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Abstract
The edit distance between two strings is the minimum numixzlete, insert, and replace operations
needed to convert one string into another. Computatiora@bdyy tasks such as comparing genome
sequences of two individuals rely heavily on the dynamigpaeming algorithm for computing edit
distances as well as the algorithms for related stringaatignt problems. A genome sequence may
reveal a lot of sensitive information about an individuahefefore, it is important to develop methods

for analyzing and comparing such sequences that are bofttognaphically secure and efficient for
practical use.

We present several protocols for securely computing thedéstance between two strings so that
the owner of each string does not learn anything about ther gtining except the edit distance. Our
protocols are provably secure in the standard multi-pantgmutation paradigm of modern cryptography.
Experimental evaluation of our prototype implementatiemdnstrates that it can be feasibly applied to
strings of up to several hundred characters in length, wisictufficient for many practical scenarios.
We also discuss how to generalize our protocol to other prablifor which there exist efficient dynamic
programming algorithms.

1 Introduction

The ease of access to information due to the Internet haghtquivacy concerns to the forefront [3, 22].
Therefore, there is considerable interest in developiobrigues [2, 6, 19] and protocols to address these
privacy concerns. Specifically, privacy-preserving peole [4, 5, 12, 14] that allow multiple parties to
perform computations without revealing their private itgpave been the subject of much interest.

One of the fundamental cryptographic primitives for desigrprivacy-preserving protocols &ecure
function evaluation (SFE)A protocol for SFE enables two partiegsand B with respective inputs: and
y to jointly compute a functiory (z, y) while preserving the privacy of their respective inputs, A does
not learn anything from the protocol execution beyond whatvealed by her own input and the result
f(x,y); a similar condition holds foB.

One of the seminal results in secure multi-party computatioe to Yao [23] and Goldreich, Micali, and
Wigderson [9], is that for any efficiently computables(, probabilistic polynomial-time) functiorf, there
exists an efficient protocol for securely evaluatiigDetails of this result can be found in standard textbooks
on secure multi-party computation [8, chapter 7]. Geneviestructions, however, are not always practical.
Therefore, there has been much interest in developing apgaaipose constructions for specific problems
such as privacy-preserving auctions, surveys, and so & 12, 14]. In this paper, we consider the problem
of privately computing edit distances between two strinfjse algorithm for computing edit distance and
its variants are widely used in several areas, such as catmgndl biology. We also demonstrate how the
key ideas in our privacy-preserving protocol for computadit distances are applicable to other dynamic
programming algorithms.



Theedit distancebetween two stringa and (denoted by («, 3)) is the minimum number adelete,
insert, andreplace operations needed to converinto 5. We consider private computation of edit distance,
i.e., user Alice hasy, user Bob hag’, and they want to jointly computé&«, 5) without revealing their
individual strings, and present three protocols for s@j\tims problem. Our first protocol is a straightforward
implementation of standard protocols for secure circuglgéation. The key novel idea behind the other
two protocols is to randomly split the table of values madmed by the dynamic programming algorithm
between the two parties. Protocol 3 also exploits the straaf the table of values used by the algorithm
for computing edit distance. Many other problems can beieffity solved by dynamic programming
algorithms [1, Chapter 15]. We discuss how the key ideasngebur protocols can be used to construct
efficient privacy-preserving protocols for these problems

Edit distance computation and related string alignmenblpras are the basic tasks in many computa-
tional biology algorithmsé€.g, see [11, Chapter 11]). Therefore, a privacy-preservingdestance protocol
can serve as a fundamental building block in many applinattbat are legally required to preserve privacy
of individual genome sequences. We evaluate a prototypkeimgntation of our protocols, and demonstrate
that they can be feasibly applied to problems of realistie si

To summarize, this paper makes the following contributions

e We address the problem of securely computing edit distapt@den two strings. We present three
protocols in Section 3. Section 4 also discusses how ouogots can be adapted to construct privacy-
preserving protocols for problems that can be efficientlyesbusing dynamic programming.

¢ We have implemented all three protocols and present ouuatiah in Section 6. Our experimental
results demonstrate that, using one of our protocols, @dsible to securely compute edit distances of
strings of length up to a few hundred. Since genome sequamneemly a few hundred base pairs long,
our protocol can be applied to genome sequence comparisbreked computational problems in
molecular biology.

Related work: The literature on privacy-preserving protocols is vastotlioknowledge, however, this is
the first paper that investigates the problem of privatelppoting edit distances between two strings. In a
related paper, Szajda al.[21] consider distributed computation of the Smith-Watamgenome compatri-
son algorithm [20]. Szajdat al. decompose the problem into several sub-problems, whicHistgbuted

to several participants. The intuition is that each paéiot solves a sub-problem and thus cannot infer
the inputs for the original problem. However, Szagtaal. did not provide a formal proof of privacy of
their protocol. In this paper, we givemovably securgrotocol for privacy-preserving edit distance com-

putation, with cryptographic security guarantees. Moegowgur protocol can be adapted to other dynamic
programming algorithms.

2 Edit Distance between Two Strings

Let o« and 3 be two strings over an alphabgt Let the lengths of the two stringsand 3 (denoted by « |
and| g |) ben andm, respectively. The edit-distance between the two stringad 5 (denoted by)(«, 3))
is the minimum number of edit operatiorde{ete, insert, andreplace) needed to transformy into 3. We
will describe a dynamic programming algorithm to compéfte, 3), which executes in timé&(nm). The
description of the algorithm for computing edit-distansdased on the discussion in [11].



e ComputeD(i,0) andD(0, j) for 1 <i <nandl < j <m using equation 1.

e ComputeD(i,7) for1 < i <mnandl < j <minrow major order using equation 3. In other words,
we first compute all entries for rowy then row2, and so on.

e The edit distancé(a, 3) is equal toD(n, m).

Figure 1: Algorithm for computing edit distance.

Given a stringy, let o[l - - - 7] denote the first characters ofv. The dynamic programming algorithm
maintains gn+1) x (m+1) matrix D(0- - - n,0- - - m), whereD(i, j) is the edit distance betweel - - - 7]
andg[l---j].

For the base case, we have the following:

D(i,0) = i,0<i<n 1)
D(0,j) = j,0<j<m )

Next we describe a recursive relationship between the valigj) and the entries ab with indices smaller
thani andj. The(i, j)-th entry D(, j) of the matrix is computed as follows:

D(i,j) = minD(G—1,5)+1,D(i,5 —1)+1,D(i — 1,5 — 1) + t(, )] 3)

wheret (i, j) is defined to have valueif (i) # 3(j), and has valu8 if a(i) = 3(j). Thei-th character of
a stringa is denoted by (7). The entire algorithm for computing edit distance is showFRigure 1.

3 Privacy-Preserving Edit Distance Computation

Alice A has the stringv and BobB has the strings, with | « |= n and| 8 |= m. A and B want to jointly
compute the edit distanéga, ) between the two strings without revealing the strings.

3.1 Cryptographic toolkit

In our protocols below, we will employ several standard togpaphic techniques.

Oblivious transfer. The first technique isblivious transferoriginally proposed by Rabin [18]. Informally,

a 1-out-of-n oblivious transfer (we will denote it a977") is a protocol between two parties, the Chooser
and the Sender. The Sender’s inputs into the protocoharagluesvs, ..., v,. The Chooser’s input is an
index: such thatl < ¢ < n. As a result of the protocol, the Chooser receivgdbut does not learn anything
about the rest of the Sender’s values. The Sender learnsgotur protocols do not depend on a particular
implementation of oblivious transfer; therefore, we siynggsume that we have access to a cryptographic
primitive implementingO77". In our implementations, we rely on Fairplay [15] and Naork@ds oblivious
transfer construction [16].

Secure circuit evaluation. We will also employ two standard methods for secure circeafugation: Yao's
“garbled circuits” method and secure computation with eeaConsider any (arithmetic or Boolean) circuit
C, and two parties, Alice and Bob, who wish to evaluéten their respective inputs andy. In Yao’s
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“garbled circuits” method, originally proposed in [23],ié¢ securely transforms the circuit so that Bob
can evaluate it obliviously,e., without learning Alice’s inputs into the circuit or the vals on any internal
circuit wire except the output wires.

Alice does this by generating two random keys for each dinsirie, one representing on that wire,
the other representingg The keys encoding Alice’s own inputs into the circuit she@y sends to Bob.
The keys encoding Bob'’s inputs are transferred to Bob vig@thig protocol. For each of Bob’s input wires,
where Bob acts as the chooser using his circuit input bit@sput intoOT?, and Alice acts as the sender
with the two wire keys for that wire as her inputs ir@d2. Alice produces the “garbled” truth table for
each circuit gate in such a way that Bob, if he knows the wissslencoding the values on the gate input
wires, can decrypt exactly one row of the garbled truth talpié obtain the key encoding the value of the
output wire. Yao's protocol maintains the invariant that évery circuit wire, Bob learnexactly onewire
key.

Because wire keys are random and the mapping from wire keyaltes is not known to Bob (except
for the wire keys corresponding to his own inputs), this deesleak any information about actual wire
values. The circuit can thus be evaluated “obliviously.” sSeve space, we omit the details. A complete
description of Yao’s method and security proofs can be fdarjd3].

The second standard methodsecure computation with shar€SCWS). Details of this method can be
found in [8, Chapter 7]. This protocol maintains the invatithat, for every circuit wirauv, Alice learns a
random values and Bob learn$,, — s, whereb,, is the bit value of the wire. Therefore, Alice’s and Bob’s
shares add up th,,, but because the shares are random, neither party knowsttred @ire value. For each
output wire of the circuit, Alice and Bob combine their shsate reconstruct the circuit output. Either Yao’s
“garbled circuits” method, or SCWS can be used to securalypaivately evaluate any circut.

Additively homomorphic encryption. Let (G, E, D, M) be a public-key encryption scheme, whérds
the key generation functiofy and D are the encryption and decryption functions, avdis the message
space respectively. We will assume that:

e The encryption scheme g mantically securfl0]. Informally, this means that the ciphertext leaks
no useful information about the plaintext even after theeaslry has previously observed many
plaintext-ciphertext pairs on plaintexts of his choice.

e There exists a computational functigisuch that for alln € M anda € M, m; € E(m) implies that
g(my,a) € E(ma). With any semantically secure encryption scheme, encrggtie same message
twice will yield different ciphertexts, s&'(m) denotes the set of ciphertexts that can be obtained by
encryptingm. *

e There exists a computable functighsuch that for all messages, andm., the following property
holds:

f(E(m1), E(mg)) = E(m1+m2)

There are several encryption scheme that satisfy thesenpiesy of which Paillier's encryption scheme
is perhaps the most famous [17]. Since we will use the enicnyicheme as a black-box cryptographic
primitive, we omit the details of the scheme.

We present three protocols. Protocol 1 is the most stramfdrd and uses the standard method for
secure circuit evaluation. However, protocol 1 generagryg large circuits. Protocol 2 uses homomorphic

0Of course, to successfully decrypt two different messagesidm’, setsE(m) and E(m’) should be disjoint.
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Number of rounds Circuits generated by the protocol
Protocol 1 Usesl round Circuit for problem of sizén, m)
Protocol 2 Usesnm rounds Uses circuit for “minimum-of-three”
Protocol 3| Uses approximatelys rounds| Circuit for problem of sizgk, k)

Figure 2: Characteristics of various protocols for problgfsize (n, m).

encryption in combination with the SWCS protocol. Proto2ajenerates very simple circuits, but uses
multiple rounds. Protocol 3 exploits the structure of theljem, i.e., divides the matri® into a grid of
sizek and only computes values on the grid. Figure 2 shows the ctegistics for the various protocols for
problem of sizgn,m), i.e., the two strings are of sizeandm.

3.2 Protocol 1

Recall that the edit-distance algorithm maintain&a+ 1) x (m + 1) matrix D(0---n,0---m), where
D(i, j) is the edit distance betweerl---i] and3[1--- j]. Leta and 3 be two strings over an alphabet.
Note thato and 3 can be expressed as bit strings(«) and bit(3) of lengthgn andgm, whereq is equal
to [logy(| 2 )]

The base case and recursive equation for computitig;j) were given in equation 1. Létp; ;) be the
circuit for computingD (i, j) with inputs corresponding to bit representatiomdf, - - - ;7] andg[1, - - -, j].
Assume that we have computéth;_; jy, Cp j—1), andCp;_q ;_1). Using the recursive equation given
above one can compute the circQi; ;). The circuitCp; ;) computesD(i, j) by combining (i) the equal-
ity testing circuit fort(i, j), (ii) three “add-1" circuits, and (iii) two “select-smatlgalue” circuits. The
inputs to the circuitCp; ;) are bit representations eff1,---,i], 8[1,---,j] and the outputs of circuits
Cp(ij-1)» Cp(i-1,5)» and,Cp(i—1 j—1). Once we have the circuit representatiop,,, ,,,) for the edit dis-
tance problem, we can computé,,, .,)(, ) in a privacy-preserving manner using standard algorithms
for secure circuit evaluation (see section 3.1).

3.3 Protocol 2

This protocol will rely on secure circuit evaluation withndom shares (SCWS). Alice and Bob will each
maintain a(n + 1) x (m + 1) matrix D4 and Dp, respectively. The protocol will maintain the invariant
that every value in the matri® is randomly shared between Alice and Bob, that is, foball i < n and

0 < 5 < m we have that

D(’Lm]) = DA(Z>]) + DB(Z>])

Before the protocol starts, Alice picks an instance of thditaaly homomorphic encryption scheme
(G, E,D, M), and generates public and private keys usihgWe assume that Bob has Alice’s authentic
public key.

Alice fills in D4(i,0) and D 4(0, j) with random values and sends it to Bob. Bob fills; (¢, 0) with
i — Da(i,0) and D (0, j) with j — D 4(0, 5).2

2Each random value must be at least 80 bits longer than ang wailich might appear in a matrix ceille., at leastog(n+m) +
80 bits long. This ensures that adding this random value to ¢heahvalue statistically hides the latter. (With modul&ttanetic
over a small group, the random shares would have been slamdgperfectly, rather than statistically, hiding, but irstprotocol
we will be adding random values homomorphically under gpiboy, and the homomorphic encryption schemes in questiarot
allow modular arithmetic with short moduli on plaintexti)the rest of this protocol, all arithmetic is over integers
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Recall that the recursive equation for computing, j) was

wheret(i, j) is defined to have valueif «(i) # 3(j), and has valu@ if a(i) = 3(j). Thei-th character
of a stringc is denoted byx(i). Letz(i,j) = D(i — 1,7) + 1, y(i,j) = D(i,j — 1) + L andz(i,j) =
D(i—1,7—1)+t(i,7) be the three terms appearing in recursive equation showeaBssume that Alice
and Bob have computed random sharesigi — 1, j) andD(i,j — 1) andD(i — 1,5 — 1). Next we will
show how to compute random shares for three terfis;), y(i,7) and z(¢, j) involved in the recursive
equation.

e Computing random shares ofi, j):
The random share, (i, j) of A for the termx (4, j) is D4 (i — 1, 7). The random share, (i, j) of B
for the termx (i, j) is Dp(i — 1,7) + 1.

e Computing random shares 9fi, j):
The random sharg, (i, j) of A for the termy(i, 7) is D4(i,7 — 1). The random sharg, (i, j) of B
for the termy (4, j) is Dp(i,j — 1) + 1.

e Computing random shares ofi, j):
Computing the random shareg(i, j) andzp(i, j) of the termz(4, 5) is tricky. For this computation,
we will rely on additive homomorphism of the encryption setee Alice encryptsD (i — 1,5 — 1)
and sendsy = E(Da(i —1),5 — 1)) to Bob. Bob encryptep = E(Dp(i — 1,5 — 1)) and
computesf(e4,ep). Recall thatf is a computable function such thAtFE(m,), E(ms)) is equal
to E(m1 + mg). Notice that because of the homomorphic property of theygtion we have the
following:

fleasep) = E(Da(i—1,j—1)+Dp(i—1,j—1))
= E(D@-1,j-1))

Bob also generates giog(n + m) + 80)-bit long random number, and compute€(1 — r) and
E(—r). Computingf(f(ea,er), E(1 —r)), Bob obtainsE(D(i — 1,j — 1) + 1 — ). Similarly, by
computingf(f(ea,ep), E(—r)), Bob obtainsE(D(i — 1,5 — 1) —r).
Recall that the strings are over an alphabet {1,---,w}. Bob createsw message$m;, - --,my)
as follows:
S { EMD(i—1,j—1)+1—r) ifk#p(j)
Tl EMDG -1, 1) —r) if k= 6(j)

Bob’s random shareg (i, 7) for termz(s, j) isr.

Alice and Bob execute Bout-of-w oblivious transfelOT7" protocol (see section 3.1) with Bob acting
as the sender on inputsny, - - -, m,,) and Alice acting as the chooser on input). As a result of
the OT}" protocol, Alice obtains the message, ;). Observe that ity (i) = 5(j), then Alice obtains
E(D(i — 1,5 — 1) — r); otherwise, Alice obtaing(D(i — 1,5 — 1) + 1 — r). Alice decryptsm,,,,
and sets the plaintext as her shaggi, j) of termz(i, j).

e Computing random shares &f(i, j):
Now Alice and Bob execute the standard protocol for securaptation with shares (see sec-
tion 3.1) to compute random shares of mifi, j), y (7, j), (i, 7)]. The circuit in question is a simple
“minimum-of-three” circuit implementing mii, b, c] of three values, b, c.
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After the last iteration, Alice sends to Bob her random shtiaén, m) and Bob sends Alice his random
shareDp(n, m). This enables both Alice and Bob to reconstruct the ediadit ad) 4 (n, m)+ Dp(n, m).

Optimization. The above protocol requires drout-of«w oblivious transfer in each iteration, which is
expensive in terms of both computation and communicati&@wen using amortization techniques of [16],
the entire protocol will requirev + nm modular exponentiations, arid> — 1)nm modular multiplications.

We now describe an optimized version of the protocol whicly osequiresq instances ofi-out-of-2
oblivious transfers in each iteration, where= [log, w].

1. Bob compute€/(D(i—1,5—1)+1—r)andE(D(i—1,j—1)—r) as before. He also generates two
random keys:y andk;, and send¥lyo(E(D(i— 1,7 —1)+1—r))andEg (E(D(i—1,j — 1) —1))
to Alice in random orderi.e., he useg:; to encrypt one of the ciphertexts ahgdto encrypt the other,
and shuffles the doubly encrypted ciphertexts randomly.

2. Bob creates the standard Yao garbled circuit (see se8tigrfor testing equality of(i) and 3(j),
using ko as the wire key encoding on the output wire, an&; as the wire key encoding on the
output wire.

3. Bob sends the encrypted circuit to Alice, and they exeth@astandard Yao protocol. Transferring the
encoding of Alice’s input from Bob to Alice only requirg@snstances of-out-of-2 oblivious transfer,
because the bit representationadf) is ¢ bits long (recall tha = [log, w]).

4. Alice evaluates the garbled circuit, obtaining eithgror &, - she does not know which. She uses this
key to decrypt exactly one of the two ciphertexts sent by Bold, obtains eitheE'(D(i — 1,5 — 1) +
1—r)orE(D(i— 1,5 —1) —r). She decrypts the inner ciphertext with her private key, setd the
resulting plaintext to be her random sharg(i, j).

3.4 Protocol 3

Protocol 1 requiresiq executions ofOT?, whereq = [log,(| ¥ |)], but has to compute a large circuit
Cp(n,m)- Protocol 2 requiresmq executions ofDT?Z, but only has to compute much smaller circuits for
equality testing and returning the minimum of three valuBgcause oblivious transfers are likely to be
the computation and communication bottleneck in practeetocol 1 is time efficient, Protocol 2 is space
efficient
In this section, we present a hybrid of protocols 1 and 2. is photocol, we only compute the values
D(i, j) in the matrixD that lie on a grid.
Recall that the algorithm to compute the edit distance raaista(n + 1) x (m + 1) matrix D. Letk
be a number that divides bothandm, i.e,, k | n andk | m.2 The following set of values constitute a grid
of granularityk.
{D(,j) | 0<i<mnandj e {0,k,2k,---,k}}
{D(i,j) | i€{0,k,2k,---, 2k} and0 < j < m}

Given an elemenb (i, j), therectangleof lengthi and widthw with D(3, j) at the top right corner (denoted

30ur protocol can be easily extended to remove the assurmpignh divides bothn, andm.
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Figure 3: Example grid.

by rect(D(i, j),1,w)) is the union of the following four sets of points:

{D(i —w,j—1),D(i—w,j—1+1),---,D(i —w,j—1),D(i —w,j)} = bottom(D(i,75),l,w)
(D(i —w,j—1,D( —w+1,j =)y, D@ — 1,5 — 1), D(i,j — )} = left(D(i, )1, w)

The above four sets of points correspond to the top, bottigit, @nd left sides of the rectanglect (D(i, 5), 1, w).
Therefore, we denote these set of points@s D(i, j),l,w), bottom(D(i,7),l,w), right(D(i,7),l, w),
andleft(D(i,j),l,w), respectively. We have the following lemma:

Lemmal D(i,j), can be expressed as a functionbottom (D(i, j),l, w), left(D(i,7),l,w), afi — 1 +
1---d),andgBj —w +1---].

Proof sketch: The proof is by simultaneous induction bandw. For! = 1 andw = 1 the results follows
using the following recursive relationship:

D(i,j) = minD(i—1,7)+1,D(i,7— 1)+ 1,D(i— 1,5 — 1) +¢(3, )]

The induction step is tedious but simple. The induction stapalso be used to obtain the function referred
to in the statement of the lemma.

Protocol 3 is described in Figure 4 and proceeds in two stapshe first step, we compute random
shares of all values of the tyge(i,0) and D(0, j) that correspond to the base case. In the second step, we
compute all other values on the grid using the recurrencdidinim the proof of Lemma 1.

Consider the grid shown in Figure 3. First, the random shafréise values that correspond to left and
bottom edge of the grid are computed. Now let us say we wantrigpate the random shares of the value
corresponding to pointl. Using lemma 1, the value corresponding to poeirdan be expressed as a function
of values corresponding to sidésB and DC, o[C B], and3[DC| (we are abusing the notation slightly by
usingC' B to denote all indices that lie on the segméhs).



e Compute the random shares for the initial values:
Compute the random shares for the following values:

D(i,0) = i,0<i<n
D(0,5) = j,0<j<m

e Compute the random shares for values on the grid:

We compute the random shares for all values on the grid indivennajor order. Consider a value(i, j)
on the grid and the rectangtect(D(i, 5, ),l,w) with I = i — k|t andw = i — k|ZL]. The reade
can check that all values in the gridet(D(i, j, ), , w) lie on the grid of granularitys. Let Cp(; ;) be the
circuit for computingD(z, 7) in terms of inputshottom (D(i, j), 1, w), left(D(i, j),l,w), afi — L+ 1---14],
and8[j — w + 1---j]. Note that circuitCp(; ;y can be constructed by essentially mimicking the pfoof
of lemma 1. Recall that we also have random shares for thewvaiuthe sebottom(D(i,j),l,w) and
left(D(1,7),l,w). Now using the protocol for secure computation with sharexan compute the randgm
shares forD (3, j)

-

Figure 4: Protocol 3.

4 Extensions

We describe how our protocol can be extended to yield a pripaeserving version of the Smith-Waterman
genome sequence algorithm [20]. We also describe how otiognsuggests a strategy for constructing
privacy-preserving protocols for problems for which efiti dynamic-programming algorithms exist.

4.1 The Smith-Waterman Algorithm

We first describe the genome sequence comparison algoritt8Bmith and Waterman [20]. We then discuss
how our protocols for privately computing edit distances ba adapted for the Smith-Waterman algorithm.
As before, letx andg be two strings over the alphabet The Smith-Waterman algorithm uses two function:
a cost function: and a gap functiog. The cost functior: : ¥ x ¥ — % associates a cosfu, v) with each
pair (u,v). Typically, ¢(u, v) has the following form:

(u,v) = a fu=wv
ALY= b ifuto

If a symbol is deleted or inserted, a special symbois inserted. For example, if the fourth symbol is
deleted from CTGTTA it is written as CTGTA. A sequence of- is called agap. Gaps are scored using a
gap functiong, which typically has amffineform:

g(k) = z+ylk-1)

In the equation given aboveis the size of the gap (number of consecutivén a sequence) and > 0 and
y > 0 are two constants.
DefineH (i, j) as the following equation:

max{0,A(a[z---i],Bly---j]) forl <z <iandl <y <j}



Recall thata[z - - - i] is represents the string[z]a[z + 1] - - - ai]. The distance between stringgz - - - ]
andg[y - - - j] according the cost functiomand gap functiory is denoted byA (afx - --i], B[y - - - j]). The
Smith-Watermaristance between the two stringsand 3 (denoted bydsyy (o, 3)) is simply H(n,m),
wheren andm are lengths of the two stringsand . ValuesH (i,0) and H (0, 7) are defined to be zero for
0<i<nand0d<j<m. Forl <i<nandl <j<m,H(i,j)is defined using the following recursive
equation:

H(Zvj) = nax 07 maX{H(Z - 07j) - 9(0)},
1<0<s

glaécj{H(i,j — 1) =g}, H(i— 1,5 — 1) + (i, Blj])

Next we discuss how the three privacy-preserving protofmisomputing the edit distance between
two strings can be adapted for computing the Smith-Waterdistance. Protocal can be easily adapted
for computing the Smith-Waterman distance. As before wepmdea circuitCy; ;) for computingH (i, j)
using the recursive equation. Protodotan also be easily adapted for computing the Smith-Waterman
distance. The key observation is thatff, j) lies on the grid then the values used in the recursive equatio

{H(i—o0,j) | 1<0<i}
{H@,j—1) | 1<1<j}

also lie on the grid. Protocd uses homomorphic encryption in conjunction with SWCS ang tlequires
some substantial changes As before, Alice and Bob will eaaintain a(n + 1) x (m + 1) matrix H4 and
Hp, respectively, with the following invariant:

H(Zvj) = HA(Zvj) +HB(Zvj)

Letz(i,5), y(4,4) andz(i, j) be the last three terms in the recursive equatiord¢r, 7). It is pretty clear
how to split the first term (which i) in the equation. The random shares idi, j) andy(i, j) can be
computed using the SWCS protocol and a circuitiferx. Once the random shares fefi, j), y(, j), and
z(i,j) are computed, the random shares i, j) can be computed using the “maximum-of-four” circuit
and the SWCS protocol. We will next focus on computing thelcem shares of (4, j). For this computation,
we will rely on additive homomorphism of the encryption seiee Alice encryptsH 4(: — 1,5 — 1) and
sendsq = E(Ha(i— 1,7 — 1)) to Bob. Bob encryptep = E(Hp(i— 1,7 — 1)) and computeg (e, ep).
Notice that because of the homomorphic property of the gticny we have the following:

fleasep) = E(Ha(—1,j—-1)+Hp(i—1,j—-1))
= E(H(-1,j-1))

Bob also generates dlvg(n+m)+80)-bit long random number, and compute€(—r). Since the strings
are over an alphabét = {1,---,w}, Bob createss messageémi, - - -, m,,), wheremy, is the following
message

E(H(i—1,j = 1) +c(k, (7)) = 7) -
Bob’s random sharep (i, j) for term z(i, j) is r. The reader can check that all the messagesan be
computed using the homomorphic property of the encryptibreme.

Alice and Bob execute &out-of<w oblivious transfeiOT}” protocol (see section 3.1) with Bob acting
as the sender on inputs:,, - - - , m,,) and Alice acting as the chooser on input). As a result of theD77}"
protocol, Alice obtains the messagg, ;). Observe that Alice obtains(H (i—1, j—1)+c(a(i), 8(5)) —7),
and sets the plaintext as her shaygi, j) of termz(i, j). We leave optimization of this protocol as future
work.
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4.2 Dynamic Programming Algorithms

We claim that our algorithm for privacy-preserving protbims computing edit distance between two strings
suggests a strategy for designing privacy-preservingopats for problems that have efficient dynamic-
programming algorithms. LeP(z,y) be a problem with two inputs andy, e.g., for the problem of
computing edit-distance between two strings the inputend i are the strings. Typically, a dynamic-
programming algorithmd» for problem’”P has the following components:

e AsetS of sub-problems and a dependency relaiiba S x S between the sub-problems. Intuitively,
(s,s') € R means that the sub-probleshdepends on the sub-problem If there is a dependency
betweens ands’, we write it ass — s’. In the case of the problem of computing edit-distance betwe
two stringsa. and 3 of lengthn andm, the set of sub-problems |8, - - -, n] x [0, - - -, m]. For all sub-
problems(i, j) such that # 0 andj # 0, we have the following dependenci€s:— 1,5) — (i,),
(i,j — 1) — (i,7),and(i — 1,5 — 1) — (4,4). Thebase sub-problemares € S such that they have
no dependencies. For the edit-distance problem, the basgreblems are:

{(1,0) [ 0<i<n}
{(0,4) | 0<j<m}

We also assume that there is a unique root sub-probiem € S such that there does not exist
a sub-problem that depends eswt. For the edit-distance problem the unique root sub-probigem
(n,m).

e Each sub-problem is assigned a valueal(s). The goal is to computeal(root). The functionval
from S to R assigns values to sub-problems, such that it satisfies tlo/fiog properties:

— For all the base sub-probleras= S, val(s) is defined.

— Lets € S be a non-base sub-problem. Defimed(s) as all the predecessors gfi.e. the set
pred(s) is defined afs’ | s’ — s}. Assume thapred(s) is equal to{sy,---,si}. Thereis
a recursive functiorf definingval(s) in terms ofval(s1), val(s2), - - -, val(sy), s(z), ands(y),
wheres(z) ands(y) are parts of the input andy that are relevant to the sub-problemin case
of the edit-distance problemmi((7, j)) is equal toD (i, j). The value for the base and non-base
sub problems for the edit-distance problems was defineduatams 1 and 3 in Section 2.

Consider a probler®(z, y) with two inputsz andy. Assume that probler® has a dynamic-programming
algorithm Ap with the space of sub-problents We describe of how we can design a privacy-preserving
protocols forP(z,y), where Alice has input and Bob has inpuj.

Protocol 1: Recall thatval : S — R assigns a value to each sub-problem. &bk a sub-problem and,

be the circuit with inputs;(z) ands(y) that computesal(s). The circuitCs can be constructed using the
recursive equatiorf for defining the value of non-base sub-problems and theitsréor sub-problems’
that are predecessors ©fAssume that we have constructed a circtif,; for the root sub-problem. Using
the circuitC,,,; and standard protocols we can privately computeuvttiéroot).

Protocol 2: In this protocol we randomly splital(s) for all sub-problems. We denote the two shares of
val(s) by val 4(s) andwvalp(s). Assume that we have randomly spiitl(s) for all base sub-problems
Consider a sub-problem such thatpred(s) = {si1,---,sx}. Assume that we have computed random
sharesval 4(s;) andwvalp(s;) for val(s;) (wherel < i < k). Recall that we have the following recursive
equation describingal(s):

val(s) = f(val(s1),---,val(sg),s(z), s(y))

11



Since we have computed the random sharesdé(s;) (1 < i < k), we can compute the random shares of
val(s). At the end of the protocoljal 4 (root) + val g(root) gives the desired result.

Protocol 3: Recall that protocol 3 was a hybrid between protocol 1 and 8wéver, protocol 3 heavily
depends on the structure of the spat@f sub-problems. For example, for the edit-distance prable
protocol 3 heavily used the matrix structure of space ofmutiplems.

5 Security Proofs

Our protocols are secure in the so cakerni-honestodel of secure computatiorne., under the assumption
that both participants faithfully follow the protocol spization. To achieve security in thmaliciousmodel,
where participants may deviate arbitrarily from protocgoéafication, participants would need to commit
to their respective inputs prior to protocol start and thesve in zero knowledge that they follow protocol
specification. There exist generic technigues for “comgfliany protocol which is secure in the semi-honest
model into one that is secure in the malicious model [8, sacii4].

In our case, it is not clear whether security in the malicioumel offers significant advantages over
security in the semi-honest model. For example, there isxterreal validation of the parties’ inputs. Even
if the protocol forces the party to run the protocol on pregly committed inputs (which requires zero-
knowledge proofs and imposes a heavy overhead), this dogsiamntee that the input was not maliciously
chosen in the first place

Security of Protocols 1 and 3 follows directly from (i) seityiof subprotocols performed using standard
methods for secure multi-party computation, and (ii) cosifpon theorem for the semi-honest model [8,
Theorem 7.3.3]. Proofs are standard and omitted for brevity

Security of Protocol 2 is proved via a standard simulatiooopin the semi-honest model. For each
protocol participant, we demonstrate the existence of ficiarit simulator algorithm which, with access to
this participant’s input and output, produces a simulatidnch is computationally indistinguishable from
this participants’s “view” of the protocol (informally, avfew” is a record of sent and received messages).

We give the proof for the unoptimized version of Protocol ZeTproof for the optimized version is
essentially similar; the only substantial difference iattthere are additional sub-simulators for simulating
the parties’ respective views of Yao’s “garbled circuitsdtmcol for testing equality of two values.

Let view 4 () (respectivelyyview(/3)) be Alice’s (respectively, Bob’s) view of the protocol wher-
ecuted on input stringe (respectively,5). Each party’s view consists of its respective input as asihll
messages received by this party in the course of the protdbel output of the protocol is the edit distance
d(a, B). Because edit distance is a deterministic function of th#igs inputs, to prove security of the
protocol it is sufficient to construct simulatafs and.Sp such that

{Sa(,6(c, 8))}
{SB(8,0(, 8))}

Here= stands for computational indistinguishability [7].

Our simulator will exploit semantic security of Alice’s h@morphic public-key encryption scheme,
defined by(G, E, D, M). As building blocks, it will also use the simulators for, pestively, theOT}"
oblivious transfer and the secure protocol for computirgifinimum of three values. Because the oblivious
transfer protocol is assumed to be secure, there existaiorslb<', S such that:

{55 (1, z:)} {viewS (i)}
{S%(x0, ..., @w, L)} {view® (0, .-+, Tw)}

{view4 ()}

{views(0)}

e lle

C
C

=
N



wherexy, ..., x,, are Bob’s inputs into th&7}" protocol,: is Alice’s choice () < i < w), L is “empty”
output (it denotes that Bob does not receive any output fleenprotocol), andiiew® and view% are,
respectively, Alice’s and Bob’s views of ti@7}"” protocol.

Similarly, security of the protocol for computing the minim of three values implies that there exist
simulatorsSTi", STin such that:

(S (rd vt 2 min(e,y, )} = {view " (rd, v v}
C .
{SEE P rB min(,y,2))} = {viewg"(rF,rP D)}
wherer2,r4, 4 (respectivelyrZ, 5, ) are Alice’s (respectively, Bob's) random shares:of, =.

Simulating Alice’s view. Because Protocol 2 consists(af+ 1) x (m+ 1) iterations, one for each value of
the (4, 7) pair, Alice’sview 4 of Protocol 2 is a composition of Alice’s views of individueérations/iewX’]).

We give the simulator for/iew(j’” for all values of(7, j) such thatd < i < n,0 < j7 < m. Recall that
in addition to all of Alice’s inputs, the simulator has acsés the final result of the protocalg., the edit
distancer («, 3).

If j=00ri=0, view(j’” consists simply of Alice’s input® 4 (i,0) andD 4(0, 7). Simulation is trivial.

For all (7,j) wherei # 0,5 # 0 and either; # n, or j # m, view(j’” consists of the following:
(i) Da(i — 1,7) (Alice’s random share of(i, j)), (i) Da(i,j — 1) (Alice’s random share of(z, j)),
(i) Alice’s view of the oblivious transfer (OT) protocoknd (iv) Alice’s view of the privacy-preserving
min[z(Z, j), y(4, ), 2(¢,7)] for computing the minimum of three numbers.

Because the OT protocol is assumed to be secure, there azxiimulatorsgt which, when executed on
Alice’s input [i] (recall thatl < «[i] < w) and message: produces a computationally indistinguishable
simulation of Alice’s view of the OT protocol whose outpuniessagen. Our simulator runs'S' as a sub-
simulator, giving it as inputa[:] andm’, wherem’ is a “fake” ciphertext£(r’) created by the simulator. It
encrypts, under Alice’s public key, a randdiing(n + m) + 80)-bit integerr’, which is as long as used
by Bob in the real protocol. Observe that in a real protoc@cexion, Alice would have obtained either
EMD(G—-1,7—1)4+1—r),orE(D(i — 1,5 — 1) — r), wherer is the random integer generated by Bob.
Both in the real protocol and in the simulation, Alice is atdesuccessfully decrypt the value obtained as a
result of the OT protocol. Because adding a randdmany valuer statistically hides: as long as: at least
80 bits longer thar:, Alice cannot tell the difference betweéhi — 1, —1)+1—7r,D(i—1,57—1) —r
andr’. Therefore, the substitution performed by the simulatamidetectable.

To simulate Alice’s view of the secure minimum protoaoin|x(i, j),y(7, j), 2(i, 7)], the simulator
invokes the sub—simulatcﬂ’ﬂf‘” for this protocol. This sub-simulator requires the actualimum value as
one of its inputs. The simulator substitutes a random valuer the actual minimum. As in any protocol
for securely evaluating functiofi(x, y) where Alice and Bob hold random shareszohndy [8], Alice’s
share of the result is random and independenft(af y). Therefore, the substitution is undetectable.

Finally, view(}’m) contains an additional messageg; from Bob at the very end of the protocol, which
in the real execution enables Alice to reconstruct the duipthe entire protocoli.e., («, ). Because the
simulator has access &, 3), he simulatesnz aso(«, 5) —r 4, wherer 4 is the output simulated for Alice
by STin in the last iteration of the secure minimum protoagh[z(n, m), y(n, m), z(n,m)]. Observe that
in both the simulation and the real execution, the sum ofeMishare oinin|x(n, m),y(n, m), z(n, m)]

andmgp is equal toj(«, 3). This completes the simulation of Alice’s view.
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Simulating Bob’s view. Simulating Bob’s viewiew (i, j) of each iteration of the protocol is very similar
to simulating Alice’s view. The only difference is that thiensilator for Bob’s view must simulate the
ciphertextE(D4(i — 1,57 — 1)) received by Bob prior to the oblivious transfer protocol. eT$imulator
simulates this ciphertext by generating a random numbgencrypting it under Alice’s public key, and
sending the resulting cipherteki(r*). This substitution is not detectable by Bob due to semaetaisty
of the encryption schemg.

To simulate Bob’s view of the OT protocol, the simulator ikes S as a sub-simulator. Note that
Bob does not receive any output from the OT protocol, so thilsitor simply runsS¢ on Bob’s inputs.
To simulate Bob’s view of the secure minimum protocol, thaulator invokesST™" as a sub-simulator,
again substituting a random value for the actual minimumteNloat Alice’s and Bob’s roles in the secure
minimum protocol are symmetric, so the same argument apfaieBob.

Finally, in viewg}’m), the simulator substitutes Alice’s messagg with §(«, 3) — rp, whererg is the
output simulated for Bob bﬁg‘” when simulating the final instance of the secure minimumaguat Ob-
serve that in both the simulation and the real executiorstheof Bob’s share ahin[z(n, m), y(n,m), z(n,m)]
andm 4 is equal tod(«, ). This completes the simulation of Bob’s view.

6 Implementation and Experimental Results

In this section, we describe our implementation of the tipre¢ocols for privately computing edit distances
between two strings and present experimental results terank bandwidth and execution times.

We implemented the two standard methods for secure cirealiiation, i.e., the Yao’s “garbled circuits”
method and secure computation with shares. We used theontslitransfer protocol presented by Noar and
Pinkas [16]. For protocol 2, which uses homomorphic endoyptve use the Pallier encryption scheme [17].
Using these primitives, we implemented the three protocGlscuits for various functions implicit in the
protocols were obtained using the Fairplay compiler [15hirlay converts a function represented in a
simple language into Boolean circuits.

The experiments were executed on two 3-GHz Pentium 4 maghivith two gigabytes of memory, and
connected by a local LAN. Using this setup, we obtained measents (network bandwidth and execution
times) for the three protocols on various problem sizes.réhson for performing the experiment on a local
LAN is to provide a “best case” result for execution times mexnvironment where network bandwidth
is not a bottleneck. Because the bandwidth numbers presdot@ot depend on the experimental setup,
execution times for bandwidth-limited networks can bemeated from the numbers presented here.

The size of the problem instance(is, m), wheren andm are the sizes of the two strings. The main
conclusions that can be drawn from our measurements are:

e Protocol 1 is not suitable for large problemsiNe observed that the Fairplay compiler exhausted
the two gigabytes of available memory on our test machindendimpiling a circuit for a problem
instance of siz€26, 26). However, protocol 1 is ideal for small strings because tiigeecomputation
is performed in one round.

e Protocol 2 can execute for problem of any sitowever, since protocol 2 must perform a round of
the SWCS protocol for each element, it is prohibitively sIéwer example in our experimental setup,
a problem of siz€25, 25) takes ove® minutes, compared to justseconds for protocol 1.

e Protocol 3 is most suitable for large problenfrotocol 3 used the grid structure of the problem space,
which makes it most suitable for scaling up to larger proldefor example, a problem instance of
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Figure 5: Timing measurements (in minutes and seconds) aongpprotocols 1, 2, and 3. For problem
sizes (100,100) and (200,200), protocol 1 could not contpiéecircuit, and protocol 2 was aborted after
one hour.

size (200, 200) takes under 10 minutes. Asymptotically, protocol 3 has taes performance as
protocol 2, but since protocol 3 exploits the grid structofréhe problem space it is hundreds of times
faster.

Figure 5 shows the execution times for the three protocoleany, protocol3 scales the best as the
problem size increases. Protodols suitable for small problems. Protocdlhas a large execution time,
but only takes limited bandwidth per round. Our experimergaults confirm the protocol characteristics
discussed in Section 3 (see Figure 2).

We present detailed results for protoctland?2 in the appendix. We discuss results for protogah
detail. Recall that in this protocol a grid is used (see thecdption in Section 3.4). Using protocdlwe
were able to solve problems instances of considerable Bimeprotocol 3 we present measurements for a
problem instance of size (200,200). Table 1 shows the mesgihg various grid sizes. The performance
steadily improves upto a grid size 20, but the performance begins to slightly decrease after thawever,
continuing to increase the grid size slightly decreasesntterork bandwidth requirement, which would
result in fewer round trips, so it would still be a considematenvironments with limited network bandwidth.
With a grid size of20, protocol 3 completes the problem of siZ$)0, 200) in just under the same amount
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| Grid size | Bandwidth (Alice) | Bandwidth (Bob)| CPU (Alice) | CPU (Bob)| wall clock |

25 362.2 M 21M 518 84 658
20 368.5 M 26 M 385 90 534
10 397.4 M 54 M 476 123 655
8 412.0M 5.8M 520 145 729
4 485.3 M 14.4 M 784 234 1095
2 635.2 M 32.0M 1296 408 1804
1 948.0 M 76.7M 2480 780 4883

Table 1. Network bandwidth (in bytes) and timing measuremsén seconds) for protocol 3 with a problem
of size (200, 200). (M refers to Megabytes)

of time as protocol 2 takes for a problem of si28,25). As with protocol 1, the circuits operate 8rbit
integers.

7 Conclusion

We presented three privacy-preserving protocols for camgwedit-distance between two strings. The two
key ideas in the protocols were as follows: randomly spéttdble of values maintained by the dynamic pro-
gramming algorithm between the two parties and exploit thecture of the table. We also discussed how
these key ideas can be applied to other dynamic-programaigagithms. Currently, we have only imple-
mented the protocol for computing the edit distance. In tiiergé, we plan to implement privacy-preserving
versions of other dynamic-programming algorithms. Theeesgveral applications for the algorithm for
computing the edit-distance. For example, hierarchiaadteking algorithms use the edit-distance as a dis-
tance metric. We will investigate privacy in the contextlué$e applications.
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| Problem size|| Bandwidth (Alice) | Bandwidth (Bob)] CPU (Alice) | CPU (Bob)| wall clock |

(25,25) 4.38M 10472 4.26 1.17 5.94
(20,20) 2.97M 8764 3.10 0.88 4.46
(16,16) 1.83 M 7057 2.12 0.68 3.02
(12,12) 0.96 M 5348 1.30 0.54 1.92

(8,8) 0.37 M 3633 0.74 0.39 1.12

Table 2: Network bandwidth (in bytes) and timing measureisén seconds) for protocol 1. (M refers to
Megabytes)

| Problem size|| Bandwidth (Alice) | Bandwidth (Bob)| CPU (Alice) | CPU (Bob)| wall clock |

(32,32) 216.6 M 48.1M 515 173 915
(25,25) 1322 M 29.3 M 312 108 561
(20,20) 84.6 M 18.8 M 199 69 356
(16,16) 542 M 120M 127 44 227
(12,12) 305 M 6.8 M 72 25 130

(8,9) 135 M 30M 32 11 58

Table 3: Network bandwidth (in bytes) and timing measuremén seconds) for protocol 2. (M refers to
Megabytes)

A Detailed Results for Protocolsl and 2

Protocol 1

As a preparation step, a specific circuit must be construictiedach problem instance. We implemented
a program which takes as its input a description of the prollestance and outputs a description in the
Fairplay input language SHDL. Fairplay is able to take théd&Hescription and output a circuit. Table 2
shows the network bandwidth (in bytes) and execution tinresgconds) for various problem instances.
For problems of size greater than (25,25), the Fairplay dempxhausted available memory and could
not create the circuit. In this experiment, the circuits rape usings-bit integers bits, which allows for a
maximum edit distance of 255.

Protocol 2

As for protocoll, we present network bandwidth and execution times for sépeoblem instances. Recall
that protocol2 uses a round of SWCS for computing the shares for each valteimatrixD. For each
matrix value, protoco? requires approximately 250000 bytes and 0.9 seconds iresus&tup. The circuits
used for protoco® uses0-bit integers? Table 3 shows the bandwidth and time required for varioublpro
sizes.

“This large word size is necessary to allow for sufficientistiaal hiding of the split matrix elements, because theharetic
using the homomorphic encryption properties cannot perfoodular arithmetic, which is necessary for perfect infation hiding.
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