
A Simple and Effective Method for Incorporating Advice into Kernel Methods

Richard Maclin†, Jude Shavlik‡, Trevor Walker‡, Lisa Torrey‡

Computer Science Department† Computer Sciences Department‡

University of Minnesota Duluth University of Wisconsin Madison
1114 Kirby Drive 1210 West Dayton Street

Duluth, MN 55812 Madison, WI 53706
rmaclin@d.umn.edu {shavlik,twalker,ltorrey}@cs.wisc.edu

Abstract

We propose a simple mechanism for incorporating ad-
vice (prior knowledge), in the form of simple rules, into
support-vector methods for both classification and re-
gression. Our approach is based on introducing inequal-
ity constraints associated with datapoints that match the
advice. These constrained datapoints can be standard
examples in the training set, but can also be unlabeled
data in a semi-supervised, advice-taking approach. Our
new approach is simpler to implement and more effi-
ciently solved than the knowledge-based support vec-
tor classification methods of Fung, Mangasarian and
Shavlik (2002; 2003) and the knowledge-based support
vector regression method of Mangasarian, Shavlik, and
Wild (2004), while performing approximately as well as
these more complex approaches. Experiments using our
new approach on a synthetic task and a reinforcement-
learning problem within the RoboCup soccer simulator
show that our advice-taking method can significantly
outperform a method without advice and perform simi-
larly to prior advice-taking, support-vector machines.

Introduction
An important goal in machine learning is making use
of additional sources of training information beyond the
traditional input-output pairs, such as domain knowledge
and human-provided advice. One interesting approach to
using advice builds on support-vector methods, such as
Knowledge-Based Support Vector Machines (KBSVMs)
(Fung, Mangasarian, & Shavlik 2002; 2003) for classifica-
tion and Knowledge-Based Kernel Regression (KBKR) for
regression (Mangasarian, Shavlik, & Wild 2004).

We develop an alternative that relies on an extensional
definition of advice rather than the intensional approach of
KBKR and KBSVM. Our new approach incorporates advice
in the form of the rules allowed by KBKR and KBSVM, but
does so by using examples that match the advice and de-
riving constraints from those examples. This new approach,
which we call ExtenKBKR (and ExtenKBSVM) is simpler
to implement than KBKR and KBSVM and generally results
in faster optimization and similar accuracy. It also has an ad-
vantage that it can use unlabeled data points and hence can
do semi-supervised, advice-taking learning.

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

In the KBKR and KBSVM approaches, advice is speci-
ficed as simple rules describing a region of the input space,
and then an assertion is made about the class or regression
value for all of the points in that region. For example, a piece
of advice in a regression problem might look like this:

IF distanceTo(goalCenter) ≤ 15 ∧
angle(goalCenter,me, goalie) ≥ 25

THEN Qshoot ≥ 0.9
This rule, from Maclin et al. (2005), shows a sample of

how a rule might be defined for use in a reinforcement-
learning method employing KBKR to learn a set of Q func-
tions. The advice indicates that in a certain range of situa-
tions (where the center of the goal is relatively near and the
angle formed by you and the center of the goal and the goalie
is large enough) the Q value of shooting is more than 0.9.
Maclin et al. developed an extended form of advice called
preference rules that apply in situations where one is learn-
ing two or more regression functions simultaneously and
wish to give advice about how the functions relate. In our
new method we can also easily capture preference advice.

Knowledge-Based Support Vector Methods
In KBKR and KBSVM, the simple rules discussed above
are translated into a set of constraints which are added to the
overall optimization problem. We describe these constraints
in this section.

Consider a regression problem, where our goal is to learn
a function f(x) where our solution takes the form f(x) =
wTx + b. We learn this function from a matrix of train-
ing examples A and their target values y. In the kernel
version of this formulation we replace the wTx using the
standard kernel “trick” and produce a solution of the form
f(x) = K(A,AT )α + b. We learn this function by solv-
ing the following optimization problem (from Mangasarian,
Shavlik and Wild, 2004):

min
(α,b,s)

||α||1 + |b| + C||s||1

s.t. −s ≤ K(A,AT )α+ b− y ≤ s.
(1)

In the above problem we produce a solution using the
variables α, b, and s that minimizes the cost while doing a
good job of approximating the function. Note that the vec-
tor s represents the “slack” variables in this formulation. For
each data point, the slack variable indicates in some sense
how far off the model is in its prediction for that data point

Appears in the Proceedings of the Twenty-First National Conference on Artificial Intelligence (AAAI 2006), Boston, MA.



(the slack measures how far you would have to “move” that
point to predict its output correctly). The optimization prob-
lem works by trying to minimize the combination of the size
of the parameters of our modelα, b and the sum of the slacks
s indicating how far off our solution is. These components
are weighted relatively using a parameter C which the user
picks (or is selected via a tuning set) that indicates the trade-
off between data fit and model complexity.

In the KBKR method, a rule such as the one discussed in
the last section is represented in the following form:

Bx ≤ d =⇒ f(x) ≥ hTx+ β. (2)
For the rule from the last section, the first row of B

would have a 1 in the column for dist(goalCenter),
and the second row would have a -1 in the column for
angle(goalCenter,me, goalie) (the rule specifies ≥, so we
need to multiply both sides by -1). The d would have the
value 15 in the first row and -25 in the second row. The β for
this rule would be 0.9 (the value Qshoot is greater than).

Implication (2) cannot be used directly in a support-vector
machine. However, by using Motzkin’s theory of the alter-
native, this implication can be converted to a complicated set
of linear constraints (Mangasarian, Shavlik, & Wild 2004).
Following standard practice, these constraints are “slacked”
to allow for the possibility of the advice not being perfect.
This results in the optimization problem:

min
(α,b,s,z,u≥0,ζ≥0)

||α||1 + |b| + C||s||1 + µ1||z||1 + µ2ζ

(3)

s.t. − s ≤ K(A,AT )α + b− y ≤ s

for each piece of advice i ∈ {1, . . . , k} :

− z ≤ K(A,BTi )u+K(A,AT )α− Ah ≤ z

− dTu+ ζ ≥ βi − b.

In essence, KBKR introduces a set of variables u defining
a new space where there is a solution to u only if there is no
solution in the original space that would allow the rule to be
violated. The slacks that are introduced to this solution (the
variables z and ζ) allow the system to find a solution u that
only partially meets the constraints.

A major advantage of this approach is that the solution
produced by the system will match the advice even if there
is no training data that matches the preconditions of the ad-
vice, which allows for rapid learning from very few input-
output pairs that are the typical source of training informa-
tion. But this approach also has its limitations. One limita-
tion is that this approach introduces not only a large number
of new constraints to the problem (depending on the size and
number of the advice rules), but also introduces a number of
new variables u, z, ζ into the system of equations that must
be solved for (thereby increasing solution time). In addition,
the overall solution is fairly complex because the u variables
are not directly part of the solution, but are used to indirectly
constrain the variables of the solution α and b.

A second limitation of this approach is the interpretation
of the slacked advice variables (z and ζ) following train-
ing. These slacks allow the learned model to partially con-
tradict the advice, which is necessary since one cannot as-
sume the user-provided advice is perfectly correct. However,

the slacks are associated with how the α variables and the u
variables combine. This approach encourages certain types
of changes to the advice to account for noise; specifically
that the slacks are a measure of how much the preconditions
of an advice rule need to be rotated (z) and translated (ζ) in
feature space in order for the advice to be consistent with
the learned model (recall that the slack s on a standard train-
ing point is the amount it needs to be translated in feature
space). But these types of advice-refinement do not always
match how one would like advice to be refined, such as scal-
ing the polygon representing a rule’s preconditions.

Finally, there is the problematic aspect of the kerneliza-
tion of the B matrix – the valueK(B,AT ). The assumption
in KBKR and KBSVM is that the kernelized matrix repre-
senting the constraints will match the original constraints in
the new space (the antecedents to rules will be altered ap-
propriately when kernelized). This limitation led to Man-
gasarian and Wild (2005) introducing a method that does
not have this weakness. However, their proposed method is
fairly complex, and requires extensive sampling of feature
space, making scalability a significant question.

To address some of these limitations we propose a sim-
pler family of methods, which we call ExtenKBKR and Ex-
tenKBSVM, for Extensional Knowledge-Based Kernel Re-
gression and Support Vector Machines. We chose the term
“extensional” because our approaches represent the polyhe-
dral region of a rule’s preconditions via a sample of the data
points included within it, whereas prior work has directly
manipulated the “intensional” representation of the advice.

Extensional Knowledge-Based Methods
As noted previously, the KBKR and KBSVM methods are
effective, but have limitations, notably that the mechanism
they use to account for imperfect advice is fairly complex.
Our new approach is simpler and involves a more appeal-
ing mechanism for modifying imperfect advice. In our ex-
tensional methods we determine which training-set points
(if any) match each piece of advice and add constraints that
state the advice constraint should be met for those points.

To better understand our approach, consider Figure 1(a),
which shows examples for a binary classification problem.
The advice region is a rectangle in feature space; assume the
advice says that points in this region should belong to the
solid-circle class. Panel (b) shows the decision boundary a
standard SVM might produce. Note there is a penalty, pro-
portional to the distance to the decision boundary, for the
misclassified example, illustrated by the dashed line.

Panel (c) illustrates how the advice might be slacked in
Fung et al.’s KBSVM, by rotation and translation, so that the
advice is consistent with the training data and the decision
boundary. Notice the decision boundary has moved slightly
and that the penalty for the misclassified example remains.

Panel (d) shows what our ExtenKBSVM might do with
this task. It pays a penalty for the white circle inside the ad-
vice because the advice says this point should be a black cir-
cle, but the decision boundary classifies it as a white one. (As
will be seen later – in Equation 8 – the point mispredicted by
the advice is involved in two constraints in ExtenKBSVM’s



(a) (b) (c) (d)

Figure 1: Standard SVMs (panel b) compared to KBSVM
(panel c) and ExtenKBSVM (panel d).

linear program; one from the advice and one from treating
this example as a standard input-output pair.)

Returning now to regression, our ExtenKBKR version of
Equation 3 is:

min
(α,b,s,m≥0)

||α||1 + |b| + C||s||1 +
k∑
i=1

( ψ
|Mk|

||m||1)

s.t. −s ≤ K(A, (A ∪ U)T )α + b− y ≤ s
for each piece of advice i ∈ {1, . . . , k} :
K(Mi, (A ∪ U)T )α+ b+m ≥ βi.

(4)

In this formulation Mi is the set of points that match ad-
vice item i. Note that our kernel is taken with respect to the
set of pointsA∪U , whereU is a set of unlabeled points. Our
method introduces one new parameterψ which is used to de-
termine the total weighting in the cost formula of the slacks
for those points covered by advice (recall that the original
KBKR representation had two parameters, µ1 and µ2, that
weight the slacks associated with the advice).

Notice that labeled training examples can appear in the
linear program multiple times, once in the standard way of
fitting the training example’s input-output pair, and when-
ever the example matches some advice rule.

One major advantage of this approach is that advice can
be applied not only to points from A, but can be used to de-
rive constraints from unlabeled points U . These unlabeled
points may exist for the domain at hand or could be artifi-
cially generated. These new advice-induced constraints di-
rectly constrain the solution variables α, b of the problem.

Another advantage is that if there are exceptions to advice,
they can be captured by training examples. In our approach,
if a datapoint does not match the advice, we simply slack the
advice-constraints related to that training example and pay a
penalty in our cost function. In addition, our approach only
introduces new slack variables to the problem and does not
introduce an entirely new space (i.e., the u’s of Expression 3)
that must be solved to derive a solution.

As mentioned previously, Maclin et al. (2005) introduced
preference advice to allow a user to indicate when the value
of one function should be higher than another when learning
both simultaneously. This is useful in problem domains such
as reinforcement learning (RL), to say that in a particular
situation one action is preferable to another. The Pref-KBKR
formulation for both preference advice and the original form
of advice (which we call absolute advice) is captured in the
following (from Maclin et al. 2005):

min
(αa,ba,sa,zi,(ζi,ui)≥0)

j∑

a=1

(||αa||1 + |ba| + C||sa||1)+

k∑

i=1

(µ1||zi||1 + µ2ζi)

(5)

s.t. for each action a ∈ {1, . . . , j} :

− sa ≤ K(Aa, A
T
a )αa + ba − ya ≤ sa

for each preference advice i ∈ {1, . . . , k} :

−zi ≤K(A,AT )αp −K(A,AT )αn +K(A,BTi )ui ≤ zi

− dTui + ζi ≥ βi − bp + bn

for each absolute advice i ∈ {1, . . . , k} :

−zi ≤K(A,AT )αa +K(A,BTi )ui ≤ zi

− dTui + ζi ≥ βi − ba.

In this formulation, models are learned for actions 1 . . . j
simultaneously. The subscripts p and n refer to the preferred
and non-preferred action in preference advice, and a refers
to the action for absolute advice.

We can easily formulate an ExtenKBKR version using the
same pieces of advice:

min
(αa,ba,sa,m≥0)

j∑

a=1

(||αa||1 + |ba| + C||sa||1)+

k∑

i=1

(
ψ

|Mi|
||m||1)

(6)

s.t. for each action a ∈ {1, . . . , j} :

− sa ≤ K(Aa, (A ∪ U)T )αa + ba − ya ≤ sa

for each piece of prefer advice i ∈ {1, . . . , k} :

K(Mi, (A ∪ U)T )αp + bp −K(Mi, (A ∪ U)T )αn

− bn +m ≥ βi

for each piece of absolute advice i ∈ {1, . . . , k} :

K(Mi, (A ∪ U)T )αa + ba +m ≥ βi.

And these ideas can be used for a linear formulation such as
Maclin et al. (2005) found effective for RL:

min
(αa,ba,sa,m≥0)

j∑

a=1

(||αa||1 + |ba| + C||sa||1)+

k∑

i=1

(
ψ

|Mi|
||m||1)

(7)

s.t. for each action a ∈ {1, . . . , j} :

− sa ≤ Awa + ba − ya ≤ sa

for each piece of prefer advice i ∈ {1, . . . , k} :

Miwp + bp −Miwn − bn +m ≥ βi

for each piece of absolute advice i ∈ {1, . . . , k} :

Miwa + ba +m ≥ βi.

We can also adapt ExtenKBKR quickly and easily to other
forms of advice.

The extensional notion can also be applied to binary clas-
sification problems. The ExtenKBSVM formulation is:

min
(α,b,(s,m≥0)

||α||1 + |b| + C||s||1 +
k∑
i=1

( ψ
|Mi|

||m||1)

s.t. y(K(A, (A ∪ U)T )α+ b) + s ≥ 0
for each piece of advice i ∈ {1, . . . , k} :
βi(K(Mi, (A ∪ U)T )α + b) +m ≥ 0.

(8)



In this formulation a piece of advice indicates that when
Bx ≤ d , then the predicted class should be β (1 or -1).

To compare the efficiencies of the old method approach
and our new approach, we can look at the size of the result-
ing optimization problem. For KBKR, each piece of advice
introduces one new variable for each data point (the z terms)
plus one extra variable (the ζ term), for a total of E + 1,
where E is the number of training examples.

For our ExtenKBKR, each piece of advice introduces
one new variable for each example that matches the ad-
vice (which we refer to as Mk, the number of examples that
match advice item k). In general one would expect Mk to
be much less than E + 1; in addition, one can limit the size
of Mk and only use a random subset of the examples that
match a rule’s preconditions (e.g., in our RoboCup experi-
ments described later, we restricted Mk to be at most 100).

In terms of non-zero terms in the constraint matrix, if
there are no unlabeled data points used, then in KBKR each
piece of preference advice introduces on the order of 2E2

nonzero terms, and each piece of absolute advice introduces
on the order of E2 new terms. The ExtenKBKR introduces
on the order of 2E∗Mk nonzero terms for each piece of pref-
erence advice andE ∗Mk for each piece of absolute advice.
Again one would expect that since Mk << E, ExtenKBKR
would have many fewer such terms. Note that in the case
where unlabeled data points are used in ExtenKBKR the size
of the basis for the kernel would grow, though this would
likely still leave ExtenKBKR with many fewer terms.

In the next few sections we report some experiments
on synthetic data where we know the underlying function,
to demonstrate that the ExtenKBKR method works as ex-
pected, and present some results on a difficult problem, a
subtask of soccer within the RoboCup simulator.

Synthetic Experiments
In order to initially validate our method we performed a
number of simple experiments on synthetically generated
data, one of which we present here. Standard Support Vec-
tor Regression (SVR) involves one parameter, C, the rela-
tive weight of data fit compared to model complexity. Ex-
tenKBKR has a second parameter, ψ (Expression 4), which
is the relative weight of the fit to the prior knowledge. KBKR
has two parameters in addition to C. These are µ1 and µ2

(Expression 3), which measure fit to the prior knowledge.
We selected good parameter values by run-

ning some “tuning-set” experiments. We considered
C ∈ {10, 100, 250, 500}, µ1 ∈ {1, 5, 10, 20, 50, 100}
and µ2 ∈ {1, 5, 10, 20, 50, 100}, and for ExtenKBKR we
considered ψ ∈ {5, 10, 20, 50}. We found that for a wide
range of experiments, C of 100, µ1 and µ2 of 1 and ψ of 50
worked at or near optimal. Following parameter tuning, we

Table 1: Advice used in the synthetic dataset experiment.
IF x1 ≥ .7 ∧ x2 ≥ .7 ∧ x3 ≥ .7 ∧ x4 ≥ .7 THEN f1(x) ≥ 4
IF x5 ≥ .7 ∧ x2 ≤ .3 ∧ x6 ≥ .7 ∧ x4 ≤ .3 THEN f2(x) ≥ 5
IF x5 ≥ .6 ∧ x6 ≥ .6 THEN PREFER f2(x) TO f1(x) BY .1
IF x5 ≤ .3 ∧ x6 ≤ .3 THEN PREFER f1(x) TO f2(x) BY .1
IF x2 ≥ .7 ∧ x4 ≥ .7 THEN PREFER f1(x) TO f2(x) BY .1
IF x2 ≤ .3 ∧ x4 ≤ .3 THEN PREFER f2(x) TO f1(x) BY .1

0

50

100

150

200

0 200 400 600 800

Training Set Size

Ti
m

e 
Ta

ke
n 

(S
ec

on
ds

) SVR

KBKR

ExtenKBKR (0)

ExtenKBKR (5)

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 200 400 600 800

Training Set Size

A
ve

ra
ge

 A
bs

ol
ut

e 
E

rr
or

Figure 2: The top graph shows average absolute error for
SVR, KBKR, ExtenKBKR and ExtenKBKR with 5 pseudo
examples available per advice item. The bottom graph show
the average time to solve the linear program.

ran a fresh set of experiments and report those results.
Our synthetic data involves 10 input features, with each

feature having a random value between 0 and 1. In this test
we create two functions, so that we could test preference ad-
vice. The two functions were f1(x) = 20x1x2x3x4 − 1.25
and f2(x) = 5x5 − 5x2 + 3x6 − 2x4 − 0.5. We selected
these functions since one is highly nonlinear, the other lin-
ear, and there are some overlap and significant differences to
the functions, allowing for advice. We use a Gaussian kernel
with a variance of one. Table 1 shows our advice.

Our tests involve ten repeated experiments, each for
dataset sizes of 20, 40, 100, 200, 400, and 800.

In addition, we test ExtenKBKR not only in the regular
situation, but where we provided up to five randomly gen-
erated pseudo examples per piece of advice (pseudo exam-
ples are used only when less than five training data match
a given piece of advice). Recall that ExtenKBKR is able to
use unlabeled, or in this case, arbitrary random examples, as
its sample of the extension of the advice’s preconditions. A
graph of the average absolute error on a separate set of 500
test points is shown in Figure 2.

The top graph in Figure 2 shows that ExtenKBKR can
outperform KBKR and the no-advice approach, especially
when a small sample of unlabeled (pseudo) examples is used
when there are only a few labeled training examples. In the
top graph KBKR initially performs poorly because the ad-
vice is useful but not perfect and the training set sizes are
very small. The lower graph demonstrates that ExtenKBKR
is more efficient computationally than KBKR.

Experiments in RoboCup Soccer
To further demonstrate the effectiveness of our new formu-
lation, we experimented with a task in the RoboCup soccer
simulator called BreakAway by Torrey et al. (2005).

In M -on-N BreakAway (see Figure 3), the objective of



Figure 3: A sample BreakAway game where two attackers,
represented as light circles with dark edges, are attempting
to score on a goalie. The goal is shown in black and the ball
is the large white circle.

the M reinforcement learners called attackers is to score a
goal against N − 1 hand-coded defenders and a goalie. The
game ends when they succeed, when an opponent takes the
ball, when the ball goes out of bounds, or after a time limit
of 10 seconds. Our experiments use 2-on-1 BreakAway.

The attacker who has the ball may choose to move with
the ball, pass to a teammate, or try to score a goal by shoot-
ing. We limit movement directions to ahead, away, left, and
right, with the goal as the point of reference, and we limit
shots to the left side, right side, or center of the goal. At-
tackers not in possession of the ball follow a hand-coded
strategy to position themselves to receive a pass. The goalie
and defenders also follow hand-coded strategies to prevent
attackers from scoring and gain possession of the ball.

We adopted the state representation of Torrey et al., which
consists of distances and angles between players, distances
and angles involving the goal, and the time left in the game.
The learners receive a +1 reward at the end of the game if
they score a goal, and a 0 reward otherwise.

All features are discretized into intervals called tiles, each
of which is associated with a Boolean feature. A tile fea-
ture is true when the numeric value falls into its interval and
false otherwise. This enhancement of the state space was
used in RoboCup by (Stone & Sutton 2001), and we adopted
it to give our linear Q-function model the ability to repre-
sent more complex functions. We create 64 tiles, of varying
width, for each feature.

We give advice after playing 100 games using randomly
chosen moves. After every 100 games, we retrain the mod-
els, and all three variants use the same TD(λ) Q-learning
algorithm with SARSA estimates (Sutton & Barto 1998).

We first ran short parameter-tuning experiments where
five times we played 1000 games for each of the settings de-
scribed below. For SVR, KBKR, and ExtenKBKR we con-
sidered C ∈ {150, 500, 1500, 5000}. For ExtenKBKR, we
considered ψ ∈ {102, 103, 104, 105, 106}. For KBKR, we
considered µ1 ∈ {102, 103, 104, 105, 106}, while always
setting µ2 = 100µ1. The parameter settings that worked
best in the parameter-tuning experiments are: for SVR, C =
1500; for KBKR, C = 500,mu1 = 105; for ExtenKBKR,
C = 500 and ψ = 105.

In addition, in all runs, we exponentially increased C
and exponentially decreased µ1, µ2, and ψ as the number
of games increased, since the value of prior knowledge be-
comes less important as the amount of actual experience in-
creases. The C values above are the asymptotic values; we

Table 2: Advice used in our RoboCup experiments.
IF distanceTo(goalCenter) ≥ 15
THEN PREFER move(ahead) TO other actions BY .01
IF distanceTo(goalLeft) ≤ 14.9 ∧

distanceTo(goalCenter) ≤ 14.9 ∧
(distanceBetween(teammate, goalie)−
distanceTo(goalie)) ≥ 3 ∧

distanceTo(teammate) ≥ 10 ∧
angle(teammate,me, dgoalie) ≥ 25 ∧
angle(topRight, goalCenter,me) ≥ 126

THEN PREFER passTo(teammate) TO other actions BY .01
IF distanceTo(goalCenter) ≤ 9.9 ∧

angle(goalLeft,me, goalie)≥ 40 ∧
angle(topRight, goalCenter,me) ≤ 80

THEN PREFER shoot(left) TO other actions BY .01

started at C = 0.1Casymp and reached half the asymptotic
value at 5000 games. The µ1, µ2, and ψ are the initial values
and their decay rate was e(1−#games/100). We did not tune
the slopes of these exponential curves.

Once we selected parameter settings via the process de-
scribed above, we performed 10 repeated trials, each starting
fresh at game #1. We ensure that each advice rule covers at
least 10 and at most 100 examples. If a rule covers too few
real examples, we sample the feature space uniformly to cre-
ate random unlabeled “pseudo-examples.” If a rule covers
too many real examples, we randomly discard the excess.
In terms of the number of pseudo examples, ExtenKBKR
adds 19 examples to the 300 or so examples for the leftmost
point in Figure 4. In terms of efficiency, we found that Ex-
tenKBKR executes in approximately half the CPU time.

Table 2 contains the advice we used. Basically it says that
the player with the ball should move in when far from the
goal, that it should pass to its teammate if that player seems
to have a good shot, and it should shoot if close in and has a
good shooting angle. In addition, the second advice rule was
designed to have the player with the ball pass when in the
lower-right corner of the field, thereby luring the goalie to
the right edge of the goal and opening a shooting opportu-
nity for the teammate. We did not manually alter this advice,
which is imperfect, during the course of our experiments.

Figure 4 shows the probability of scoring a goal aver-
aged over sets of 100 games, using the three approaches.
ExtenKBKR is statistically-significantly better (at the 95%
confidence level) than no-advice Support Vector Regression
at 1000, 2000, 3000, 4000, and 5000 games, based on an
unpaired, two-tailed t-test. Also based on that test, KBKR is
statistically-significantly better than SVR at 1000, 2000, and
3000 games. Hence our second experiment demonstrates
that advice-taking can significantly improve reinforcement
learning in a challenging task, and that KBKR and the faster
ExtenKBKR perform about equally accurately.

Related Work
As discussed earlier, our work closely relates to the tech-
niques KBKR, KBSVM, and Pref-KBKR. In addition there
have been a number of papers that have examined the use
of prior knowledge with kernel methods. Schoelkopf et al.



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1000 2000 3000 4000 5000

Training Set Size

P
ro

b
(S

co
ri

n
g

 G
o

al
)

KBKR

ExtenKBKR

SVR

Figure 4: Probability of scoring a goal over the past 100
BreakAway games, for standard support vector regression
(SVR), KBKR, and ExtenKBKR.

(1998) looked at incorporating information about images
and class invariants (e.g., local translations in the image) and
information about local structure in images. Epshteyn and
DeJong (2005) proposed a method for incorporating prior
knowledge that allows a user to specify excitatory and in-
hibitory conditions between examples (e.g., the presence of
the word “medical” should have a positive connection on
the word “doctor”). Our work focuses on advice expressed
as rules, providing a more general platform for incorporat-
ing advice than Schoelkopf et al. and Epshteyn & DeJong.
Sun and DeJong (2005) use domain knowledge to select im-
portant features of examples and create generalized exam-
ples that are used in addition to the standard examples in an
SVM. In our approach we use advice to guide the selection
of important examples and to associate desired outputs with
these examples. Muggleton et al. (2005) developed a method
for incorporating prior knowledge using inductive logic pro-
gramming and support vector methods. Our method differs
in that our approach applies to regression as well as classifi-
cation, and our method explicitly addresses imperfect prior
knowledge.

In addition, a number of semi-supervised support vector
methods have been developed that relate to our work. Wu
and Srihari (2004) developed an SVM method that can use
a rule for labeling unlabeled data and then provide a con-
fidence value on the predictions for both labeled and unla-
beled data. Franz et al. (2004) perform regularization of the
solution to a SVR problem using unlabeled data. We believe
that our advice rules provide a more informative source of
training than these other approaches.

Conclusions
We have presented a family of methods for incorporating
advice represented as rules into support-vector learners for
both regression and classification. Our methods, which we
call ExtenKBKR and ExtenSVM, depend on an extensional
definition of advice, where the information about the advice
is given to the learner as a set of sample points meeting the
preconditions of the advice. Our algorithm then simply adds,
to the linear program being solved, the constraints the advice
places on these points. This contrasts with the KBKR and

KBSVM methods that include advice as constraints on the
solution to the problem in an intensional manner.

In our experiments we demonstrate that our ExtenKBKR
performs similarly empirically to KBKR, both for a syn-
thetic dataset and on a challenging subtask in simulated
robotic soccer. We also argue that our formulation is both
simpler to define and typically leads to smaller optimization
problems that can be solved more efficiently.

One of the significant advantages of our approach is it
can be adapted to almost any rule-based advice; all that is
needed is a test to see if a datapoint matches the advice. In
future work we plan to look at a broader range of advice
ideas, especially with respect to RL methods, where advice
seems to be an especially appropriate learning mechanism.

Acknowledgements
This research was partially supported by US Naval Research
Laboratory grant N00173-06-1-G002 (to RM) and DARPA
grant HR0011-04-1-0007 (to JS).

References
Epshteyn, A., and DeJong, G. 2005. Rotational prior
knowledge for SVMs. In ECML.
Franz, M.; Kwon, Y.; Rasmussen, C.; and Schoelkopf, B.
2004. Semi-supervised kernel regression using whitened
function classes. In DAGM.
Fung, G.; Mangasarian, O.; and Shavlik, J. 2002.
Knowledge-based SVM classifiers. In NIPS.
Fung, G.; Mangasarian, O.; and Shavlik, J. 2003.
Knowledge-based nonlinear kernel classifiers. In COLT.
Maclin, R.; Shavlik, J.; Torrey, L.; Walker, T.; and Wild, E.
2005. Giving advice about preferred actions to reinforce-
ment learners via knowledge-based kernel regression. In
AAAI.
Mangasarian, O., and Wild, E. 2005. Nonlinear knowledge
in kernel approximation. Technical Report 05-05, UW CS.
Mangasarian, O.; Shavlik, J.; and Wild, E. 2004.
Knowledge-based kernel approximation. JMLR 5.
Muggleton, S.; Lodhi, H.; Amini, A.; and Sternberg, M.
2005. Support vector inductive logic programming. In
Proc. of 8th Int. Conf. on Discovery Science, LNAI 3735.
Schoelkopf, B.; Simard, P.; Smola, A.; and Vapnik, V.
1998. Prior knowledge in support vector kernels. In NIPS.
Stone, P., and Sutton, R. 2001. Scaling reinforcement
learning toward RoboCup soccer. In ICML.
Sun, Q., and DeJong, G. 2005. Explanation-augmented
SVMs. In ICML.
Sutton, R., and Barto, A. 1998. Reinforcement Learning:
An Introduction. Cambridge, MA: MIT Press.
Torrey, L.; Walker, T.; Shavlik, J.; and Maclin, R. 2005.
Using advice to transfer knowledge acquired in one rein-
forcement learning task to another. In ECML.
Wu, X., and Srihari, R. 2004. Incorporating prior knowl-
edge with weighted margin SVMs. In KDD.


