protocol 2. The proof for the optimized version is
essentially similar; the only substantial difference is that there are additional sub-simulators for simulating
the parties’ respective views of Yao’s “garbled circuits” protocol for testing equality of two values.

Let viewA(α) (respectively,viewB(β)) be Alice’s (respectively, Bob’s) view of the protocol whenex-
ecuted on input stringα (respectively,β). Each party’s view consists of its respective input as wellas all
messages received by this party in the course of the protocol. The output of the protocol is the edit distance
δ(α, β). Because edit distance is a deterministic function of the parties’ inputs, to prove security of the
protocol it is sufficient to construct simulatorsSA andSB such that

{SA(α, δ(α, β))}
c
≡ {viewA(α)}

{SB(β, δ(α, β))}
c
≡ {viewB(β)}

Here
c
≡ stands for computational indistinguishability [7].

Our simulator will exploit semantic security of Alice’s homomorphic public-key encryption scheme,
defined by(G,E,D,M). As building blocks, it will also use the simulators for, respectively, theOTw

1

oblivious transfer and the secure protocol for computing the minimum of three values. Because the oblivious
transfer protocol is assumed to be secure, there exist simulatorsSot

A , Sot

B such that:

{Sot

A (i, xi)}
c
≡ {viewot

A (i)}

{Sot

B (x0, . . . , xw,⊥)}
c
≡ {viewot

B (x0, . . . , xw)}

12

wherex0, . . . , xw are Bob’s inputs into theOTw
1 protocol,i is Alice’s choice (0 ≤ i ≤ w), ⊥ is “empty”

output (it denotes that Bob does not receive any output from the protocol), andviewot

A and view
ot

B are,
respectively, Alice’s and Bob’s views of theOTw

1 protocol.
Similarly, security of the protocol for computing the minimum of three values implies that there exist

simulatorsSmin

A , Smin

B such that:

{Smin

A (rA
x , rA

y , rA
z ,min(x, y, z))}

c
≡ {viewmin

A (rA
x , rA

y , rA
z)}

{Smin

B (rB
x , rB

y , rB
z ,min(x, y, z))}

c
≡ {viewmin

B (rB
x , rB

y , rB
z)}

whererA
x , rA

y , rA
z (respectively,rB

x , rB
y , rB

z) are Alice’s (respectively, Bob’s) random shares ofx, y, z.

Simulating Alice’s view. Because Protocol 2 consists of(n+1)×(m+1) iterations, one for each value of

the(i, j) pair, Alice’sviewA of Protocol 2 is a composition of Alice’s views of individualiterationsview(i,j)
A .

We give the simulator forview(i,j)
A for all values of(i, j) such that0 ≤ i ≤ n, 0 ≤ j ≤ m. Recall that

in addition to all of Alice’s inputs, the simulator has access to the final result of the protocol,i.e., the edit
distanceσ(α, β).

If j = 0 or i = 0, view(i,j)
A consists simply of Alice’s inputsDA(i, 0) andDA(0, j). Simulation is trivial.

For all (i, j) wherei 6= 0, j 6= 0 and eitheri 6= n, or j 6= m, view
(i,j)
A consists of the following:

(i) DA(i − 1, j) (Alice’s random share ofx(i, j)), (ii) DA(i, j − 1) (Alice’s random share ofy(i, j)),
(iii) Alice’s view of the oblivious transfer (OT) protocol,and (iv) Alice’s view of the privacy-preserving
min[x(i, j), y(i, j), z(i, j)] for computing the minimum of three numbers.

Because the OT protocol is assumed to be secure, there existsa simulatorSot

A which, when executed on
Alice’s input α[i] (recall that1 ≤ α[i] ≤ w) and messagem produces a computationally indistinguishable
simulation of Alice’s view of the OT protocol whose output ismessagem. Our simulator runsSot

A as a sub-
simulator, giving it as inputsα[i] andm′, wherem′ is a “fake” ciphertextE(r′) created by the simulator. It
encrypts, under Alice’s public key, a random(log(n + m) + 80)-bit integerr′, which is as long asr used
by Bob in the real protocol. Observe that in a real protocol execution, Alice would have obtained either
E(D(i − 1, j − 1) + 1 − r), or E(D(i − 1, j − 1) − r), wherer is the random integer generated by Bob.
Both in the real protocol and in the simulation, Alice is ableto successfully decrypt the value obtained as a
result of the OT protocol. Because adding a randomr to any valuex statistically hidesx as long asr at least
80 bits longer thanx, Alice cannot tell the difference betweenD(i− 1, j − 1) + 1− r, D(i− 1, j − 1)− r

andr′. Therefore, the substitution performed by the simulator isundetectable.
To simulate Alice’s view of the secure minimum protocolmin[x(i, j), y(i, j), z(i, j)], the simulator

invokes the sub-simulatorSmin

A for this protocol. This sub-simulator requires the actual minimum value as
one of its inputs. The simulator substitutes a random valuer′′ for the actual minimum. As in any protocol
for securely evaluating functionf(x, y) where Alice and Bob hold random shares ofx andy [8], Alice’s
share of the result is random and independent off(x, y). Therefore, the substitution is undetectable.

Finally, view
(n,m)
A contains an additional messagemB from Bob at the very end of the protocol, which

in the real execution enables Alice to reconstruct the output of the entire protocol,i.e., δ(α, β). Because the
simulator has access toδ(α, β), he simulatesmB asδ(α, β)−rA, whererA is the output simulated for Alice
by Smin

A in the last iteration of the secure minimum protocolmin[x(n,m), y(n,m), z(n,m)]. Observe that
in both the simulation and the real execution, the sum of Alice’s share ofmin[x(n,m), y(n,m), z(n,m)]
andmB is equal toδ(α, β). This completes the simulation of Alice’s view.

13

Simulating Bob’s view. Simulating Bob’s viewviewB(i, j) of each iteration of the protocol is very similar
to simulating Alice’s view. The only difference is that the simulator for Bob’s view must simulate the
ciphertextE(DA(i − 1, j − 1)) received by Bob prior to the oblivious transfer protocol. The simulator
simulates this ciphertext by generating a random numberr∗, encrypting it under Alice’s public key, and
sending the resulting ciphertextE(r∗). This substitution is not detectable by Bob due to semantic security
of the encryption schemeE.

To simulate Bob’s view of the OT protocol, the simulator invokes Sot

B as a sub-simulator. Note that
Bob does not receive any output from the OT protocol, so the simulator simply runsSot

B on Bob’s inputs.
To simulate Bob’s view of the secure minimum protocol, the simulator invokesSmin

B as a sub-simulator,
again substituting a random value for the actual minimum. Note that Alice’s and Bob’s roles in the secure
minimum protocol are symmetric, so the same argument applies for Bob.

Finally, in view
(n,m)
B , the simulator substitutes Alice’s messagemA with δ(α, β) − rB , whererB is the

output simulated for Bob bySmin

B when simulating the final instance of the secure minimum protocol. Ob-
serve that in both the simulation and the real execution, thesum of Bob’s share ofmin[x(n,m), y(n,m), z(n,m)]
andmA is equal toδ(α, β). This completes the simulation of Bob’s view.

6 Implementation and Experimental Results

In this section, we describe our implementation of the threeprotocols for privately computing edit distances
between two strings and present experimental results for network bandwidth and execution times.

We implemented the two standard methods for secure circuit evaluation, i.e., the Yao’s “garbled circuits”
method and secure computation with shares. We used the oblivious transfer protocol presented by Noar and
Pinkas [16]. For protocol 2, which uses homomorphic encryption, we use the Pallier encryption scheme [17].
Using these primitives, we implemented the three protocols. Circuits for various functions implicit in the
protocols were obtained using the Fairplay compiler [15]. Fairplay converts a function represented in a
simple language into Boolean circuits.

The experiments were executed on two 3-GHz Pentium 4 machines, with two gigabytes of memory, and
connected by a local LAN. Using this setup, we obtained measurements (network bandwidth and execution
times) for the three protocols on various problem sizes. Thereason for performing the experiment on a local
LAN is to provide a “best case” result for execution times in an environment where network bandwidth
is not a bottleneck. Because the bandwidth numbers presented do not depend on the experimental setup,
execution times for bandwidth-limited networks can be estimated from the numbers presented here.

The size of the problem instance is(n,m), wheren andm are the sizes of the two strings. The main
conclusions that can be drawn from our measurements are:

• Protocol 1 is not suitable for large problems.We observed that the Fairplay compiler exhausted
the two gigabytes of available memory on our test machine while compiling a circuit for a problem
instance of size(26, 26). However, protocol 1 is ideal for small strings because the entire computation
is performed in one round.

• Protocol 2 can execute for problem of any size.However, since protocol 2 must perform a round of
the SWCS protocol for each element, it is prohibitively slow. For example in our experimental setup,
a problem of size(25, 25) takes over9 minutes, compared to just6 seconds for protocol 1.

• Protocol 3 is most suitable for large problems.Protocol 3 used the grid structure of the problem space,
which makes it most suitable for scaling up to larger problems. For example, a problem instance of

14

00:00.00

01:26.40

02:52.80

04:19.20

05:45.60

07:12.00

08:38.40

10:04.80

8 12 16 20 25 100 200

Problem size

ex
ec

u
ti

o
n

 t
im

e

protocol 1
protocol 2
protocol 3

Figure 5: Timing measurements (in minutes and seconds) comparing protocols 1, 2, and 3. For problem
sizes (100,100) and (200,200), protocol 1 could not compilethe circuit, and protocol 2 was aborted after
one hour.

size (200, 200) takes under 10 minutes. Asymptotically, protocol 3 has the same performance as
protocol 2, but since protocol 3 exploits the grid structureof the problem space it is hundreds of times
faster.

Figure 5 shows the execution times for the three protocols. Clearly, protocol3 scales the best as the
problem size increases. Protocol1 is suitable for small problems. Protocol2 has a large execution time,
but only takes limited bandwidth per round. Our experimental results confirm the protocol characteristics
discussed in Section 3 (see Figure 2).

We present detailed results for protocols1 and2 in the appendix. We discuss results for protocol3 in
detail. Recall that in this protocol a grid is used (see the description in Section 3.4). Using protocol3 we
were able to solve problems instances of considerable size.For protocol 3 we present measurements for a
problem instance of size (200,200). Table 1 shows the results using various grid sizes. The performance
steadily improves upto a grid size of20, but the performance begins to slightly decrease after that. However,
continuing to increase the grid size slightly decreases thenetwork bandwidth requirement, which would
result in fewer round trips, so it would still be a consideration environments with limited network bandwidth.
With a grid size of20, protocol 3 completes the problem of size(200, 200) in just under the same amount

15

Grid size Bandwidth (Alice) Bandwidth (Bob) CPU (Alice) CPU (Bob) wall clock

25 362.2 M 2.1 M 518 84 658
20 368.5 M 2.6 M 385 90 534
10 397.4 M 5.4 M 476 123 655
8 412.0 M 5.8 M 520 145 729
4 485.3 M 14.4 M 784 234 1095
2 635.2 M 32.0 M 1296 408 1804
1 948.0 M 76.7 M 2480 780 4883

Table 1: Network bandwidth (in bytes) and timing measurements (in seconds) for protocol 3 with a problem
of size(200, 200). (M refers to Megabytes)

of time as protocol 2 takes for a problem of size (25, 25). As with protocol 1, the circuits operate on8-bit
integers.

7 Conclusion

We presented three privacy-preserving protocols for computing edit-distance between two strings. The two
key ideas in the protocols were as follows: randomly split the table of values maintained by the dynamic pro-
gramming algorithm between the two parties and exploit the structure of the table. We also discussed how
these key ideas can be applied to other dynamic-programmingalgorithms. Currently, we have only imple-
mented the protocol for computing the edit distance. In the future, we plan to implement privacy-preserving
versions of other dynamic-programming algorithms. There are several applications for the algorithm for
computing the edit-distance. For example, hierarchical clustering algorithms use the edit-distance as a dis-
tance metric. We will investigate privacy in the context of these applications.

References

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.Introduction to Algorithms. The MIT Press
and McGraw-Hill Book Company, 2001.

[2] Lorrie Cranor, Marc Langheinrich, Massimo Marchiori, Martin Presler-Marshall, and Joseph Reagle.
The Platform for Privacy Preferences 1.0 (P3P1.0) Specification. W3C Recommendation, 16 April
2002.

[3] Lorrie Faith Cranor. Internet privacy.Communications of the ACM, 42(2):28–38, 1999.

[4] J. Feigenbaum, B. Pinkas, R. Ryger, and F. Saint-Jean. Secure computation of surveys. In2004 EU
Workshop on Secure Multiparty Protocols (SMP), 2004.

[5] Michael Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching and set intersection.
In Christian Cachin and Jan Camenisch, editors,Proceedings of Eurocrypt 2004, volume 3027 of
LNCS, pages 1–19. Springer-Verlag, May 2004.

[6] Ian Goldberg, David Wagner, and Eric Brewer. Privacy-enhancing technologies for the internet. In
Proc. of 42nd IEEE Spring COMPCON. IEEE Computer Society Press, February 1997.

16

[7] O. Goldreich. Foundations of Cryptography: Volume 1, Basic Tools. Cambridge University Press,
May 2001.

[8] O. Goldreich.The Foundations of Cryptography — Volume 2. Cambridge University Press, 2004.

[9] O. Goldreich, S. Micali, and A. Wigderson. How to play anymental game – a completeness theorem
for protocols with honest majority. In19th STOC, pages 218–229, 1987.

[10] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and Systems Science,
28:270–299, 1984.

[11] D. Gusfield.Algorithms on Strings, Trees, and Sequences. Cambridge University Press, 1997.

[12] Y. Lindell and B. Pinkas. Privacy preserving data mining. Journal of Cryptology, 15(3), 2002.

[13] Yehuda Lindell and Benny Pinkas. A proof of Yao’s protocol for secure two-party computation. Cryp-
tology ePrint Archive, Report 2004/175, 2004.http://eprint.iacr.org/2004/175.

[14] B. Pinkas M. Naor and R. Sumner. Privacy preserving auctions and mechanism design. InProceedings
of the 1st ACM conf. on Electronic Commerce, 1999.

[15] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay — asecure two-party computation system. In
Proceedings of the 13th Usenix Security Symposium, San Diego, CA, USA, August 2004.

[16] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. InProceedings of the Twelfth
Annual Symposium on Discrete Algorithms (SODA), pages 448–457, 2001.

[17] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. InProceedings
of Advances in Cryptology (EUROCRYPT’99), 1999.

[18] M. Rabin. How to exchange secrets by oblivious transfer. Technical Report TR-81, Aiken Computation
Laboratory, Harvard University, 1981.

[19] D. M. Rind, I. S. Kohane, P. Szolovits, C. Safran, H. C. Chueh, and G. O. Barnett. Maintaining the
confidentiality of medical records shared over the internetand the world wide web.Annals of Internal
Medicine, 127(2), July 1997.

[20] T. Smith and M. Waterman. Identification of common molecular subsequences.Journal of Molecular
Biology, 147, 1981.

[21] E. Szajda, M. Pohl, J. Owen, and B. Lawson. Toward a practical data privacy scheme for a distributed
implementation of the smith-waterman genome sequence comparison algrotihm. InProceedings of the
Network and Distributed System Security Symposium (NDSS), 2006.

[22] Joseph Turow. Americans and online privacy: The systemis broken. Technical report, Annenberg
Public Policy Center, June 2003.

[23] A.C. Yao. How to generate and exchange secrets. InProceedings of the 27th IEEE Symposium on
Foundations of Computer Science, 1986.

17

Problem size Bandwidth (Alice) Bandwidth (Bob) CPU (Alice) CPU (Bob) wall clock

(25,25) 4.38M 10472 4.26 1.17 5.94
(20,20) 2.97 M 8764 3.10 0.88 4.46
(16,16) 1.83 M 7057 2.12 0.68 3.02
(12,12) 0.96 M 5348 1.30 0.54 1.92
(8,8) 0.37 M 3633 0.74 0.39 1.12

Table 2: Network bandwidth (in bytes) and timing measurements (in seconds) for protocol 1. (M refers to
Megabytes)

Problem size Bandwidth (Alice) Bandwidth (Bob) CPU (Alice) CPU (Bob) wall clock

(32,32) 216.6 M 48.1 M 515 173 915
(25,25) 132.2 M 29.3 M 312 108 561
(20,20) 84.6 M 18.8 M 199 69 356
(16,16) 54.2 M 12.0 M 127 44 227
(12,12) 30.5 M 6.8 M 72 25 130
(8,8) 13.5 M 3.0 M 32 11 58

Table 3: Network bandwidth (in bytes) and timing measurements (in seconds) for protocol 2. (M refers to
Megabytes)

A Detailed Results for Protocols1 and 2

Protocol 1

As a preparation step, a specific circuit must be constructedfor each problem instance. We implemented
a program which takes as its input a description of the problem instance and outputs a description in the
Fairplay input language SHDL. Fairplay is able to take the SHDL description and output a circuit. Table 2
shows the network bandwidth (in bytes) and execution times (in seconds) for various problem instances.
For problems of size greater than (25,25), the Fairplay compiler exhausted available memory and could
not create the circuit. In this experiment, the circuits operate using8-bit integers bits, which allows for a
maximum edit distance of 255.

Protocol 2

As for protocol1, we present network bandwidth and execution times for several problem instances. Recall
that protocol2 uses a round of SWCS for computing the shares for each value inthe matrixD. For each
matrix value, protocol2 requires approximately 250000 bytes and 0.9 seconds in our test setup. The circuits
used for protocol2 use80-bit integers.4 Table 3 shows the bandwidth and time required for various problem
sizes.

4This large word size is necessary to allow for sufficient statistical hiding of the split matrix elements, because the arithmetic
using the homomorphic encryption properties cannot perform modular arithmetic, which is necessary for perfect information hiding.

18

