
Dartmouth College Computer Science Technical Report TR2003-449

An Active Learning Approach to Efficiently Ranking Retrieval Engines

Lisa A. Torrey

Department of Computer Science

Dartmouth College

Advisor: Javed A. Aslam

Abstract

Evaluating retrieval systems, such as those submitted to the annual TREC competition, usually requires a
large number of documents to be read and judged for relevance to query topics. Test collections are far too
big to be exhaustively judged, so only a subset of documents is selected to form the judgment “pool.” The
selection method that TREC uses produces pools that are still quite large. Research has indicated that it is
possible to rank the retrieval systems correctly using substantially smaller pools.

This paper introduces an active learning algorithm whose goal is to reach the correct rankings using the
smallest possible number of relevance judgments. It adds one document to the pool at a time, always trying
to select the document with the highest information gain. Several variants of this algorithm are described,
each with improvements on the one before. Results from experiments are included for comparison with the
traditional TREC pooling method. The best version of the algorithm reliably outperforms the traditional
method, although its degree of improvement varies.

1 Introduction

Every year, more than 100 information retrieval systems are submitted to the Text REtrieval Conference
(TREC) ad hoc competition. Each system searches a huge document corpus to retrieve lists of relevant
documents for 50 queries. TREC then evaluates all of these lists, which may contain up to 1000 documents
each, and ranks the systems based on how well they retrieved the relevant documents for each query.

The method that TREC uses to rank the systems is called depth-100 pooling. Since it would be infeasible
to read and assign relevance judgments to all of the millions of documents in the corpus, this method
was designed to produce a smaller pool to judge. For each query, only the top 100 documents from each
list are judged (labelled as either relevant or nonrelevant), and all other documents are assumed to be
nonrelevant. Zobel [6] showed that this method is reliable, because by using larger pools he produced only
negligible differences from the official results. Rankings created using a pooling depth of 100 can therefore
be considered “correct.”

Still, even with this reduced number of relevance judgments, the process requires a great deal of human
work. In TREC 8, for example, a total of 86,830 documents were judged [5]. An alternative pooling method
might significantly reduce the required number of judgments.

1.1 Previous Research

Several such alternative methods have been explored. Zobel [6] studied shallower TREC-style pooling and
found that pool depths of 50 and above often produced results that were well correlated with the depth-
100 rankings. This indicates that it should be possible to find significantly smaller pools that correctly
differentiate between systems.

1

Cormack, Palmer, and Clarke [3] explored methods that attempt to avoid judging nonrelevant documents,
thereby decreasing the judgment pool to only the relevant documents. In one experiment, several researchers
simply searched the corpus with manual queries until they no longer found relevant documents frequently.
In another, they gave priority to documents from lists that were doing well based on previous judgments.
They reported good results, although their methods risk being unpredictable and potentially biased.

Soboroff, Nicholas, and Cahan [4] introduced a technique that requires no relevance judgments at all:
selecting a pool, determining the expected number of relevant documents, and assigning judgments randomly
in proportion to that number. They experimented with pools of varying depth, but always used the top
documents in the lists. Their results were surprisingly correlated with the depth-100 rankings, although they
tended to rank the best systems badly.

Aslam and Montague [1] investigated the use of metasearch for selecting a pool, using relevance judg-
ments that were either inferred or produced by human assessors. The pools produced by metasearch were
substantially smaller than the depth-100 pools, so fewer human judgments were required. The resulting
system rankings were well correlated with the depth-100 rankings, although again, the best systems tended
to be badly ranked.

These investigations leave open the problem of selecting a truly optimal pool. Assuming that at least
some human relevance judgments will be used, the most work will be saved by a technique that can reliably
produce optimal pools. Rankings from an optimal pool should be highly correlated with TREC rankings
after a minimum number of judgments. The correlation should be especially good among the best systems,
which are the most important to score correctly. This paper applies a type of machine learning called active
learning to this problem.

1.2 Active Learning

In the traditional supervised learning framework, the learner is presented with a hypothesis space and a
pre-prepared set of training data. Its task is to narrow down the hypothesis space and select a hypothesis
that is consistent with the data. Given enough data, it will rule out everything but the correct hypothesis,
which is called the target concept. We can view the TREC competition in terms of this framework: the
hypothesis space is all possible rankings of the systems, the target concept is the depth-100 ranking, and the
training data is the set of human relevance judgments.

Active learning, on the other hand, does not require a static set of training data. Instead, the learner
requests one data point at a time. The point that it selects is the one that narrows down the hypothesis
space the most, so that it will arrive at the target concept with as few requests as possible. Active learning
is an efficient approach when providing data is slow or difficult, because it makes the most out of small
amounts of data. We can view the optimal pool problem in these terms: a request for a data point is a
request for one human relevance judgment, the target concept is again the depth-100 ranking, and we want
to arrive at it using as few relevance judgments as possible.

1.3 Information Gain

The amount that labeling a data point would narrow down the hypothesis space is called its information
gain. In order for active learning to be worthwhile, some data points must have higher information gain
than others. In terms of the optimal pool problem, some documents must cause more progress toward the
correct ranking than others. Intuitively, this seems to be the case:

• Consider a document that two systems return at the very top of their lists. If it is relevant, they will
be rewarded the same amount for retrieving it; if it is nonrelevant, they will be penalized the same
amount. In contrast, consider a document that one system returns at the top and the other returns at
the bottom. This second document will reward them differently and affect their relative ranks, so it
has a higher information gain than the first.

• Consider one document that two systems return in different positions near the top of their lists, and
another that they return in different positions near the bottom of their lists. Because documents at
the top count more in a system’s score than documents at the bottom, the first one has a higher
information gain than the second. (The scoring technique is described later.)

2

• Suppose that several judgments have already been made, and some systems are performing much better
than others so far. Consider a document that two good systems disagree on, and another that two bad
systems disagree on. For our purposes, the first one has a higher information gain than the second,
because we care more about distinguishing the better systems.

1.4 The Optimal Pool Problem

This paper reports the results of an active learning algorithm that attempts to produce optimal pools. Five
variants of the algorithm were developed as shortcomings were discovered, each building on the last. They
are introduced in that order here.

Section 2 explains some standard metrics and graphs used to evaluate the experiments. Sections 3-7
describe the algorithm variants, discussing the issues that came up in each step. They each include results
for one query, for purposes of comparison between the methods. These comparative results show both their
overall performance against depth-100 pooling and their relative performance at distinguishing the best
systems quickly. Section 8 provides a more in-depth look at the best variant, using results from several
queries. Section 9 discusses conclusions and future work.

The query used for comparison between the variants is query number 415 from TREC-8, chosen because
it displayed fairly well the characteristic progress of each progressive change to the algorithm. The three
other queries used to demonstrate the best variant are also from TREC-8, numbers 408, 420, and 445, chosen
because they were representative of the range of performance. All queries are from TREC-8 because that
was the “hardest” competition to rank in previous research, especially among the best systems.

2 Metrics and Graphs

There are four measurements that require brief explanation: one that TREC uses to evaluate systems, and
three that we use to evaluate algorithms in comparison to depth-100 pooling. There are also two types of
graphs that display information of interest in this paper.

2.1 Average Precison

A system’s performance on a query is evaluated with a metric called average precision. It ranges from 0 to
1, where 0 means the system listed none of the relevant documents, and 1 means the system listed all of the
relevant documents before it listed any nonrelevant ones. It is calculated for one system as follows:

• Starting at the top of the list, find the index of each relevant document retrieved.

• At each index, divide the number of relevant documents retrieved so far by the total number of
documents retrieved so far, and add this fraction to a cumulating sum.

• Find the total number of relevant documents in the pool (including those not retrieved by this particular
system) and divide the sum by this number.

This measure penalizes systems for missing relevant documents, and also for placing nonrelevant documents
above relevant ones. Mistakes at the top have more impact, because each document’s relevance affects the
calculation at every relevant document below it.

2.2 Linear Correlation

The metric used to evaluate calculated average precisions is the standard linear correlation. Each system is
represented by one point: its x-coordinate is the average precision we have calculated, and its y-coordinate
is its true average precision. We then calculate the linear correlation of that set of points by finding the line
that best fits them and returning a value indicating how well it fits. The range is from -1 to 1, where -1
means they fit perfectly to a line with negative slope, 1 means they fit perfectly to a line with positive slope,
and 0 means the values are completely unrelated.

3

2.3 Kendall’s Tau

One metric used to evaluate calculated rankings is called Kendall’s τ . It is a function of the minimum
number of pairwise swaps required to turn one ranking into another. It ranges from -1 to 1, where -1 means
one ranking is the reverse of the other, 1 means the two are identical, and 0 means they are completely
unrelated.

2.4 An Alternative Rank Metric

Kendall’s τ is not an ideal evaluation of system rankings, because it gives equal weight to pairwise swaps at
both the top and the bottom of the order. Since the ranks at the top are in fact more important, it seems
appropriate to introduce a more weighted metric.

An algorithm should be penalized for placing lower-ranked systems above higher-ranked ones, and mis-
takes at the top should have more impact. These conditions sound familiar, because in fact they are quite
similar to the ones explained in the section on average precision. The new metric used in this paper, there-
fore, is based on the idea of average precision, and will be referred to as rank precision. It is calculated as
follows:

• Pick an index at random and divide the correct rankings into “good” systems above that index and
“bad” systems below it.

• Compute the average precision of the calculated rankings, exactly as if these were relevance judgments
and each system was a document.

• Repeat for every possible division index, and take the average of all the resulting values.

This measure can be as high as 1, and it will always be higher than 0. It tends to produce higher values than
the Kendall’s τ does, especially once the top systems have been ranked correctly. Both have their highest
values at 1, but do not expect a ranking with a very high rank precision to have an equally high Kendall’s τ .

2.5 Graphs

The first type of graph plots the progress of an algorithm (in terms of one of the above metrics) against
the number of relevance judgments made. It will also contain a second curve, which represents the depth-
k rankings for k=1 through k=100, for comparison. In a successful experiment the first curve remains
consistently above the second, and it reaches its highest value significantly sooner than the second does.

The second type of graph is a snapshot of the state at one point in time during an experiment. It plots
system ranks, which are estimated based on the current set of relevance judgments, against the correct
rankings. If the algorithm has reached a completely correct ranking, this graph will be a perfectly straight
diagonal line from the lower left to the upper right. In a successful experiment the line forms quickly,
especially in the lower left where the best systems are represented.

3 Minimizing Uncertainty

After a set of relevance judgments, a system’s average precision has a range of possible values. If the rest
of the judgments go as badly as possible for that system, its average precision will be at the bottom of that
range. If the rest go as well as possible, its average precision will be at the top. During each round of the
judgment process, each system has such an interval of possible average precisions. Before any judgments
have been made, all the intervals begin at 0 and end at 1, but as judgments are added, they shrink. Once all
the depth-100 judgments have been made, all the intervals have shrunk to single points and only one value
is possible for each system.

The first variant of the learning algorithm, which we will refer to as A1, considers the sum of these
intervals to be a measure of total uncertainty. During each round of the judgment process, each unjudged
document has the potential to decrease that uncertainty by a computable amount. In order to minimize
uncertainty as quickly as possible, A1 selects one document each round for judging, choosing the one whose
decrease it expects to be the largest.

4

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 200 400 600 800 1000 1200

co
rr

el
at

io
n

number of judgments

A1: linear correlation with depth-100 ranking on TREC 8, query 415

A1
depth-pooling

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600

ta
u

number of judgments

A1: Kendall’s tau with depth-100 ranking on TREC 8, query 415

A1
depth-pooling

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 200 400 600 800 1000 1200 1400 1600

ra
nk

 p
re

ci
si

on

number of judgments

A1: rank precision with depth-100 ranking on TREC 8, query 415

A1
depth-pooling

Figure 1: Overall performance of A1 and depth-pooling on one TREC-8 query.

3.1 Adversarial Choices

There are actually two potential decreases associated with each document: one if it turns out to be relevant,
and another if it turns out to be nonrelevant. Before actually asking for the judgment, none of the algorithms
know which will be the true decrease. In A1, this unknown factor is decided using a minimax strategy; it
calculates both values, treats the minimum of the two as the expected decrease, and in the end takes the
“maximum of minimums” to choose one document. This is an adversarial strategy, and a rather pessimistic
one. It ensures that even if relevance judgments are given by an adversary who wants A1 to make as little
progress as possible, decent progress can still be made.

3.2 Interval Calculation

To find the minimum and maximum possible average precisions for a system, all unjudged documents must
be assigned arbitrary judgments in the worst and best possible ways. For the worst value, any unjudged
document that the system does not retrieve should clearly be labeled relevant. This label would add to the
denominator of its average precision, but contribute nothing to the numerator, thereby decreasing the value.
Similarly, for the best value, any unjudged document that the system does not retrieve should be labeled
nonrelevant.

Because of the complicated nature of the average precision metric, it is not immediately obvious which
will be the “worst” and “best” ways to label unjudged documents within a system’s list. To find the best
value, for example, it seems at first glance that they all should be labeled relevant. But this is not always the
case: if the list contains a document that has already been labeled nonrelevant, labeling relevant documents
below it may actually lower the average precision.

However, suppose we label all unjudged documents relevant at first. By going from the bottom up and
switching them to nonrelevant one at a time, the algorithm will eventually hit upon the best value. That is,
given a number of “relevant” labels to assign to documents, it can maximize average precision by clustering
them as close to the top as possible. The denominator of the calculation remains constant no matter how
the labels are distributed, but the numerator clearly gets larger when the labels are as high in the list as
they can be. Similarly, the algorithm will eventually hit upon the worst value by going from the bottom up
and labeling unjudged documents relevant one at a time.

The algorithms all calculate minimum and maximum interval values in this way. Since the important
documents are those in the depth-100 pool, they assume all other documents are always nonrelevant.

3.3 Performance

Given the simplicity of this algorithm, it performed surprisingly well. Figure 1 displays its overall performance
on TREC-8 query 415. All of the curves rise well above the depth-pooling curves, indicating that A1 reaches
the correct average precisions, the correct rankings, and the correct best-system rankings more quickly.

Figure 2 shows the progress of both A1 and depth-pooling after approximately 50 judgments, 200 judg-
ments, and 500 judgments. Note that A1 produces graphs that are closer to the target, which confirms
expectations since its Kendall’s τ is higher at each of these points. Furthermore, while depth-pooling ap-
pears to correctly rank the best systems only at the end, A1 progresses uniformly, giving equal treatment to
systems at the top and bottom of the range.

5

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

tr
ue

 r
an

ks

system ranks

A1: ranks vs. true ranks after 50 judgments

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

tr
ue

 r
an

ks

system ranks

A1: ranks vs. true ranks after 200 judgments

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

tr
ue

 r
an

ks

system ranks

A1: ranks vs. true ranks after 500 judgments

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

tr
ue

 r
an

ks

system ranks

Depth-pooling: ranks vs. true ranks at depth 2 (55 judgments)

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

tr
ue

 r
an

ks

system ranks

Depth-pooling: ranks vs. true ranks at depth 12 (202 judgments)

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

tr
ue

 r
an

ks

system ranks

Depth-pooling: ranks vs. true ranks at depth 31 (504 judgments)

Figure 2: Progress of A1 and depth-pooling at three points during the judgment process.

3.4 The Next Step

By concentrating on decreasing total uncertainty, A1 concentrates on the exact average precisions of the
systems, rather than on their relative ranks. While the two are closely related, they are not exactly the
same. Consider a system interval that has non-zero size but that does not overlap with any other interval;
its rank is certain, even though its average precision is not. But A1 may still needlessly spend judgments
trying to shrink its size to zero. Since our stated goal is to determine the rankings and not the exact average
precisions, the next algorithm should pay direct attention to the rankings.

4 Minimizing Overlap

Rather than looking at the total interval distance, A2 looks at the total pairwise overlap distance. That is,
it treats the sum of the system overlaps as a measure of total uncertainty. It measures the length of each
system’s overlap with every other system, and adds all of these into the total. The document it chooses
during each round is the one that should decrease the total the most, according to the same adversarial
“minimax” method explained above.

4.1 Guessing Precisions

After every round of the judgment process, A2 evaluates its progress using linear correlation, Kendall’s τ ,
and rank precision. In order to do so, it needs to calculate average precisions using a partial set of relevance
judgments. There seem to be two reasonable ways to use this partial information to guess the values. First:
it could assume any unjudged documents are nonrelevant, and calculate average precision as if it had a full
set of judgments. Second: it could simply take the average value of each system’s current interval, avoiding
the potentially dangerous overlap areas as much as possible.

The first of these methods appears to be better in practice. In the long run, the curves are comparable,
but the curves produced by the second method tend to have substantial local fluctuation even after the curves
produced by the first method have leveled out. This unreliability makes the second method less desirable,
since our goal is reliably high performance. There is a likely explanation for the fluctuation: it is usually
not possible, using consistent relevance judgments, for every system to fall in the center of its interval. The
judgments that would cause one system to do so would make it impossible for others to do so. A2, along
with all the other variants, therefore uses the first method.

6

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 200 400 600 800 1000 1200 1400 1600

co
rr

el
at

io
n

number of judgments

A2: linear correlation with depth-100 ranking on TREC 8, query 415

A2
depth-pooling

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600

ta
u

number of judgments

A2: Kendall’s tau with depth-100 ranking on TREC 8, query 415

A2
depth-pooling

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600

ra
nk

 p
re

ci
si

on

number of judgments

A2: rank precision with depth-100 ranking on TREC 8, query 415

A2
depth-pooling

Figure 3: Overall performance of A2 and depth-pooling on one TREC-8 query.

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

tr
ue

 r
an

ks

system ranks

A2: ranks vs. true ranks after 70 judgments

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

tr
ue

 r
an

ks

system ranks

A2: ranks vs. true ranks after 500 judgments

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

tr
ue

 r
an

ks

system ranks

A2: ranks vs. true ranks after 1440 judgments

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

tr
ue

 r
an

ks

system ranks

Depth-pooling: ranks vs. true ranks at depth 3 (74 judgments)

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

tr
ue

 r
an

ks

system ranks

Depth-pooling: ranks vs. true ranks at depth 31 (504 judgments)

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

tr
ue

 r
an

ks

system ranks

Depth-pooling: ranks vs. true ranks at depth 94 (1443 judgments)

Figure 4: Progress of A2 and depth-pooling at three points during the judgment process.

4.2 Performance

Figure 3 displays the overall performance of A2 on TREC-8 query 415. It actually does worse than A1,
appearing to level out before reaching the top of the range, and only rising to the top near the end. Figure
4 shows that it also takes a long time to correctly rank the best systems.

We will concentrate on the second issue here, and leave the first for the next section. A2 treats all
overlaps equally, when in fact some overlaps are more important to eliminate than others. It may be that
there are larger overlaps at the bottom of the range than at the top, so that A2 first chooses documents that
distinguish between the lower systems, only turning to the higher systems at the end.

4.3 The Next Step

Overlaps near the top of the range should cost more, since ranking mistakes among the best systems are less
acceptable. An algorithm that weights overlaps by their location would be more in accordance with the rank
precision measure introduced earlier. Such an algorithm might perform better in terms of rank precision,
even if it performs worse in terms of Kendall’s τ .

5 Weighting Intervals

A3 calculates the sum of the pairwise overlaps differently: it multiplies the size of each overlap by its
midpoint. This produces a weighted sum that penalizes overlaps in the higher values of the average precision
range.

7

The reason for this particular weighting is that it minimizes the likelihood of overlap among the best systems.
The rest of this section is devoted to proving that it does so.

Assume that the systems have been assigned unique integer identifiers. Let the following variables be defined:

xij = the lower boundary of the overlap between systems i and j
yij = the upper boundary of the overlap between systems i and j

Also let the following functions be defined:

d(Si, Sj) =

{

yij − xij If i < j and systems i and j overlap at x
0 Otherwise

m(Si, Sj) =

{

yij+xij

2 If i < j and systems i and j overlap at x
0 Otherwise

The original sum calculation, which simply adds the overlap distances, can then be expressed as:

SUMorig =
∑

i,j d(Si, Sj)

And the new sum calculation can be expressed as:

SUMnew =
∑

i,j d(Si, Sj) · m(Si, Sj)

But the original sum calculation can also be expressed in another way, which will allow us to show why the
new sum calculation is justified. Let the following functions be defined:

f(x) = the number of pairwise overlaps at average precision x

v(Si, Sj , x) =

{

1 if i < j and systems i and j overlap at x
0 otherwise.

Then the overlap distance for systems i and j is just
∫

v(Si, Sj , x)dx. The original sum calculation can then
be expressed as:

SUMorig =
∑

i,j

[∫

v(Si, Sj , x)dx
]

=
∫

[

∑

i,j v(Si, Sj , x)
]

dx

Note that
∑

i,j v(Si, Sj , x) evaluated at one point x is just the number of pairwise overlaps at x, which is
exactly f(x). So the original sum calculation is also equivalent to:

SUMorig =
∫

f(x)dx

The significance of f(x) is that it is proportional to a probability distribution– specifically, the probability
that a given overlap encompasses the point x. We can find the expected value of a random variable chosen
according to that distribution by calculating

∫

xf(x)dx.

This is equivalent to finding the expected average precision at which a randomly selected overlap occurs.
This value should be minimized, since that would make overlaps between the best systems very unlikely. We
can show that A3 does in fact try to minimize it, because the new sum calculation is equivalent to

∫

xf(x)dx.
We start by re-writing the integral:

∫

xf(x)dx =
∫

x
[

∑

i,j v(Si, Sj , x)
]

dx =
∑

i,j

[∫

x · v(Si, Sj , x)dx
]

The function v(Si, Sj , x) has the value 1 between xij and yij , and the value 0 elsewhere. So we can re-write
it again:

8

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 200 400 600 800 1000 1200 1400 1600

co
rr

el
at

io
n

number of judgments

A3: linear correlation with depth-100 ranking on TREC 8, query 415

A3
depth-pooling

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600

ta
u

number of judgments

A3: Kendall’s tau with depth-100 ranking on TREC 8, query 415

A3
depth-pooling

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600

ra
nk

 p
re

ci
si

on

number of judgments

A3: rank precision with depth-100 ranking on TREC 8, query 415

A3
depth-pooling

Figure 5: Overall performance of A3 and depth-pooling on one TREC-8 query.

∫

xf(x)dx =
∑

i,j

[

∫ yij

xij
x · 1dx

]

Evaluating the integral, we get the following:

∫

xf(x)dx =
∑

i,j

[

x2

2 |
yij

xij

]

=
∑

i,j

[

y2

ij−x2

ij

2

]

∫

xf(x)dx =
∑

i,j

[

(yij−xij)(yij+xij)
2

]

=
∑

i,j d(Si, Sj) · m(Si, Sj)

This is exactly the new sum calculation: distance multiplied by midpoint for each overlap. So:

∫

xf(x)dx = SUMnew

Therefore, when A3 tries to minimize the sum, it is always trying to eliminate overlaps among the best
systems.

5.1 Performance

Figure 5 displays the overall performance of A3 on TREC-8 query 415. It improves substantially upon A2,
especially in the rank precision measure, which indicates that the new sum calculation was successful. Figure
6 confirms this indication, since the best-system rankings appear more quickly than they did in both A2 and
depth-pooling.

Note that the worst systems still get ranked the most quickly. This is natural, because of the way that
these algorithms calculate average precisions with partial judgment sets. All systems start with very low
average precisions, which increase gradually as relevant documents are found. The worst systems simply
don’t have very far to go, so as long as the other systems rise away from them quickly, they will be ranked
correctly early on. The important factor to compare is how quickly the best systems rise away from the
worst ones.

While the overall performance of A3 is better than that of A2, it is still below that of A1, because
the curves rise slowly at the beginning. This seems surprising, since we would expect both A3 and A2 to
improve upon A1. Upon further examination, however, there is a likely explanation. Recall that these three
algorithms are making adversarial choices: they calculate two possible decreases for each document, assume
the smaller is the correct one, and then find the maximum over all documents. In A1, the two possible
decreases for one document should be nearly equivalent, because an interval can be narrowed equally from
the top or from the bottom. A2 and A3, however, are counting decreases in overlaps. These are much smaller
targets than entire intervals, especially at the end of the process. In these algorithms, a document could
have one possible decrease that is very high but another that is very low. Since the higher value is ignored,
this document would be passed by in favor of one whose possible decreases are both moderate. So although
all three algorithms use this conservative approach, it seems likely that A2 and A3 are held back by it while
A1 is not.

9

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

tr
ue

 r
an

ks

system ranks

A3: ranks vs. true ranks after 70 judgments

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

tr
ue

 r
an

ks

system ranks

A2: ranks vs. true ranks after 440 judgments

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

tr
ue

 r
an

ks

system ranks

A3: ranks vs. true ranks after 600 judgments

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

tr
ue

 r
an

ks

system ranks

Depth-pooling: ranks vs. true ranks at depth 3 (74 judgments)

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

tr
ue

 r
an

ks

system ranks

Depth-pooling: ranks vs. true ranks at depth 27 (441 judgments)

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

tr
ue

 r
an

ks

system ranks

Depth-pooling: ranks vs. true ranks at depth 37 (598 judgments)

Figure 6: Progress of A3 and depth-pooling at three points during the judgment process.

5.2 The Next Step

Adversarial choices limit progress, and they are also unnecessarily simple. They assume that every document
is equally likely to be relevant or nonrelevant when, in fact, we have more information than that: the lists
themselves can be used to estimate the probability that a document is relevant. Using the information
inherent in the problem, we could avoid the conservative choices that hold back A3.

6 Weighting Relevance

A4 estimates the probability that each document is relevant, and calculates the weighted average of the two
possible decreases. To estimate a probability, it looks at a document’s rank in each of the retrieved lists.
The lists may not agree, and many of them may overestimate or underestimate the document, but taken all
together they can provide a guess.

There is a common curve that characterizes the dropoff of relevant documents in a list [2]. For document
d in list i with rank rid, its probability pi of relevance is:

pi(d) ∝ log(rid)/rid

Constants in this equation will vary with the quality of the list, but they can be ignored here since we are
comparing relative values anyway. A4 calculates the average p over all lists for each document, and treats
this value as the probability that the document is relevant. It then multiplies the “decrease if relevant” by
p and the “decrease if nonrelevant” by (1 − p), and takes the average.

6.1 Performance

Figure 7 displays the overall performance of A4 on TREC-8 query 415. The weighted average appears to
have improved the algorithm’s progress at the beginning of the curve. Figure 8 shows that the best-system
rankings are not improved, however. The likely reason is that documents are usually more likely to be
nonrelevant than relevant, so the “decrease if nonrelevant” is weighted more. Therefore, A4 may be choosing
more nonrelevant documents.

Because of the way the algorithms calculate average precisions after each round, relevant labels cause
more progress than nonrelevant labels do. By assuming that unjudged documents are nonrelevant, we are

10

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 200 400 600 800 1000 1200 1400 1600

co
rr

el
at

io
n

number of judgments

A4: linear correlation with depth-100 ranking on TREC 8, query 415

A4
depth-pooling

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600

ta
u

number of judgments

A4: Kendall’s tau with depth-100 ranking on TREC 8, query 415

A4
depth-pooling

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600

ra
nk

 p
re

ci
si

on

number of judgments

A4: rank precision with depth-100 ranking on TREC 8, query 415

A4
depth-pooling

Figure 7: Overall performance of A4 and depth-pooling on one TREC-8 query.

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

tr
ue

 r
an

ks

system ranks

A4: ranks vs. true ranks after 80 judgments

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

tr
ue

 r
an

ks

system ranks

A4: ranks vs. true ranks after 250 judgments

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

tr
ue

 r
an

ks

system ranks

A4: ranks vs. true ranks after 600 judgments

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

tr
ue

 r
an

ks

system ranks

Depth-pooling: ranks vs. true ranks at depth 4 (89 judgments)

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

tr
ue

 r
an

ks

system ranks

Depth-pooling: ranks vs. true ranks at depth 15 (245 judgments)

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

tr
ue

 r
an

ks

system ranks

Depth-pooling: ranks vs. true ranks at depth 37 (598 judgments)

Figure 8: Progress of A4 and depth-pooling at three points during the judgment process.

pretending that we know they have nonrelevant labels. In a sense, if we ask for a label and get “nonrelevant,”
we have actually gained nothing, because we already had that information.

6.2 The Next Step

An algorithm might progress more quickly if it used the probability of relevance as a factor when choosing
a document. Instead of calculating a weighted average, it could concentrate only on what would happen if
the document were relevant.

7 Favoring Relevance

A5, the final variant, ignores altogether the “decrease if nonrelevant.” It calculates only the “decrease if
relevant,” and weights that value by the probability of relevance.

It is true that A5 favors relevant documents. Note, though, that this should not be considered an effective
“metasearch” method, because a document with a larger decrease might very well be chosen over one that
is more probably relevant.

7.1 Performance

Figures 9 and 10 display the performance of A5 on TREC-8 query 415. The curves all rise sharply, and the
best systems are differentiated quickly. The graph approaches a straight line by 350 judgments out of 1539.

11

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 200 400 600 800 1000 1200

co
rr

el
at

io
n

number of judgments

A5: linear correlation with depth-100 ranking on TREC 8, query 415

A5
depth-pooling

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600

ta
u

number of judgments

A5: Kendall’s tau with depth-100 ranking on TREC 8, query 415

A5
depth-pooling

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600

ra
nk

 p
re

ci
si

on

number of judgments

A5: rank precision with depth-100 ranking on TREC 8, query 415

A5
depth-pooling

Figure 9: Overall performance of A5 and depth-pooling on one TREC-8 query.

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

tr
ue

 r
an

ks

system ranks

A5: ranks vs. true ranks after 80 judgments

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

tr
ue

 r
an

ks

system ranks

A5: ranks vs. true ranks after 150 judgments

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

tr
ue

 r
an

ks

system ranks

A5: ranks vs. true ranks after 350 judgments

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

tr
ue

 r
an

ks

system ranks

Depth-pooling: ranks vs. true ranks at depth 4 (89 judgments)

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

tr
ue

 r
an

ks

system ranks

Depth-pooling: ranks vs. true ranks at depth 8 (152 judgments)

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

tr
ue

 r
an

ks

system ranks

Depth-pooling: ranks vs. true ranks at depth 22 (359 judgments)

Figure 10: Progress of A5 and depth-pooling at three points during the judgment process.

8 Results

The remaining figures display results of three more queries from TREC-8 (408, 420, and 445). They demon-
strate the range of performance of A5. In all queries it performs better than depth-pooling, but sometimes
not by a great amount.

Query 408 (Figures 11 and 12) is an example of how the algorithm can produce better rankings than
average precisions– while its Kendall’s τ is higher than that of depth-pooling, its linear correlation is lower.
Its rank precision is sometimes better, sometimes worse, overtaking the depth-pooling rank precision in the
end. This query seemed to be a difficult one, because both methods struggled to rise to the top of the range.

Query 420 (Figures 13 and 14) is an example of how the algorithm can score better on rank precision
than on Kendall’s τ . While it falls behind in the latter graph, it is consistently ahead in the former. Its linear
correlation is also consistently ahead of the depth-pooling curve. This query seemed to be a particularly
easy one, because both methods rose to the top of the range very quickly.

Query 445 (Figures 15 and 16) is another example of a good performance by A5. As with query 415, the
curves rise sharply and remain above the depth-pooling curves. It seems that queries of average difficulty,
such as 415 and 445, are the ones on which this algorithm performs best.

12

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 200 400 600 800 1000 1200 1400 1600

co
rr

el
at

io
n

number of judgments

A5: linear correlation with depth-100 ranking on TREC 8, query 408

A5
depth-pooling

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600

ta
u

number of judgments

A5: Kendall’s tau with depth-100 ranking on TREC 8, query 408

A5
depth-pooling

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600

ra
nk

 p
re

ci
si

on

number of judgments

A5: rank precision with depth-100 ranking on TREC 8, query 408

A5
depth-pooling

Figure 11: Overall performance of A5 and depth-pooling on query 408.

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

tr
ue

 r
an

ks

system ranks

A5: ranks vs. true ranks after 100 judgments

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

tr
ue

 r
an

ks

system ranks

A5: ranks vs. true ranks after 400 judgments

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

tr
ue

 r
an

ks

system ranks

A5: ranks vs. true ranks after 800 judgments

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

tr
ue

 r
an

ks

system ranks

Depth-pooling: ranks vs. true ranks at depth 5 (109 judgments)

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

tr
ue

 r
an

ks

system ranks

Depth-pooling: ranks vs. true ranks at depth 26 (408 judgments)

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

tr
ue

 r
an

ks

system ranks

Depth-pooling: ranks vs. true ranks at depth 54 (807 judgments)

Figure 12: Progress of A5 and depth-pooling at three points during the judgment process.

9 Conclusions

The algorithms introduced in this paper compare favorably to the depth-pooling method on queries taken
from the “hardest” TREC competition thus far. The early variants were often, although not reliably, faster
than depth-pooling at both ranking systems and distinguishing the best systems. The final variants have
been reliably better in all experiments so far, although the degree of improvement varies. The result is the
beginning of an answer to the optimal pool problem.

There are more issues to address in future experiments. The first should be algorithm efficiency, which
was a severely limiting factor here. Since our goal was to be reliable, we evaluated the effects of every
single unjudged document in each round of the algorithms. This took stunning amounts of time. Despite
their performance, therefore, the algorithms are not currently very practical. It may be possible to avoid
considering every unjudged document before choosing one; the challenge would be to do so without sacrificing
reliability.

If the algorithms could be made significantly faster, the next issue would be to conduct more wide-scale
experiments than were possible here, examining their performance over entire TREC conferences instead
of individual queries. Then further improvements could be made to the strategies, especially in terms of
distinguishing the best systems. It might also be interesting to find the actual optimal pools, by “peeking”
at the relevance judgments before choosing documents, for comparison to the results of these algorithms.

In the end, this method may be inherently too expensive or unpredictable to be useful in a setting like
TREC, where there is much concern about fairness. However, it is also possible that a truly optimal pool

13

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 100 200 300 400 500 600

co
rr

el
at

io
n

number of judgments

A5: linear correlation with depth-100 ranking on TREC 8, query 420

A5
depth-pooling

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 100 200 300 400 500 600

ta
u

number of judgments

A5: Kendall’s tau with depth-100 ranking on TREC 8, query 420

A5
depth-pooling

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 100 200 300 400 500 600

ra
nk

 p
re

ci
si

on

number of judgments

A5: rank precision with depth-100 ranking on TREC 8, query 420

A5
depth-pooling

Figure 13: Overall performance of A5 and depth-pooling on query 420.

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

tr
ue

 r
an

ks

system ranks

A5: ranks vs. true ranks after 50 judgments

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

tr
ue

 r
an

ks

system ranks

A5: ranks vs. true ranks after 80 judgments

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

tr
ue

 r
an

ks
system ranks

A5: ranks vs. true ranks after 490 judgments

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

tr
ue

 r
an

ks

system ranks

Depth-pooling: ranks vs. true ranks at depth 2 (44 judgments)

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

tr
ue

 r
an

ks

system ranks

Depth-pooling: ranks vs. true ranks at depth 4 (77 judgments)

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

tr
ue

 r
an

ks

system ranks

Depth-pooling: ranks vs. true ranks at depth 31 (488 judgments)

Figure 14: Progress of A5 and depth-pooling at three points during the judgment process.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 200 400 600 800 1000

co
rr

el
at

io
n

number of judgments

A5: linear correlation with depth-100 ranking on TREC 8, query 445

A5
depth-pooling

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 200 400 600 800 1000

ta
u

number of judgments

A5: Kendall’s tau with depth-100 ranking on TREC 8, query 445

A5
depth-pooling

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 200 400 600 800 1000

ra
nk

 p
re

ci
si

on

number of judgments

A5: rank precision with depth-100 ranking on TREC 8, query 445

A5
depth-pooling

Figure 15: Overall performance of A5 and depth-pooling on query 445.

14

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

tr
ue

 r
an

ks

system ranks

A5: ranks vs. true ranks after 60 judgments

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

tr
ue

 r
an

ks

system ranks

A5: ranks vs. true ranks after 100 judgments

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

tr
ue

 r
an

ks

system ranks

A5: ranks vs. true ranks after 500 judgments

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

tr
ue

 r
an

ks

system ranks

Depth-pooling: ranks vs. true ranks at depth 2 (61 judgments)

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

tr
ue

 r
an

ks

system ranks

Depth-pooling: ranks vs. true ranks at depth 4 (98 judgments)

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

tr
ue

 r
an

ks

system ranks

Depth-pooling: ranks vs. true ranks at depth 25 (501 judgments)

Figure 16: Progress of A5 and depth-pooling at three points during the judgment process.

can be calculated in a reasonable time, in which case the method would be entirely predictable. If that were
the case, it would allow TREC to continue to grow at its current rate and yet remain manageable for some
time to come.

References

[1] J. Aslam and M. Montague. Evaluating Retrieval Systems with Few or No Relevance Judgments via
Metasearch. Submitted to Sigir ’02.

[2] J. Aslam. Personal communication, April 2003.

[3] G. Cormack, C. Palmer, and C. Clarke. Efficient construction of large test collections. In Croft et. al. [5],
pages 282-289.

[4] I. Soboroff, C. Nicholas, and P. Cahan. Ranking retrieval systems without relevance judgments. In Pro-
ceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval [1], pages 66-73.

[5] E. Voorhees and D. Harman. Overview of the Eighth Text REtrieval Conference (TREC-8). In D. Har-
man, editor, The Eighth Text REtrieval Conference (TREC-8), Gaithersburg, MD, USA, 2000. U.S.
Government Printing Office, Washington D.C.

[6] J. Zobel. How reliable are the results of large-scale retrieval experiments? In Croft et al. [5], pages
307-314.

15

