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Abstract

The freedom and transparency of information flow on the trgehas heightened concerns of pri-
vacy. Given a set of data items, clustering algorithms gioplar items together. Clustering has many
applications, such as customer-behavior analysis, &dgaarketing, forensics, and bioinformatics. In
this paper, we present the design and analysis of a priveasepvingk-means clustering algorithm,
where only the cluster means at the various steps of theitidgoare revealed to the participating par-
ties. The crucial step in our privacy-preservikigneans is privacy-preserving computation of cluster
means. We present two protocols (one based on obliviousipoiial evaluation and the second based
on homomorphic encryption) for privacy-preserving congpioin of cluster means. We have a JAVA im-
plementation of our algorithm. Using our implementatioe, rave performed a thorough evaluation of
our privacy-preserving clustering algorithm on three da&ts. Our evaluation demonstrates that privacy-
preserving clustering is feasible, i.e., our homomorricryption based algorithm finished clustering a
large data set in approximatedy seconds.

1 Introduction

The ease and transparency of information flow on the Inténastheightened concerns of personal pri-
vacy [9, 49]. Web surfing, email, and other services conistéedk information about who we are and what
we care about. Many have accepted that some privacy willsierd@xchange for the benefits of digital ser-
vices [48]. However, in other domains privacy is so impartéat its protection is federally mandated [1].
Technologies for protecting privacy are emerging in respato these growing concerns [8, 18, 45]. Re-
cently, more emphasis has been placed on preserving trecyf user-data aggregations, e.g., databases
of personal information. Access to these collections isyewer, enormously useful. It is from this balance
between privacy and utility that the areapfvacy preserving data-miningmerged [3, 33].

Unsupervised learning deals with designing classifienn facset of unlabeled samples. A common ap-
proach for unsupervised learning is to first cluster or groaolabeled samples into sets of samples that are
“similar” to each other. Once the clusters have been cocteirl we can design classifiers for each cluster
using standard techniques (such as decision-tree leaj83ig4]). Moreover, clusters can also be used to
identify features that will be useful for classification. €l is significant research on privacy-preserving al-
gorithms for designing classifiers [3, 33]. This paper adskes the problem of privacy-preserving algorithms
for clustering.

Assume that Aliced and BobB have two unlabeled samplés, andDg. We assume that each sample
in D4 and Dpg has all the attributes, or the data sets are horizontalliitipaeed betweemd and B. Alice
and Bob want to cluster the joint data €2 U Dp without revealing the individual items of their data sets
(of course Alice only obtains the clusters correspondingdiodata seD 4). In this paper, we assume that
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clustering the joint data sé2 4 U D g provides better results than individually clusteribg and Dg. Using

a large data set from the networking domain we also demdaedtrat clustering the joint data set results in
significantly different clusters than individually clugtey the data sets (see end of section 5 for details). We
present a privacy-preserving version of theneans algorithm where only the cluster means at the various
steps of the algorithm are revealed to Alice and Bob.

There are several applications of clustering [14]. Any &gapilon of clustering where there are privacy
concerns is a possible candidate for our privacy-presgrelastering algorithm. For example, suppose
network traffic is collected at two ISPs, and the two ISPs wardluster the joint network traffic without
revealing their individual traffic data. Our algorithm ca@é bsed to obtain joint clusters while respecting
the privacy of the network traffic at the two ISPs. An appiimatof clustering to network intrusion detec-
tion is presented by Marchette [36]. Clustering has beed f@dorensics [43] and root-cause analysis for
alarms [29]. Clustering has also been used in bioinforraatieor example, Dhilloret al. [11] have used
clustering to predict gene function. We believe that prvpoeserving clustering can be used in bioinfor-
matics where the data sets are owned by separate organgatrtbo do not want to reveal their individual
data sets.

This paper makes the following contributions:

e We present the design and analysis of privacy-preserkingeans clustering algorithm for horizon-
tally partitioned data (see Section 3). The crucial stepuimadgorithm is privacy-preserving of cluster
means. We present two protocols for privacy-preservingmaation of cluster means. The first pro-
tocol is based on oblivious polynomial evaluation and theoed one on homomorphic encryption.
These protocols are described in detail in Section 4.

¢ We have also have a JAVA implementation of our algorithm. \Wbele that modular design of
our implementation will enable other researchers to usdrmoplementation. Our clustering tool is
available by request. We evaluated the two privacy-prasgrelustering algorithms on real data
sets. Our first conclusion is that privacy-preserving €risy is feasible. For example, for a large
data set §, 687 samples and 2 features) from the speech recognition domain our homoniotph
encryption-based algorithm took approximatéliyseconds. We also observed that both in bandwidth
efficiency and execution overhead algorithms based on hamahit encryption performed better
than the one based on oblivious polynomial evaluation. Auitket discussion of our evaluation is
given in Section 5.

2 Related Work

Privacy issues in statistical databases have been thdyonghstigated [2, 10]. Recently privacy-preserving
data mining has been a very active area of research. lrotgakfin this area was on construction of decision
trees from distributed data sets [3, 33]. There is also afgignt body of research on privacy-preserving
mining of association rules [15, 46, 50]. We will focus onstixig work on privacy-preserving clustering.

In general, there are two approaches for designing pripaegerving machine learning algorithms.
The first approach is to use transformations to perturb the skt before the algorithm is applied. This
approach for designing privacy-preserving clusteringpaljms is taken by several researchers [31, 37,
41]. A second approach to designing privacy preservingrilgos is to use algorithms from the secure-
multiparty computation literature. The advantage of ttppraach over the perturbation approach is that
formal guarantees of privacy can be given for these algosthThis paper takes the latter approach. Vaidya



Algorithm (k-means clustering)

beqininitialize n, ¢, p1, - - -, e
do classifyn samples according to nearest and

recomputeu;

until no change in;'s

return o, po, -, fe
end

Figure 1: Thek-means clustering algorithm.

and Clifton’s [51] work is closest to the one presented is fmaper. Vaidya and Clifton present a privacy-
preservingc-means algorithm for vertically-partitioned data sets.afkeady pointed out in the introduction,
our paper considers clustering for horizontally-pantied data. Vaidya and Clifton’s algorithm is based on
the secure-permutation algorithm of Du and Atallah [13].wdwger, Vaidya and Clifton’s algorithm has to
execute Du and Atallah’s protocol for every item in the data $herefore, their algorithm is not practical for
large data sets. Moreover, Vaidya and Clifton did not penfan experimental evaluation of their algorithm.
By contrast, the complexity of our algorithm only dependstlo& number of steps taken by themeans
algorithm and the dimension of the data items. There areilslistd clustering algorithms where the goal
is to reduce communication costs [12, 30]. These distribatestering algorithms do not consider privacy.
However, it will be interesting to investigate whether thedgorithms can be made privacy preserving.

In our implementation, we approximate real numbers usiterals (see appendix C). Finite-precision
approximation to functions may leak information. Feigambaet al. [16] show that approximations to
functions can be made private by adding noise.

3 Thek-means clustering algorithm

The k-means algorithm [14, 34] is shown in Figure 1. Assume thataveegivenn samplesty, - - -, z,,
where each sample isra-dimensional vector of real numbers. The number of clussers The algorithm
maintainsc meansuq, - - -, . Initially, assume that the means are assigned arbitrdugsaA sampler; is

deemed to be in the clustgif it is closest to the meap;, where mean of a clustér’, - - -, 2.} is M
Distance between twe-dimensional vectors andy is given by~ (z[j] — y[7])?, wherez[j] is the
j-th element of the vectat. Other distance metrics [14, Chapter 10], such as scattgicsiecan be used
instead of the distance metric mentioned above. Eachiwearat the k-means algorithms recomputes the
means and reclassifies the samples. The algorithm termindien it detects “no change” in the means. The
precise definition of “no change” depends on the specificimbéing used. We also assume that the initial
cluster means are chosen randomly. There is some reseapitkory the initial cluster means [4]. Various
techniques for picking initial cluster means can be easitprporated into our algorithm. This issue will
not be discussed further in the paper.

3.1 Distributed £-means

Assume that AliceA (party 1) hasz samples{z,---,z,, }, and BobB (party 2) hasn — n4 samples
{Zn,+1, -, zn}. Each party wants to jointly cluster their samples withaviealing any private informa-
tion. We are assuming that clustering the union of sample® fihe two parties is more desirable than



clustering the two samples individually.

Assume that there is a trusted third pafty'P. A and B perform iterations locally. However, at each
iteration the new cluster meapsgs are computed by communicating with thd P. Let C{* andCP be
the cluster corresponding to meanpfor A and B, respectively. A sendsc-pairs ((a1,b1),- -, (ac, be)) to
TTP, wherea; = Zx]-ec;* x; andb; =| C;“ | (a; is the sum of samples in clustét;“ andy; is the number
of samples in the clustef;'). Analogously, B sendsc-pairs ((d,e1),- -, (d., e.)) to the TT P, where
d; = ijecf z; ande; =| CP |. TheTTP computes the means(u, - - -, u.) and sends them td and

B, whereu; = % We call this algorithndistributedk-meansor D;._means

3.2 Assumptions

Our goal is to design a privacy-preserviggmeans that does not use a TTP. Before we present such an
algorithm, we state assumptions made in the design of ousgyripreserving algorithm.

Number of parties. In this paper we only present the two party case.

The adversary model. We assume a semi-honest adversary (also called honest fioic@adversary
model) [20]. There are standard constructions that tramsf protocol that is secure in the semi-honest
model and produce a protocol that is secure in a more genexidious model (these constructions are
called “semi-honest to malicious” compilers, and detdilthese constructions can be found in [23]).

Information disclosure. Our privacy-preserving algorithm discloses the clusteamseat the various steps

to the two parties. Therefore, the computation of classgysamples according to the nearest cluster means
can be performed locally. Therefore, the complexity of otvagry-preserving algorithm depends only on
the number of steps taken by thaneans algorithm and the number of features, but not on #eeddithe
data. This is a desirable property because usually the dtgtdcsbe clustered can be very large.

3.3 Privacy-preservingk-means

In order, to create a privacy-preserving versionkafeans that does not use a TTP we have to devise
a privacy-preserving protocol to compute the cluster me&wnsider the computation of a single cluster
meanyu;. Recall that in distribute@-means each party sen@ds, b;) and(d;, e;) to the TTP, which computes
% this is precisely the function for which we have to devisegiegey-preserving protocol. This problem
can be formally defined as follows:

Definition 1 Theweighted average problem (WAB)defined as follows: party has a paifz, n), wherex
is a real number and is a positive integer. Similarly, par/has pain(y, m). They want to jointly compute

:E_j’_y . . . . . .
-7 In other words, we need a privacy-preserving protocolfierfollowing functionality:
)

The notation shown above means that the first and second pantide inputs(z,n) and (y, m) to the
protocol and both parties receive outpﬁ%. Notice that WAP is different than the classical problem
of computing the averages, wheteparties have a number and they jointly want to compute theagee
without revealing their individual numbers. In the classiosroblem, the number of partiesis known to all
the parties. In WAP, the number of pointsandm needs to be kept secret.

r+y T+vy
n+m’ ' n+m

((z,n), (y,m)) — (
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Algorithm P P;._eandPrivacy-preserving:-means clustering)
begininitialize na, ¢, pi1, - -, pie
do classifyn 4 samples according to nearest
for i :=1tocstepldo
Let C/ be thei-th cluster
Computea; = 3>, cca z; andb; =| C7* |
recomputeu; by invoking the protocoPy 4p

od

until no change in;

return g, pia, - - - fle
nd

Figure 2: The privacy-preservingmeans clustering algorithm.

Let Py ap be a privacy-preserving protocol for solving WAP. Two piats for WAP are presented
in Section 4. In the privacy-preservirigmeans algorithm (denoted &;._neans 4 and B usePy ap
instead of the trusted third parflyI’ P to compute the cluster meapss. The algorithm is shown in Fig 2.
We only show the part of the algorithm executing at Alice’arfg 1) side. Bob (party2) will execute a
similar algorithm at his side.

Note: Suppose that the initial clusters are picked randomly. R@ptivacy-preserving algorithm we need a
protocol for two parties to jointly pick a common random wciSuch a protocol is callecbin-tossing into
the welland is based on commitment schemes (see [20, Section T)4.3.1

3.4 Proof of Privacy

In this section we provide a proof of privacy for the protoslbwn in Figure 2. The proof uses a semi-honest
adversary model. Notice that in the distributedneans algorithnDy._,eangPoth parties only know their
input and output. Definition of privacy is based on the indumtthat parties should learn nothing more from
the messages used in privacy-preserving protocol, ienissages received by a party during an execution
of a privacy-preserving protocol can be “effectively corgali by only knowing its input and output. This
idea is formalized below:

Definition 2 Let z andy be inputs of the two parties and (z,y), f2(z,y)) be the desired functionality,
i.e., the first party wants to compufe(z,y) and the second wants to computgz, y). LetII be a two-
party protocol to computg. The view of the first party after having participated in ol IT (denoted by
VIEW(z, y)) is (z,7,my, - - - m;), wherer are the random bits generated by pargndim, - - -, m; is the
sequence of messages received by partyhile participating in protocoll. The view VIEW) (z, y) for
the second party is defined in an analogous manner.

We say thatll privately computes if there exists probabilistic polynomial-time algorithfBPTA),
denoted bys; andS; such that

{Si(x, filz,9)}ay = VIEWT(2,9)}ay
{S2(x, fo(@,9)}ay = {VIEW(2,9)}ay



In the equation given aboves® denotesstatistically indistinguishable Two probability ensembles
X = {Xp}lwes andY = {Y,, },es indexed bysS are statistically indistinguishable if for some negligibl
functiony : X +— [0,1] and allw € S,

Y I PrXu=a)-Pr(Yu=a)| < p(w])

A function i : X — [0, 1] is callednegligibleif for every positive polynomiap, and all sufficiently large
n's, u(n) < ﬁ. There is a weaker notion of indistinguishability calls@mputationally indistinguishahle
We will use statistical indistinguishability throughotitet paper, but all the results hold even if the weaker
notion of indistinguishability is used. Detailed definiigof these concepts can be found in [19, 20].

The privacy-preserving-means algorithm uses the privacy-preserving prot@elyp for the WAP.
Assume that the two parties invoke the protoBg) 4 p as an oracle, i.e., both parties write their respective
inputs (in this cas€x,n) and(y,m)) and invoke the oracle which returns the result (in this cgf,%\).
Recall that in the distributed-means algorithms both parties learn the cluster meangiaugssteps. If we
use oracle calls to compute the cluster means, then the ttiegalso learn only the cluster means. So the
views in the two cases ardentical Hence, the conditions of definition 2 are trivially satidfidtHowever,
there are additional messages exchanged in the profagolp used to compute the cluster means. We
need to ensure that nothing can be learned from these mes3dgeprivacy of protocol shown in Figure 2
follows from the composition theorem [7] stated belawig the algorithm shown in Figure 2 arfdis the
protocol Py 4 p to solve WAP described in Section 4):

Theorem 1 (Composition Theorem for the semi-honest mod&uppose thay is privately reducible to
f and that there exists a protocol for privately computifig Then there exists a protocol for privately
computingg.

4 Privacy-Preserving Protocol for
the Weighted Average Problem

In the weighted average problem (WAP) we want to find a priya@serving protocol for the following
functionality:

r+y T+y
n+m’ ' n+m

((z,n), (y,m)) — ( )
Recall that a protocol for WAP was used in the privacy-pndsgrk-means algorithm (see Figure 2).

A simple strategy to address this problem is to first apprexanhe function% by a circuitC, and
then use standard constructions [21, 22, 52] to construdtaqy-preserving protocol. Protocols constructed
using this strategy have a very high computational overhdéalkhi et al. considered the cost of imple-
menting these protocols in their work in the Fairplay sys8hj. They found that the protocol was feasible
for small circuits, e.g., a single-gate could be implemented 410 milliseconds, and more complex integer
numerical functions could be implemented on the order obses. They further showed the runtimes of
these protocols grow quickly with the size of the input anthptexity of the implemented function. The
most complex function discussed by the authors computeddiamef two ten-element integer input sets.
This function took ovef” seconds to execute in a LAN environment, and dweseconds in an WAN envi-
ronment. The circuit for computingj—% is significantly more complex. Hence, with a non-trivial alaet,
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(Step 1)Party1 picks a random element € F and computes two new polynomiad$® andz(Q). In other
words, partyl “blinds” the polynomialsP and().

(Step 2) Party2 computeszP(«) and zQ(«) by invoking the protocol for OPE twice, i.e., invokes the
protocol Popr (2P, a) andPopr(2Q, 5).

zP(a)

~0(3) and sends it to party.

(Step 3)Party2 computesé% by computing

Figure 3: Protocol for PRPE.

a single computation of cluster means may take several gsrtotcompute. Note that the underlying costs
of Fairplay are not artifacts of the design, but simply thetad implementing the standard protocols; the
reported costs were almost completely dominated with itiseiup and the necessary oblivious transfers.

In this section, we present two privacy-preserving pro®dor WAP that are more efficient than the
standard protocols. The first protocol is based on oblivipalgnomial evaluation and the second on ho-
momorphic encryption. Similarity of WAP with a problem thatcurs in protocols for generation of shared
RSA keys [6, 17] is discussed in appendix B.

4.1 Protocol based on oblivious polynomial evaluation

We will first give a privacy-preserving protocol for a gedgyeoblem, and then at the end of the subsection
demonstrate how we can construct a privacy-preservingeobfor WAP. Consider the following problem.

Definition 3 Let F be a finite field. Party has two polynomialg”? and @ with coefficients inF. Party

2 has two pointsy and 5 in F. Both parties want to compu Eg; In other words, we want to privately
compute the following functionality:

(Pl P
(P, Q), (a, 8)) (Q(ﬂ)’ Q(ﬂ))

We call this problenprivate rational polynomial evaluation (PRPE)
The protocolPprpE uses a protocol for oblivious polynomial evaluation, whigldefined below.

Definition 4 Let F be a finite field. Theoblivious polynomial evaluatioor OPE problem can be defined
as follows: Alice A has a polynomialP over the finite field7, and BobB has an element € F. After
executing the protocol implementing OREshouldonly knowP(z) and A should know nothing.

A protocol to solve the OPE was given by Naor and Pinkas [4@}Ro (P, o) denote the privacy-
preserving protocol for OPE. We provide a protoelrpr ((P, Q), (o, 3)) for PRPE, which useBo p g (P, o)
as an oracle. The protocol is shown in Figure 3.

Theorem 2 ProtocolPprpr((P, Q)(a, 3) shown in Figure 3 is privacy-preserving protocol for PRPE.

Proof: The views of the two parties are

PPRPE — M
VIEW] (P,Q) = (PQ, Q(ﬂ))

VIEW]PRPE (o, B) = (a, 3, 2P(a), 2Q(5))



P(a)
QB)"

definition 2, we can us#; as the identity function). The input and output of pattare (o, 3) and S%%%

respectively. We have to show a PPFA such thatSs(a, 3, ggg ) and VIEV\fQ)PRPE(a, () are statistically

indistinguishable. Let’ be a random element ¢f and Sy («, 3, Pl ) be defined as follows:

QM)
P(a)
Q(B)

It is easy to see that the following two ensembles are stailt indistinguishable:

(0,8, 55 #)
(a, B, 2P(ax), 2Q(3))

The reason is that i is a random element of thenzQ(03) is a random element of as well. Moreover,
the ratio of the third and fourth elements in the view of partg ggg i.e., the output and the third element
of the view determine the fourth element of the view.

Recall thatPprpg uses the protocdPppr. Using the composition theorem we conclude tRatzp g
is privacy preservingd

The view of partyl consists of its input P, Q) and outputs;=. Therefore, there is nothing to prove (see

(Oé,/B, Z/

,2')

Protocol for WAP.  First, we show that a protoc®prrpr for PRPE can be used to solve WAP. Recall that
in WAP party1 and party2 have inputyx,n) and(y, m) respectively. In the invocation ®prpg, party

1 constructs two polynomial®(w) = w + =z andQ(w) = w + n, and party2 setsa = y and3 = m.
The output both parties receive is equalfg@%, which is the desired output. The proof of privacy for this
protocol follows from Theorem 2 and the composition thearem

4.2 Protocol based on homomorphic encryption

Let (G, E, D, M) be a encryption scheme (wheteis the function to generate public parametéfsand D
are the encryption and decryption functions, adds the message space respectively) with the following
properties:

e The encryption schem@>, £, D) is semantically securf24]. Essentially, an encryption scheme is
semantically secure if an adversary gains no extra infaomdiy inspecting the ciphertext. This is
formally defined in the appendix (see definition 5).

e Forallm € M anda € M, m; € E(m) implies thatm{ € E(ma). Encrypting the same message
twice in a probabilistic encryption function can yield afdient ciphertext, sd (m) denotes the set
of ciphertexts that can be obtained by encrypting

e There is a computable functighsuch that for all messages; andms the following property holds:

f(E(m1), E(mg)) = E(mi+m2)

Of course, to successfully decrypt two different messagesidm’ setsE(m) and E(m’) should be disjoint.



e (Step 1)Party1 encryptse andn and sends the encrypted valugse E(x) andn; € E(n) to party
2.

o (Step 2)Party2 computes arandom message M, and encrypts-y andz-m to obtainz; € E(z-y)
andz; € E(z - m). Party2 computes the following two messages and sends it to party

my = f(xizl)

mo = f(ni'z?)

Note: In our implementation we use the homomorphic-encryptidreste by [5] wherg’ is multipli-
cation.

e (Step 3)Using the two properties of the probabilistic encryptiomeswe (G, E, D), we have the
following:

my = E(z-x+2z-y)

my = E(z-n+z-m)

Therefore, partyl can compute(z + y) andz(n + m), and hence can compu{qﬂ%. Party1 sends

+
o to party2.

Figure 4: Protocol for WAP based on homomorphic encryption.

There are several encryption scheme that have the threerfiespmentioned above [5, 39, 42]. In our
implementation, we used thdense probabilistic encryption (DPEEheme of Benaloh [5]. The semantic
security of the scheme provided by Benaloh is based on trectability of deciding prime residuosity.
Partyl and2 have a pair of messagés, n) and(y, m). The two parties want to jointly compulﬁ% in
a privacy-preserving way. Assume that pafrtsets up a probabilistic encryption sche(ig £, D, M), and
publishes the public parameteats We also assume that the probabilistic encryption schegré’, D, M)
satisfies the three properties given at the beginning ofebtdon. The protocolPy for WAP is shown in
Figure 4.

Theorem 3 Assume that the probabilistic encryption schefe E, D) has three properties mentioned at
the beginning of this sub-sectio® ((z,n), (y,m)) is a privacy-preserving protocol to compggé%.

The proof of this theorem is straightforward and is givenppendix A. The basic intuition is that pary
cannot tell the difference betwedf(z) and £(n) and encryption of two arbitrary messages.

The complexity of encryption and decryption operations acheme(G, E, D, M) depends on size
of the message spadd. Therefore, in order to keep the complexity low it is impottéhat the size of
the message space be small. However, in order to achieveiadegrecision the message space should
be large. Chinese remainder theorem (CRT) allows us to permmputation over smaller spaces and
then reconstruct the result for a larger message spacen; Let , p,,, bem small primes. The two parties



execute the protocol described abovefgy, - - -, Z, . Partyl receivesz(z + y) andz(n + m) modulop;
(for 1 < i < m). CRT allows partyl to reconstruct(z + y) andz(n +m) moduloN = [[; p;. This
technique is also used by Gilboa [17].

5 Experimental Evaluation

This section looks at the feasibility of our solution by exating the cost of the protocol on real data-sets.
The goal of this study is to establish the cost of our privamserving clustering algorithms on real appli-
cations. We principally seek to understand the performamceprivacy tradeoffs inherent to the operation
of the protocaols.

We evaluated three clustering algorithms. Himaplescheme is used throughout as a baseline for our
experiments. This protocol implements theneans clustering algorithm as described in section 3. This
algorithm does not use any privacy-preserving protocolsis Tepresents the nominal cost of clustering,
and will be present in ang-means clustering approach, independent of if and how gyiisimplemented.
Throughout this sectiofeaturesrefer to the dimension of the vectors being clustered ant #axation of
the k-means algorithm is referred to esund Our first privacy-preserving protocol (referred to@BE)
uses oblivious polynomial evaluation. This protocol isatdmd in detail in Section 4.1. For oblivious
polynomial evaluation we use the protocol presented by ldadrPinkas [40]. The next privacy-preserving
protocol (referred to aBPE) uses homomaorphic encryption scheme of Benaloh [5]. Thasogol is de-
scribed in detail in Section 4.2.

Implementation. Our system consists of approximatg§00 lines of Java code, split up into a number
of self-contained modules. ThHemeans algorithm module implements actual clustering agatpns as
described in Section 3. During each iteration, this modalés ¢heprotocol module to compute the cluster
means for each dimension of the cluster. Phatocol module sets up the framework of communication,
and calls the specific protocol handlers with a common iatexf depending on which protocol is selected.
In thesimplehandler, Alice sendgr, n) to Bob, who computes the cluster megﬁ% and sends it to Alice.
The OPE and DPE protocol handlers implement the protocasrieed in Sections 4.1 and 4.2.

The central results uncovered by this investigation ineiud

1. Clustering using DPE is two orders of magnitude more baditivefficient than OPE, and executes in
4.5 to 5 times less time. This is largely due to bandwidth andputational costs associated with the
oblivious transfers used by OPE.

2. Our protocols clustering with perfect fidelity; that ibgtclusters resulting from our algorithms are
identical to those reported bykameans algorithm with no privacy for reasonable paramédteices.

3. Small, medium, and large data-sets can be clusterececefiici

4. Costs scale linearly with feature and rounds. The nhumbsarmples affects run-time only inasmuch
as it increases the number of rounds toward convergence.

5. Protocol parameters affect bandwidth usage by constatrf Moreover, exponential increases in
security or supported message space result in linear sesda execution run-times.

We begin in the following section by exploring several reatadsets representative of expected environ-
ments.
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5.1 Experimental Data

The validity of our experimental approach is partially degent on the realism of our test data. For this
reason, we have obtained a collection of externally pral/ukgta-sets representing diverse applications. All
experiments described in this section usesyrethetic river, robot, andspeechdata-sets detailed below.

We selected the elements of ayntheticdata-set to enable testing and measure startup costs. athis d
set includes 4 points uniformly distributed within a 6 direemal space. By design, the data clusters quickly
into 4 "natural” clusters within 2 rounds under thaneans algorithm in all experiments.

Originally used in the Computation Intelligence and Leagn{COIL) competition, theiver data-set
describes measurements of river chemical concentratimhslgae densities [27]. The river data was used
to ascertain the summer algae growth of river water in teaipetlimates. The clustered data is used to
inform the relationship between the presence and condemtseof various chemicals in public waterways
and algae growth. The river contains 184 samples with 1bifeatper sample.

The robot data-set [26] contains continuous senor readings from itteeBr-1 mobile robot used for
testing computer learning and conceptual developmentaphes. Each of the 697 samples contains 36
features from sensor arrays of the Pioneer-1 mobile roldod. sSemples were taken every 100ms and reflect
the movements and changing environment in which the robsttested. The data has been clustered in
prior use to recognize experiences with common outcomes.

Thespeechdata-set [28] documents the measured voice charactsrigtgpoken Japanese vowels. Nine
male speakers uttered two Japanese voyelg repeatedly. Sampled at 10kHz, the 640 utterances resulted
in 12 features of 5,687 samples. This large data-set is mstw icontext of our experiments to evaluate the
degree to which the proposed protocols scale with the sidgeahput data. Similar data-sets are clustered
frequently to help guide speech recognition software [32].

Each of the data-sets represents a singular corpus. Irasgndur protocols are targeted for applications
of clustering with two parties. We model the two party casegmdomly subdividing the samples into equal
sized subsets and assigning them to each party. In realbanvants the size of the sets may be vastly
different. Our approximation approach ensures that thisl kif asymmetry will be transparent to both
parties both in execution and performance. That is, theopmadnce of the algorithm is largely independent
of the number of samples. However, as we shall see belowutinder of features has tremendous effect on
the cost of clustering.

The last data set (called tipeng data-set) was collected by us. The purpose of collectigydhia was
two fold:

e Test our clustering algorithm on a large data set.

e Construct a data set that can be naturally partitioned toodsirate that jointly clustering two data
sets can produce significantly different results than iddially clustering them.

We setup two hosts (referred to dsand B) to measure ICMP ping round-trip times. There wénging
targets located around the world (one of the ping targetsomadbe same subnet as hdst. On each host
and for each ping target the pings were grouped in block§@f For each block, 8-tuple consisting of the
following three values was generated: the average timevéo(TliTL), the average round-trip time (RTT),
and fraction of lost packets (%drop). We collected data eveeriod of24 hours and generated a data set
consisting 023872 data points, which were evenly divided between hbstind B. We ran our clustering
algorithm on the joint data set, and data sets correspondihgstsA and B.
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5.2 Experimental Setup

We use the architecture and code described earlier for theriexents described throughout. All experi-
ments are executed on a pair of 3Ghz machines with 2 gigalwtgigal memory. The experimental appli-
cation is running on the Sun Microsystems Java Virtual Maelversion 1.5 [47] on the Tao Linux version
1.0 operating system [25]. The protocols are executed onOMps unloaded LAN with a measured
round-trip time of 0.2 milliseconds.

The experiments profile the additional cost of providinggciy in clustering sensitive data. To this end,
we focus on three metrics of cost and utiliggmmunication overheadelay, andprecision Communica-
tion overhead records the amount of additional network hédftth used by the privacy schemes over the
simple schemes. Delay measures the additional time rebtgreomplete the clustering.

Precision is used to measure the degree to which the appatednclustering diverge from those reported
by a simplek-means algorithm, and is calculated as follows. Ket= {z1,...,x,} be the sample data set
to be clusteredC; C 2% is the clustering of by the simple algorithm, and@, C 2% is the clustering
returned by the OPE algorithm (the DPE metric is defined airtyilin the obvious manner). For each pair
(xi,z;j) such thatl <i < j <nan error occurs if

1. z; andz; are in the same cluster @;, but inC they are in different clusters.
2. x; andz; in the same cluster i, but inC they are in different clusters.

The total number of errors is denotéd The maximum number of errors 8 = n(n —1)/2. The precision
Pisgivenby(N — E)/N.

Both OPE and DPE have unique parameters which dictate tierpence and security of each proto-
col. The performance of DPE is most effected by the size optitaes used to select the homomorphic
encryption keys. Small primes can be cryptanalyzed, amglanes can unnecessarily increase bandwidth
use and computational costs. Like RSA, linear increasdwisize of the primes should result in exponential
security improvements.

We use interval arithmetic to approximate real numbersdppendix C). The size of the message space
in DPE and the finite-field in OPE are chosen to achieve theeatkgirecision. In Benaloh’s encryption
schemer denotes the size of the message space. For efficiency reasooBooser = 3* (see [5] for
details). Two crucial parameters in the oblivious polynaingvaluation protocol of Naor and Pinkas are
D, the degree of the masking polynomial ahf] the total number of points used (details of this algorithm
can be found in [40]). The sender's masking polynoniiahas degreé:.d, whered is the degree of the
polynomial P being evaluated and is the security parameter. Since in our algorithm the patyiad
being evaluated is always linear, the security parametg@miply D. IncreasingD strengthens the sender’s
security. OnlyD + 1 points are needed to interpolate, but the receiver sébds 1).M pairs of values
to the sender. Out of each set bf pairs, one of them is related to (the point the polynomial is being
evaluated on), and the oth&f — 1 values are random. THeout-ofM oblivious transfer protocol (denoted
asOTM) is repeatedD + 1 times to learn the required value. So, increasiigstrengthens the receiver’s
security. Unless otherwise specified, we selediedr 7 and M = 6. For brevity, we do not considdp or
M further.

5.3 Results

Our first battery of tests broadly profile the performance &E0and DPE. Shown in Table 1, the most
striking characteristic of these experiments is that thayahstrate that OPE protocols consume two orders
of magnitude more network resources than the DPE protochieese costs can be directly attributed to
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Communications Overhead Delay
Test | Rounds b bytes percent - milliseconds | percent
ytes . milliseconds .
feature/rnd increase feature/rnd increase

Synthetic (4 samples, 6 features)
Simple 2 5959 0 0% 168 0 0%
OPE 2 1497823 124322 | 25035.48% 10147 831.58 5939.88%
DPE 2 13580 635.08 127.89% 2135 163.9166667, 1170.83%
River (184 samples, 15 features)
Simple 16 74574 0 0% 772 0 0%
OPE 16 29916457| 124241.17 | 40116.47%| 176133 730.67 22715.16%
DPE 16 234422 566.03 314.35% 38721 158.12 4915.67%
Robot (697 samples, 36 features)
Simple 8 94005 0 0% 1348 0 0%
OPE 8 36569040, 126649.42 | 38801.16%| 212776 734.125 | 15684.57%
DPE 8 269698 610.04 186.90% 47662 160.8125 | 3435.76%
Speech (5,687 samples, 12 features)
Simple 33 143479 0 0% 4198 0 0%
OPE 33 49359739| 124183.48 | 34402.07%| 294694 733.57 6919.87%
DPE 33 384644 509.00 268.08% 66101 156.3207071 1474.58%
Ping (28,392 samples, 3 features)
Simple 9 11644 0 0% 2765 0 0%
OPE 9 3429688 | 126594.2 | 29354.55% 23767 777.8519 | 759.566%
DPE 9 30633 703.29 163.07% 9694 256.63 250.59%

Table 1: Experimental Results - resource and precisiontsdsom experiments over the three data sets. The
feature/round statistics show the costs of per featurdering in a single round of the k-means algorithm,

e.g., a single execution of the privacy preserving WAP prolto
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the oblivious transfer algorithms whose primitive crypighic operations require the transfer of many
polynomials between hosts. The total bandwidth costs ddadearly for both OPE and DPE. That is, the
bandwidth costs per feature/round are relatively congtarthe given data sets, where we observed 0.03%
variance in scaled bandwidth usage in OPE and 9.36% in DPEe fkat the bandwidth is ultimately of
limited interest; the worst case experiment only consuntesidgabytes of bandwidth over two and a half
minutes. Hence, our protocols would have visible impacy timé slowest or busiest networks.

A chief feature illustrated by the timing measurements & MPE is much more time and bandwidth
efficient than OPE. Surprisingly, DPE is 4.5 to 5 times fasteall the data-sets for the selected parameters.
The reasons for this is that the underlying oblivious trarsincur large message exchanges between the
two parties. Hence, in all experiments the limiting factars bandwidth and computatidriThe efficiency
of DPE with respect to OPE further shows fixed costs (staran)likewise dominated by the underlying
privacy preservation operations. Further, like the baxdthvcosts, the execution of each algorithm scale
linearly with the number of features and rounds, where eaatufe round requires 730 and 160 milliseconds
for OPE and DPE to complete, respectively.

The cost of privacy-preservation in large data-set clirsges noticeable. For example, a large data-set
containing 5687 samples and 12 features takes DPE just 66d®to cluster, as opposed to the 4.19 seconds
required by its simplé-means counterpart. Hence for this experiment, DPE alguaribcurs slowdown of
a factor of 15 and the more expensive OPE a factor of 70. The=sgts are, for most applications, clearly
within the bounds of acceptable performance. This is pdetity encouraging in the face of past attempts;
circuit implementations of vastly simpler operations {ageng very small collections of data points) took
tens of seconds to complete [35].

For the parameters we selected the precision of our pripaeserving algorithms (DPE and OPE) was
100%. The reasons for this are two-fold. The parameter choiceBRE resulted in a message spacgf
values, which allowed us to map cluster means to 4 decimeéplaMoreover, the data range was small in all
our data-sets. Hence, the error rounding caused by usiegyattarithmetic was inconsequential. Note that
in other environments, where the message space is reqoitezgldmaller (likely for performance reasons)
or the range of data values is large, precision errors magtbeduced.

The costs of OPE grow slightly with increaseslinand M. We experimented with varied parameters
of D andM equal 5, 10, 15 on all the non-synthetic data-sets (for &4 ¢bt27 experiments) . In all cases
increased cost was nominal; the parameter sets slowedtioerpance of the algorithm down between 60%
and 190% over a baseline experiment, iMd.,= D = 5. Again, these costs are a direct reflection of the
costs of the underlying oblivious transfer. Not shown, taedwidth costs in DPE scale by a constant factor
proportional toD and M .

As illustrated in Figure 5, increases the sizéwhich is a product of two primes) in DPE has modest
affect on the performance of the protocols. Exponentiaieases im result in linear increases in message
size. Because the network is a limiting factor, such in@ease, as shown, reflected in linear slowdowns.
Hence, very large intervals or high precision clustering ba supported by small increases in bandwidth
consumption. As in OPE, bandwidth costs in DPE scale by ataohactor in these experiments, where
each protocol exchange increases directly in proportighdcize of the primes.

For the ping data set our clustering algorithm generdtellisters, which correspond to the four target
hosts. The centers for the four clusters are shown in FigurAscan be clearly seen from the results,
clusters found by the algorithm using the joint data set ayeificantly different than the clusters found in

2Early implementations of our protocols were limited by theéehcy caused by many individual round-trips in the protoco
We optimized these these by parallelizing exchanges, wiessible. This vastly improved protocol performance, ahd direct
result, bandwidth and and computation have since emergex disniting factors.
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Figure 5. DPE runtime costs by message spacemilliseconds the time to cluster the sample data-sets
with various widths of» message spaces.

Cluster centers

A (241.76,32.69, 0.18), (48.00, 75.87,0.58), (243.00, 59.81,0.15), (64.00,0.19, 0.00)
B (47.00, 88.60, 0.74), (251.92, 4.73,0.19), (242.00, 48.01, 2.70), (133.67, 485.77, 13.78)
Joint | (245.26,28.73,0.60), (47.51,82.13,0.66), (133.67, 485.77, 13.78), (64.00, 0.186, 0.00)

Figure 6: (TTL,RTT,%drop) centers for the four clusters.

the individual data sets. Therefore, if the goal is to esti®I T, TTL, and %drop for the target hosts to be
used in networking applications (such as routing), thestehing on the joint data set is desirable.

6 Conclusion

We presented two privacy-preserviggmeans algorithms. We also implemented these algorithmpand
formed a thorough evaluations of our algorithms. There aversl avenues for further research. We want
to perform further optimizations to our tool to reduce the@xion and bandwidth overheads. We want to
explore privacy-preserving versions of other clusteritggpathms. We are particularly interested in hierar-
chical clustering algorithms.
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A Definitions and Proofs

Definition 5 Assume that the message spaddecan be sampled in polynomial time, i.e., there exists a
probabilistic polynomial time algorithm ;; such that it takes input* and generates a messagec M.

Let h : M — R be a function, which can be thought of as some informatioruatite message, e.g.,
h(m) = 1iff message has a substring “Bob” in it. Consider the follogitwo games:

e (Game 1): Adversary is informed that | am about to choose a messagsing the sampling algorithm
Apr. The adversary is asked to guéssn).

e (Game 2): In addition to the information given in game 1, he is also tiblel encryptiom € E(m)
of the message. The adversary is again asked to duess

An encryption functionZ is calledsemantically securd the difference between the probabilities of the
adversary succeeding in the two games is negligible. Thegimibty is computed over the message space.

Proof of Theorem 3: The view of the two parties is shown below:

VIEW?H (z,n) = (z,n,2(z+y),2(n+m))
x+y)
n—+m

VIEW;DH (y>m) = (y>myx1>n1>

Let 2 be a message uniformly chosen frdm DefineS; (z,n, 2L ) as follows:

’ n+m

Tty
n+m’

2')

(x,m,z

It is easy to see th&f; (z, n, %) and VIE\/\ffH (z,n) are statistically indistinguishable (this proof is very
similar to the proof of Theorem 2 given in Section 4.1).

Recall thatr; € E(x) andn; € E(n). Since(G, E, D) is semantically secure, parycannot gain
extra information from the encrypted valuesandn,. In other words. Let} € E(z') andn} € E(n'),
wherez’ andn’ are randomly chosen messages. An adversary cannot distingetween VIEVﬁH (y,m)
and(y, m,x},nj, %) with more than negligible probability. Therefore, privamyparty 1 with respect to

party 2 follows. O

B Generation of shared RSA keys and WAP

We assume that all elements are drawn from a finite fleldSuppose that party and2 have a pair of
numbers(a, b) and(c, d) and they want to privately compute + ¢)(b + d). In other words, they want to
privately compute the following functionality:

((a,b),(c,d)) +—— (a+c)(b+d)

This problem is one of the crucial steps in the protocol farsiy RSA keys. LeP,; be the protocol for
solving this problem. We will show th&®,;, can be used to design a proto@l, 4 p for solving WAP (see
Section 4 for a description of this problem). Proto&} 4 p works as follows:

e Partyl and party2 generate two random elementsand z, chosen uniformly fronF.
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e Two parties invoke the protoc@;. with inputs(z, z;) and(y, z2). Each party obtains; = (z +
y) (=1 + 22).

e Two parties invoke the protocdP,, with inputs (n, z1) and (m, z2). Each party obtaing, =
(n+m)(z1 + 22).

e The two parties obtaiaﬁ—ﬁb by computing%.

Next we argue thaPy, 4 p is privacy preserving. The views of the two parties in thistpcol are:

VIEW (z,n) = (z,n,(x+y)(z1 + 22), (n+m)(z1 + 22))
VIEWZ(?Ja m) = (y7 m, (‘T + y)(Zl + 22)7 (n + m)(zl + 22))
Let 2’ be a random element ¢f andS; (z, n, ;’f:gl) be defined as follows:
(x,n, 2 vy 2
n—+m

If we fix z, y, andz; and pickzq uniformly from F, then(z + y)(z1 + 22) is a random element distributed
uniformly overF. Therefore, VIEW(z,n) and Sy (x,n, ZL)) are statistically indistinguishable. Let

’ n+m

be a random element ¢f and .Sy (y, m, ZtL)) be defined as follows:

' n+m

Ty

;2
n-+m

(y7 m? z

It is easy to see that VIEWy, m) and Sy (y, m, 22)) are statistically indistinguishable. Using the com-

’ n+m

position theorem the privacy @ty 4 p follows.

C Approximating Reals

Assume that real numbers occur in the interMal, —A/). We divide the interval M, —M) into 2M N
sub-intervals of siz%. Thei-th sub-interval (wher® < i < 2M N) is given by

i i+1
e )
We denote byl (z) as the sub-interval the real numbefies in, i.e.x € [-M + %, —M + I(””—K,H). If
x andy are two real numbers that lie in the sub-intery&t) and(y), thenz + y lies in the sub-interval
[—2M + I(r)]J\r[I(y)’_2M + I(:v)+]{[(y)+2)_

For the rest of the sub-section we will approximate real nemmlwith the the interval they lie in. In
our protocol, a party obtains(I(x) + I(y)) andz(n + m), wherez is the random number. Using some
simple arithmetic we can deduce tlféiﬁ# lies in the interval—M + &, —M + %), whereQ is
the quotient ofy; divided bygs. Integersg; andgs are shown below:

@1 = MN(z(n+m)—2)+z(n+m)-2(I(z) +1(y))
@2 = z(n+m)

In all our algorithms, we have to use a large enough spaceasalilihe operations used to calculateand
g2 are exact, i.e., there is no “wrap around”. If all the integesed iny; andg, are bounded bg*, then the
size of the field should be greater than or equat‘to™.

20



