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Speculative Parallel Pattern Matching

Daniel Luchaup*, Randy Smith, Cristian Estan, Somesh Jha

Abstract—Intrusion prevention systems determine whether multiple chunks and scanning each of them in parallel using
incoming traffic matches a database of signatures, where each traditional DFA matching. The main idea behind our algorithm
signature is a regular expression and represents an attack or js 14 gyess the initial state for all but the first chunk, and then
a vulnerability. IPSs need to keep up with ever-increasing line t K that thi d tlead to i t It
speeds, which has lead to the use of custom hardware. A major 0 mg e_ sure that this gugss Oe_s not iead 1o Incorrect results.
bottleneck that IPSs face is that they scan incoming packets one The insight that makes this work is that although the DFA for
byte at a time, which limits their throughput and latency. In  IPS signhatures can have numerous states, only a small fraction
this paper, we present a method to search for arbitrary regular  of these states are visited often while parsing benign network
expressions by scanning multiple bytes in parallel using specu- yaffic We use a new kind of speculation where gains are
lation. We break the packet in several chunks, opportunistically btained not onlv in th f t but also in th
scan them in parallel and if the speculation is wrong, correct obtained not only In e, case of correct guesses, but also in the
it later. We present algorithms that apply speculation in single- MOSt common case of incorrect ones yet whose consequences
threaded software running on commaodity processors as well as quickly turn out to still be valid. This idea opens the door for
algorithms for parallel hardware. Experimental results show that ~ an entire new class of parallel multi-byte matching algorithms.
Epeﬁ”'a“on leads to improvements in latency and throughput in - gection |11 presents an overview of SPPM, with details given

oth cases. . in Sections IV and V. We present a single-threaded SPPM

Index Terms—low latency, parallel pattern matching, regular  glgorithm for commodity processors which improves perfor-
expressions, speculative pattern matching, multi-byte, multi-byte \,ance py issuing multiple independent memory accesses in
matching, parallel regular expression matching L

parallel, thus hiding part of the memory latency. Measurements
show that by breaking the input into two chunks, this algorithm
|. INTRODUCTION can achieve an average of 40% improvement over the tradi-
nal matching procedure. We also present SPPM algorithms

raffic against a database of signatures, which are Regu }table for platforms where parallel processing units share

Expressions (REs) that capture attacks or vulnerabilities. IP copy of the DFA to be matched. Our models show that

are a very important component of the security suite. ngrﬁen using up to 100 processing units our algorithm achieves

instance, most enterprises and organizations deploy an Hggnmcant reductions in latency. Increases in throughput due

A significant challenge faced by IPS designers is the needF?ousmg multiple processing units are close to the maximum
keep up with ever-increasing line speeds, which has forclty' €ase afforded by the hardware.
IPSs to move to custom hardware. Most IPSs match incoming

packets against signatures one byte at a time, causing a major

bottleneck. In this paper we address this bottleneck by usiAg Regular Expression Matching — a Performance Problem

speculation to solve the problem efulti-byte matching, or  signature matching is a performance-critical operation in
the problem of IPS concurrently scanning multiple bytes of @nich attack or vulnerability signatures are expressed as regu-
packet. lar expressions and matched with DFAs. For faster processing,
Deterministic Finite Automata (DFAs) are popular for sigpfFas for distinct signatures such asuser. *root. * and
nature matching because multiple signatures can be merg@q/ulnerability. * are combined into a single DFA that
into one large regular expression and a single DFA cafimyltaneously represents all the signatures. Given a DFA
be used to match them simultaneously with a guarante@&responding to a set of signatures, and an input string
robust performance ab(1) time per byte. However, matchingrepresenting the network traffic, an IPS needs to decide if the
network traffic against a DFA is inherently a serial activitypga accepts the input string. Algorithm 1 gives the procedure
We break this inherent serialization imposed by fienter oy the traditional matching algorithm.
chasingnature of DFA matching using speculation. Modern memories have large throughput and large latencies:
This paper is the extended, journal version of the wolhe memory access takes many cycles to return a result, but
in [18]. It makes the following contributions: we presenpne or more requests can be issued every cycle. Suppose that
Speculative Parallel Pattern Matching (SPPM), a novel meth%bdingDFA[state] [input_char] results in a memory accéss
for DFA multi-byte matching which can lead to significanthat takes) cycle€. Ideally the processor would schedule
speedups. Our method works by dividing the input intgther operations while waiting for the result of the read from
_ __memory, but in Algorithm 1 each iteration is data-dependent
U D. Luchaup and S. Jha are with the Department of Computer Sciencggy previous one: the algorithm cannot proceed with the
niversity of Wisconsin at Madisor{luchaup,jha@cs.wisc.edu
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Input: DFA = the transition table We assume that the common casen® finding a match,
Input: | = the input string/l| = length of| although speedup gains are possible even in the presence of
Output: Does the input match the DFA? matches. As is customary in IPSs, all our regular expressions
; ?;?tie; Ost?r\tl\_?jtgte' are suffix closed. Additionally, at this point we only match REs
3 input_char « I[il; that are prefix closed (PRE), a restriction that will be lifted in
4 state < DFA[state][input_char]; Sec. V. In the rest of this section we informally present the
5 if accepting (state) then method by example, we give statistical evidence explaining
6 | return MatchFound ; why speculation is often successful, and we discuss ways of
7 return NoMatch : measuring and modeling the effects of speculation on latency
Algorithm 1: Traditional DFA maitching. and throughput.

A. Example of Using Speculation

next iteration before completing the memory access of ﬂ}e—ﬁ/o@)g VlelgiJTEIS,CE con;ldetr thmatg::lzg the . |'nput
current step because it needs the new value forstlage = — agains © recognizing

: : : : . the regular expression *VIRUS shown in Fig. 1. We
ariable (in compiler terms) is the Recurrence Minimum . .
van ( S M " nimu .k%reak the input into two chunks/;=AVOIDS_V and

Initiation Interval). Thus the performance of the system -
mat val) y P y I2:IRULENCE and perform two traditional DFA scans

limited due to the pointer chasing nature of the algorithm. i varallel. A Prmary or nd, and aSecondar
If |I| is the number of bytes in the input and if the entird! Parafel. ng,. B athy b octiss Sz‘;’l DIFZ hawr?Ci(; Fia yl
input is scanned, then the duration of the algorithm is focess scans,. Both use the same » SNO 9. -
o simplify the discussion, we assume for now that the

least M « |I| cycles, regardiess of how fast the CPU is. Thi rimary and the Secondary are separate processors operatin
algorithm is purely sequential and can not be parallelized. . y y P P P 9
: . in lockstep. At each step they consume one character from
Multi-byte matching methods attempt to consume more than .
each chunk, for a total of two characters in parallel.

?nneemg?/tere? dsair;m:ae(’:hpi?:rzggn I?AS:Iir(]jgearlqu;[tt;pltirr?;tecrrl]?r?pmg To ensure correctness, the start state of the Secondary should
y ) y 9 be the final state of the Primary, but that state is initially

algorithm based on the tradmongl DF.A method and consuUMIiiA nown. we speculate by using the DFAs start state, State
B bytes could approach a running time &f = |I|/B cycles, S
X o : 0 in this case, as a start state for the Secondary and rely on a
a factor of B improvement over the traditional algorithm. o ; :
subsequent validation stage to ensure that this speculation does
not lead to incorrect results. In preparation for this validation
B. Signature Types stage the Secondary also records its state after each input

Suffix-closed Regular Expressionser an alphabel are character in eHistory buffer. _
Regular Expressions with the property that if they match a Figure 2 shows a trace of the two stages of the speculative

string, then they match that string followed by any suffi¥n@tching algorithm. During thearallel processing stage
Formally, their languagd. has the property that € L < eachstep ientry shows for both the Primary and the Secondary

Vw € (£)* : zw € L. Al signatures used by IPSs are suffixthe new state after parsing tir¢h input character in the cor-

closed. Algorithm 1 uses this fact by checking for acceptifgSPonding chunk, as well as the history buffer being written
states after each input character instead of checking only afgthe Secondary. At the end of step 8, the parallel processing
the last one. This is not a change we introduced, but a wid&i{#9€ ends and the Secondary finishes parsing without finding a
accepted practice for IPSs. match. At this point thédistory buffer contains 8 saved states.
Prefix-closed Regular ExpressiofBRES) over an alpha- During the validation stage steps 9-12, the Primary keeps

bet & are regular expressions whose langudgehas the processing the ir_lput and compares its current state with the
property thatz € L & Yw € (£)* : we € L. state correspondm_g to the_same input character that was saved
For instance, *ok. *stuff. *|. =other. + is a PRE, but by thg. Secondary in the History buffer. At step.9 the I_Drlmary
.+ok. *|bad. * is not, because thead. * part can only transitions on input 'I' from state 1 to state 2wh|ch is dlffe.rent
match at the beginning and is not prefix-closed. In the “{[om 0, the state recorded for that position. Since the Primary
erature, non-PRE signatures suchhasl. = are also called and the Secondary disagree on the state after the 9-th, 10-th
@nd 11-th characters, the Primary continues until step 12 when

anchoredsignatures. A large fraction of signatures found i - TS
IPSs are prefix-closed. they agree by reaching state 0. Once ttaaplingbetween the

When we need to make an explicit distinction again?trimary and Secondary happens, it is not necessary for the
PRE. as a notational convenience we use the t&eneral Ffimary to continue processing because it would go through

Regular ExpressionéGRE) for unrestricted, arbitrary regularthe same transitions and make the same acce.ptance decisions
expressions. as the Secondary. We use the tevalidation regionto refer

to the portion of the input processed by both the Primary and

the Secondary (the strinfRUL in this example)Couplingis

the event when the validation succeeds in finding a common
The core idea behind th&peculative Parallel Pattern state.

Matching (SPPM) method is to divide the input into two or In our case, the input is 16 bytes long but the speculative

more chunks of the same size and process theparallel. algorithm ends after only 12 iterations. Note that for differ-

IIl. OVERVIEW
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Fig. 1.  DFA for . *VIRUS; dotted Fig. 2. Trace for the speculative parallel matchingfof. * VIRUS in /=AVOIDS_VIRULENCE During the

lines show transitions taken when no parallel stage, steps 1-8, the Primary scans the first chunk. The Secondary scans the second chunk and updates

other transitions apply. the history buffer. The Primary uses the history during validation stage, steps 9-12, while re-scanning part of
the input scanned by the Secondary till agreement happens at step 12.

ent inputs, such aSOMETHING_ELSE.. the speculative h consecutive positions a@886", which decreases quickly
method would stop after only 9 steps, since both halvesth h. The probability for coupling in one o20 different
will see only state 0. The performance gain from speculatip®sitions is1 — 0.8862° = 0.912. Even if the frequency of a
matching occurs only if the Primary does not need to procestsite S was 5% instead of 33.8%, it would take 45 steps to
the whole input. Although we guess the starting state for tiave a probability greater than 90% for two halves to reach
Secondary, performance improvements do not depend on téiiste S. While 45 steps may seem high, it is only a tiny
guess being right, but rather on validation succeeding quickfyaction, 3%, compared to the typical maximum TCP packet
i.e. having a validation region much smaller than the secotehgth of 1500 bytes. In other words, we contend that the

chunk. length of the validation region will be small.
Note that the high probability of coupling in a small number
B. Statistical Support for Speculative Matching of steps is based on a heavily biased distribution of frequencies

In this section we provide an intuitive explanation behindMong theN' states of the DFA. If all states were equally
our approach. We definedefault transitionto be a transition Probable, then the expected number of steps to coupling would
on an input character that does not advance towards RRO(N). This would make coupling extremely unlikely for
accepting state, such as the transitions shown with dotted lifdgomata with large numbers of states.
in Fig. 1. If we look at Fig. 1, we see that the automaton
for . * VIRUS. = will likely spend most of its time in state O C. Performance Metrics

because of the default transitions leading to state 0. Figure 2. 1, 1damental reason why speculation improves the
.ShOWS that indeed 0 is the 'most frequent statg. In generalpc'etn‘ormance of signature matching is that completing two
IS very likely that there are just a feiot states n t_he DFAZ memory accesses in parallel takes less time than completing
which are the target states for most of the transitions. Thls,[|§ern serially. While thdatenciesof memories remain large
particularly true for PREs because they start withand this the achievablethroughputis high because many memor,y
usually corresponds to an initial state with default transitior(lj'f‘tcesses can be completed in parallel.

to itself. When we apply SPPM in single-threaded software settings,

For instance, we constructed the DFA composed from 79% processing time for packets determines both the throughput

PREs_from Snort and measured the state_ frequenm_es W*&%’& the latency of the system as packets are processed one at
scanning a sample Of. real \(vor_ld HTTP traffl_c. Fig. 3 display, time. Our measurements show that SPPM improves both
the resultingCumulative Distribution Functioncdf) graph latency and throughput. When compared to other approaches

when the states are ordered in decreasing order of frequenucs){hg a parallel architecture, SPPM improves latency signifi-

Most time is spend in a relatively small number of states. T%%ntly and achieves a throughput close to the limits imposed

most frequent state occurs in 33.8% of all't'ransitions, and t § hardware constraints.
first 6 states account for 50% of the transitions.

The key point is that there is a state that occurs with a
relatively high frequency, 33.8% in our case. A back-of-the-
envelope calculation shows that it is quite likely that both Speculative Parallel Pattern Matching is a general method.
halves will soon reach that state. Indeed, assume a pure prdbapending on the hardware platform, the desired output, the
bilistic model where a staté occurs with a 33.8% probability signature types, or other parameters, one can have a wide
at any position. The chances for coupling due to statet a variety of algorithms based on SPPM. This section starts by
given position are).3382 = 0.114. Equivalently, the chancesformalizing the example from Section Ill-A and by introducing
that such coupling does not happen are 0.3382 = 0.886. a simplified performance model for evaluating the benefits
However, the chances that disagreement happens on eacbfdapeculation. Then we present basic SPPM algorithms for

IV. SPECULATIVE MATCHING
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Fig. 3. The state frequenadf graph for a PRE composed of 768 Snort signatures. Fig. 4. Simplified performance model metricd (is number
The most frequent state accounts for 33.8% of the time and the first 6 most frequent of processors).
states account for half the time.

Input: DFA = the transition table accepting state (line 10), we declare a match and finish the
lgptut:tl_ E g;es Itf;]rJeUFnstrltn% atch the DEA? algorithm (line 11). The Secondary records (line 12) the states
,,U ﬁ’ﬁit;anzation S{agz ' ?t visits in the history buffer (for sim.plicity, the history buffer
1 len — I ; /I Input length is as large as the input, but only its second half is actually
2 (leny, lenz) — ([len/2], [len/2]); /" Chunk sizes used). During thevalidation stage (lines 14-21), the Primary
3 (chunky, chunks) « (&I, &1+ leny); /I Chunks ti ina the S darv's chunk. It still t check
4 (S1,S2) « (start_state, start_state); /I Start states conunues processmg e. econdary’s ¢ up - Itstilf must chec
s history[len, — 1] — error_state ; /I Sentinel for accepting states as it may see a different sequence of
z) ) .Pj‘rg'{‘;' Jrocessing stage states than the Secondary. There are three possible outcomes:
; Ifgrall the k267{1,2} do in parallel a ma’gch is found and the algorithm returns success (Ii.ne 18),
8 ci, « chunky[i]; coupling occurs before the end of the second chunk (line 20)
o ?k = DFA[Sk][gk]; " or the entire second chunk is traversed again. If the input has
ﬁ ILaCfe?Er:?\Aat(ch]f:)oun%n; an odd nur_nber_ of bytes, the first chunk is one b_yte_longer,
and a sentinel is setup at line 5 such that the validation step
12 history[len; +i] — Sa ; /I On Secondary will ignore it
13 i—i+1; :
/I Validation st Pri , . .
1 Wh”e?;"}‘e'ﬁndos age (on Primary) Correctness of Algorithm 2: If during the parallel processing
15 c1 — I[i|; stage the Secondary reaches theurn at line 11, then the
0 ﬁla;eDEﬁ[Sl]([gl ])? then Secondary found a match on its chunk. Since our assumption is
18 L retﬁm?\ﬂatch}ound : Fhat we search for a prefix-closed regular expression,_a match
1 if S, == historyi then in the secqn_d chunk guarantees a match on the entire input.
20 | break ; Therefore it is safe to return with a match.
a | i+ If the algorithm executes thereak at line 20, then the
22 return NoMatch ; /I Primary finished processing Primary reaches a state also reached by the Secondary. Since
Algorithm 2: Parallel SPPM with two chunks. Accepts the behavior of a DFA depends only on the current state and
PREs. the rest of the input, we know that if the Primary would

continue searching, from that point on it would redundantly
follow the steps of the Secondary which did not find a match,
single-threaded software and for simple parallel hardwamso it is safe to break the loop and return without a match.

Section V shows variants that are not constrained by thejn gl the other cases, the algorithm acts like an instance of

simplifying assumptions. Algorithm 1 performed by the Primary where the existence of
the Secondary can be ignored.
A. Basic SPPM Algorithm To conclude, Algorithm 2 reports a match if and only if the

Algorithm 2 shows the pseudocode for the informal examplBPUt contains one.
from Sect. lll-A. The algorithm processes the input in threSimplified performance models:Our evaluation of SPPM in-
stages. cludes actual measurements of performance improvements on

During the initialization stage (lines 1-5), the input is single-threaded software platforms. But to understand the per-
divided into two chunks and the state variables for the Primafgrmance gains possible through speculation and to estimate
and Secondary are initialized. During tlparallel process- the performance for parallel platforms with different bottle-
ing stage (lines 6-13), both processors scan their chunks mecks we use a simplified model of performance. Because the
lockstep. If either the Primary or the Secondary reach amput and the history buffer are small (1.5KB for a maximum-
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sized packet) and are accessed sequentially they should fit ininput: DFA = the transition table
fast memory (cache) and we do not account for accesses toinput: | = the input string
them. We focus our discussion and our performance model Qutput: Does the input match the DFA?
on the accesses to the DFA table. Figure 4 summarizes fthe// Initialization as in Algorithm 2
relevant metrics. ; for i 0tolens — 1 do
We use the number of steps (iterations) in the parallel pro- ¢ — chunk[i;
cessing,|7|/2, and in the validation stagé/, to approximate | s C2 « chunkali];
the processing latencyL = % +V. ) S1 — DFA[S.][c1];

. B . Sy «— DFA[SZMCQ];
Each of these iterations contains one access to the DFA if accepting (S1)||accepting  (Sz) then

table. The latency of processing an induwith the traditional | 2 | retumn MatchFound ;
matching algorithm (Algorithm 1) would b&| steps, hence | 1 history[len; +i] — Sa;
we define thespeedup(latency reduction) asS = ‘Li' = |» [i1<i+]

[ _ 2
[I1/2+V — 1+4+2V/|I] * . .
he useful work performed by the parallel algorithm is| *°

scanning the entire input, therefore equivalent|ip serial ~ Algorithm 3: Single-threaded SPPM with two chunks.
steps. This is achieved by usiny = 2 processing units Accepts PREs.

(PUs), the Primary and Secondary, for a durationLopar-

allel steps. Thus, the amount of processing resources used

(assuming synchronization between PUs), phecessing cost B. SPPM for Single-threaded Software

is P = N L E}Cnd we define theprocessing efficiencs  Algorithm 3 shows how to apply SPPM for single-threaded
P, = % = % = 2<(|I|‘/‘2+V) = 1+2%//u% . _software. We simply rewrite the parallel part of Algorithm 2 in
Another potential limiting factor for system performance i serial fashion with the two table accesses placed one after
memory throughput: the number of memory accesses that 88 other. Except for this serialization, everything else is as
be performed during unit time. We defingemory costM, as jn Algorithm 2 and we omit showing the common parts. The
the number of accesses to the DFA data structure by all Plgyation of one step (lines 6-14) increases and the number of
M = |I|+V . Note thatM < N - L as during the validation steps decreases as compared to Algorithm 1. The two memory
stage the Secondary does not perform memory accesses.aMesses at lines 9-10 can overlap in time, so the duration
define memory efficiencyas M, = 5} = ¥ = =7 of a step increases but does not double. If the validation
and it reflects the ratio between the throughput achievaL)Ie Rgion is small, the number of steps is little over half the
running the reference algorithm in parallel on many packeggiginal number of steps. The reduction in the number of
and the throughput we achieve using speculation. Béth steps depends only on the input and on the DFA whereas the
and M. can be used to characterize system throughput: increase in the duration of a step also depends on the specific
is appropriate when tight synchronization between the PUsHgrdware (processor and memory). Our measurements show
enforced (e.g. SIMD architectures) and the processing capagit speculation leads to an overall reduction in processing
is the limiting factor,M. is relevant when memory throughputiime and the magnitude of the reduction depends on the

is the limiting factor. platform. The more instructions the processor can execute
. during a memory access, the larger the benefit of speculation.
Performance of Algorithm 2: In the worst case, no match

is found d ina b Pri 4S d d This algorithm can be generalized to work wiffi > 2
Is found, and coupling between Primary and Secondary %unks, but the number of variables increases (e.g. a separate
not happen ¥ = |I]|/2). In this case the Primary follows

state variable needs to be kept for each chunk). If the number
r}ﬁ variables increases beyond what can fit in the processor’s
Secondary are overhead. We get= u_’ §=1, P. = 50%, registers, the overall result is a slowdown. We implemented
M = 1.51], and M, = 67%. In practice, because the work, single-threaded SPPM algorithm with 3 chunks, but, on the

during the |tera_t|0ns is slightly more complex tha’.‘ for thﬁlatforms we evaluated, its performance was not satisfactory,
reference algorithm (the secondary updates the history), € we only report results for the 2-chunk version.

can even get a small slowdown, but the latency cannot be
much lower than that of the reference algorithm.

In the common case, no match occurs aid< |I|/2. C. SPPM for Parallel Hardware
We haveS = H%V/m e m M = |I|+V/|I],and  Algorithm 4 generalizes Algorithm 2 for the case whéve
M, = W whereV/|I| < 1. Thus the latency is typically PUs work in parallel onV chunks of the input. We present
close to half the latency of the reference implementation attls unoptimized version due to its simplicity.
the throughput achieved is very close to that achievable by just.ines 2-5 initialize the PUs. They all start parsing from the
running the reference implementation in parallel on separamitial state of the DFA. They are assigned starting positions
packets. evenly distributed in the input buffer: RUstarts scanning at

In the uncommon case where matches are found, the latepogition | (k — 1) = |I|/N]. During the parallel processing
is the same as for the reference implementation if the matchstaige(lines 6-13) all PUs perform the traditional DFA process-
found by the Primary. If the match is found by the Secondariyng for their chunks and record the states traversed in history
the speedup can be much larger tian (this is redundant folPU;). The first N —1 PUs participate

/I Validation as in Algorithm 2
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Input: DFA = the transition table of stringsw; andw,; andd(S, w) to denote the state reached
Input: | = the input string [{| =input length) by the DFA sta_rting from staté and transitioning for each
Output: Does the input match the DFA? character in stringv.
1 len —JIf; . Theorem 1 (monotony of PRE parsingddssume that DFA
2 forall the PUy, k € {1..N} do in parallel is the minimized deterministic finite automaton accepting
3 index;, « start position of k-th chunk; . . .
4 | statey, «— start_state; a prefix-closed regular expression, Wl_tﬁb = the start
5 history[0..len — 1] « error_state; Il sentinel state of the DFA. For anyw;,ws,ws input strings we
/I Parallel processing stage have: §(So, wiwaws) = §(So,ws) = §(So, wiwaws) =
6 while index; < ||I|/N] do
7 forall the PUy, k € {1..N} do in parallel 6(50]311;;:;?){_& S = 5(S — 5(S 49, —
8 inputy, < I[indexy]; . 1=4( Oaw1w2w?§) = (So, w3) an 2=
9 state, < DFA[state][inputy]; d(So, wows). Assume, by contradiction, that; # S.. Since
10 if aCri}iE::‘?\Aat((:sf:gt(Je:rzdthen DFA is minimal, there must be a string such that only one
11 . .
_L _ ' of §(S1,w) and§(S2,w) is an accepting state and the other

12 history[index;,| = stateg; : t
13 index;, < index; + 1; one Is not.

L - AssumeL = the language accepted by the DFA.
14 forall PUy, k € {1..N — 1} do in parallel active,, « true ; We have two cases:
15 while there are active PUslo o . .
16 forall the PUj, such that(active, == true) do in parallel 1) §(S1,w) accepting and §(S3,w) is not. Since
17 ir:ptjtk — :D[iggfxtk}t: —— §(S1,w) = §(6(So,ws),w) = &(Sp,wzw) we
18 statey, «— stateg | [input]; . .
10 it accepting _(state) then have 6(S1,w) accepting = 6(80_,w3w) accepting.
20 | return MatchFound ; Hence wsw € L. Since L is prefix closed,
21 if history[index;,] == state;, ORindex;, == len — 1 wyw € L = wowzw € L = §(Sp, wawszw) accepting.

then But §(So, wawzw) = §(6(So, waws),w) = (S, w).

2 e‘lseac“"ek « false; Therefore 6(S,,w) is accepting, which is a
24 history[index;,] = statey,; contradiction.
25 index;, «— index, + 1; 2) 6(S2,w) is accepting andd(S;,w) is not. Then

L . (S(SQ,’[U) = 5(5(507’(1)2’11}3),’11)) = (5(50,’11]2’[1)3’(1}) is
26 return NoMatch ; accepting. Hencew,wsw € L. Since L is prefix
Algorithm 4: SPPM procedure for matching PREs with closed, wowsw € L = wiwewsw € L. We have
N processing units. wiwawsw € L < §(Sp, wiwowsw) iS accepting. But,

5(50,11)111}210311)) = 5(5(S0,w1w2w3), w) = 5(51,11))
Therefored(S;, w) is accepting, which is also a contra-

in the validation stage (lines 14-25). A PU stops (becomes diction.

inactive) whencoupling with the right neighbor happens, orgoth cases lead to contradiction, so our assumption was wrong

when it reaches the end of the input. Active PUs perforghg s, = Ss,. ™

all actions performed during normal processing (includingerformance of Algorithm 4:

updating the history). For validation regionk, we defineV,, as the portion of
The algorithm ends when all PUs become inactive. the packet processed WyU;, during validation, so it can go

) ) ) ) ) beyond the end of chunk + 1. Let V;, be the length of the
Linear History Is Relatively Optimal: Algorithm 4 uses \gjidation regionk, Vinas = maka_l Vi, and Vs = Z{[ Vi
a linear history: for each position in the input, exactly - =1
one state is remembered — the state saved by the mosjye get the following performance metrics (see Fig.5) :
recent PU that scanned that position. ThB#, sees the

. . H I
states saved byU,, 1, which overwrite the states saved by ~ Processing latency L = # + Vinaz

PUyy2, PUgys, ..., PUn. speedup §S=U =

Since we want a PU to stop as soon as possible, a natural processing cost P=N-L
question arises: wouldU,;, have a better chance obupling processing efficiency P, = |LP| _ W/IH 1)
if it checked the states foall of PUj;1, PUg4a,..., PUN memory cost M= |1+ Ve max

instead of justPUjy1? Would a 2-dimensional history that
saves the set of all the states obtained by preceding PUs at
a position offer better information than a linear history that In the worst case (no coupling for any of the chunk)=
saves only the most recent state? In what follows we shdW—k&|I|/N (ignoring rounding effects\,,a. = |I|(1—1/N)

that the answer isio: the most recent state is also the mosind Vs, = (N — 1)|I]/2 which results in a latency of = |/
accurate one. If for a certain input positioR[/;, agrees with (no speedup, but no slowdown either), a processing efficiency
any of PUyy1, PUgya, ..., PUy then PU, must also agree of P, = 1/N, and a memory efficiency af/. ~ 2/N. Note
with PUj,, at that position. We obtain this by substitutinghat the processing efficiency and the memory efficiency do
in the following theoremchunk;, for wy, the concatenation of not need to be tightly coupled. For example if there is no
chunksk+1 to k+j—1 for wo and any prefix othunk;; for  coupling for the first chunk, but coupling happens fast for the
ws. We use the notatiow; w, to represent the concatenatiorothers, the latency is still. = |I| and thusP, = 1/N, but

memory efficiency M, = 4 = Lo
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Input
I | * I=input length
LLLLLLLLLLLTTTLLT L] = size of input parsed by PU,
PUu, | PU, PU, PU, L=0/N)+V,
|_1=Ieng§th(chunk,)+V] » Processing Latency: L = max, {L, }
: * 'V, =size of k" validation region
¢ Vmax = man {Vk}

; ° Vz =3V

L, e Memory Cost: M, =1+ VZ

‘ : .:I:D * Memory Efficiency: M, = I/M,

1 * Speedup: S=1/L
 Processing Efficiency: P, =S/N

max

-
V3

Fig. 5. Performance Metrics for one packet wittpayload bytes.

M. ~ 50% as most of the input is processed twice. But ouhen for the PRE subset we can use Algorithm 4, and for
experiments show that fa¥ below 100, the validation regionsthe anchored subset a very fast matching algorithm based on
are typically much smaller than the chunks and the speedupgecting states.
we get are on the order ¢f ~ N and efficiencies are high.  Algorithm 1 only checks for accepting states, so it needs
We note here that SPPM always achieves efficiencies tof scan the entire input to declare that there is no match.
less thanl00% on systems using parallel hardware: within oUHowever if the expression is anchored, usually only part of
model, the ideal throughput one can obtain by having the P input needs to be scanned. Consider the anchored regular
work on multiple packet in parallel is always slightly higheexpressiorVIRUS, which matches the stringIRUS only at
than with SPPM. The benefit of SPPM is that the latency @e beginning of the input, in contrast with VIRUS. * . For
processing a single packet decreases significantly. This GARUS we only need to scan the first five characters in the
help reduce the size of buffers needed for packets (or tiput to tell if a match occurs or not. This relies ajecting
fraction of the cache used to hold them) and may reduce t@teswhich are states that are not accepting and have all
overall latency of the IPSs which may be important for traffigansitions back to themselves. Once a DFA enters a rejecting
with tight service quality requirements. Furthermore systerggate, it cannot exit it and therefore it cannot reach an accepting
using SPPM can break the workload into fixed-size chunks &@ite. A minimized DFA has at most one rejecting state, which
opposed to variable-sized packets which simplifies schedulifgakes checking for it easy. Not every DFA has such states
in tightly coupled SIMD architectures where the processingut the DFA corresponding to a set containing only anchored
cost is determined by the size of the largest packet (or churdgpressions is likely to have one.
in the batch. This can ultimately improve throughput as there is| emma 1 (existence of REJECTING statdé) DFA (not
no need to batch together packets of different sizes. Due to Hig&essarily minimized) has rejecting states then the language
complexity of parallel hardware in IPSs with, the performancgecepted by the DFA contains no subset that is prefix closed.

depends on the specifics of the system beyond those captureyie that the reciprocal is not true (consider a DFA that
by our model whether SPPM, simple parallelization, or a m.%ccepts even length strings).

of the two is the best way to achieve good performance. Proof: Let S, be the starting state and, a rejecting

state. Then there must be a stringsuch thatS; = §(So, w).
Assume, by contradiction, that the DFA accepts a prefix
A. Anchored Regular Expressions closed string set. Let € Y. Y is prefix closed= wz €
Algorithm 4 requires signatures that are PRE in order 6 = d(So,wx) is an accepting state. Buf(Sy,wz) =
avoid false matches. This raises the issue of what to d6¥(So,w),z) = 0(Si,x) = Si, becauseS; is a rejecting
with the remaining signatures which amechored There are state without any outgoing transitions. Hengg should be
three options: (1) treat them separately; or (2) devise a né@ath a rejecting state and accepting, which is a contradiction.
algorithm (Sect. V-B) ; or (3) mix them with the prefix closed u
signatures and use Algorithm 4 with the cost of false positives.Expressions such @¥IRUS matchVIRUS at the begin-
In this section we give an argument for the first option. Ifing of the input or after a new linéVIRUS can be separated
we partition the signature set into two sets, one containimgio VIRUS which is anchored and* \x11VIRUS which is
only PRE and the other containing only anchored expressiopsefix closed (\x11 stands for newline). This distinction can

V. RELAXING THE ASSUMPTIONS
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Input: DFA = the transition table Input: DFA = the transition table
Inputl: | = the ;?pl_;t string - , Input: | = the input string |{| =input length)
) thZ?: i[;?:rst tsg tlg_put match the DFA? Input: STATES = starting states (onlBTATES]1]
2 for i = 0 to length(l) do must bestart_state)
3 input_char « Iil; Output: Does the input match the DFA?
4 state «— DFA[state][input_char]; 1 len —JIf; _
5 if accepting (state) then 2 forall the PUy, k € {1..N} do in parallel
6 L return true 3 index;, < start position of k-th chunk;
! 4 statey, < STATESIk];
7 if rejecting  (state) then 5 activey, « (indexy < |I|);
8 | return false ; 6 history[0..len — 1] « error_state; Il sentinel
) 7 potential_match < false;
9 return false ; 8 forall the PUj, such that(active;, == true) do in parallel
Algorithm 5: DFA matching anchored-only expressions | ¢ inputy, «— L[)iggt[exk]; i ]
: : . 10 state;, «— statey |[inputy];
which have a rejecting state u if accepting (statey) then
12 | potential_match « true; /I but keep going
13 if histO(y[indexk] == state;, ORindex;, == len — 1 then
be performed for all signatures. Thus, the language describ%;bl e\lseac“"ek « false;
by the entire signature set is the union of the languages fqgg history[index;,] = statey:
two disjoint sets of signatures: one containing only anchored index;, — index, + 1;
. g Dnr L
expressions, and one containing only PRE. For_the later SP _M if potential_match —— true then
can be used. For the former, we can use Algorithm 5 which|is /I history contains only valid states! In
Algorithm 1 modified to check for both accepting and rejecting ~fact, the trace of a traditional DFA
states 19 index;, « start position of k-th chunk;
) . 20 forall the PUg, k € {1..N} do in parallel
For the set of anchored signatures extracted from Snor, while index;, < end position of k-th chunk do
Algorithm 5 outperforms the traditional DFA algorithm by] 22 if accept'n?\ﬂ (hr:itOW[('jn_dexk]) then
orders of magnitude. Such speedups require the existence df L return MatchFound ;
rejecting states and according to Lemma 1 this requires 4 index;, «— indexg + 1;
separation between anchored and prefix closed eXPressions, .. noMatch :
gorithm ©: wit processing Units S).
B. General Case: Matching General Regular ExpressionsMaiches GREs. The initial state for non-Primary PUs
(GRE) can be any state.

The most general case is when the IPS uses unrestricted,
general regular expressions (GRE) and it requires an ordered
list of all matches. In this case, we must change the w&FA matching would have produced (using the same input
Algorithm 4 handles matches. and transition table).

The basic SPPM algorithms require prefix-closed expres- Proof: The initial division of the input in at mosfV
sions only because Secondaries are allowed to safely reposhanks covers the entire input. Therefore for each input byte
match if they reach an accepting state. For non-PRE suchtiaére is a chunk covering it. Consider theth input byte
. *ok|bad , the matches found by Secondaries (which staghd let chunk; be the chunk containing itPU, becomes
processing from the start state of the DFA) may be falseactive only when one of two conditions are satisfiétl7;,
matches such as in the case when the stdad occurs at reaches the end of the input, Bf/;, couples with somé’U,, |,
the beginning of the second chunk, not at the beginning of th@member thatistory is initialized to hold an invalid state
input. The SPPM version described in Algorithm 6 avoids thigs a sentinel in all positions). But the end of the input is at
problem. or after positioni and coupling withPUy.; can only happen

The separation oparallel stageand validation stageinto after the starting position ofhunk,.;. Hence, position is
separate loops in Algorithm 4 was meant for ease of und@rocessed at least once. We use induction torprove that the
standing, but the two loops can be combined. This is the formakulting value ofiistoryli] is the same state as that obtained
used in Algorithm 6 which generalizes Algorithm 4 to handley the traditional DFA algorithm. This is clearly true foe= 0
GRE. The main difference is that matches are not reportsithce it falls in the Primary chunk. Assume that the property
immediately. Instead, a global flagotential_match, records holds forvVi < n and we'll prove that it also holds fon.
that a potential match was found and scanning is continuetlet PU,, be the lastPU that processed position (there is at

Claim 1 (Invariant:same trace as a traditional DFA): least one suclPU according to the first half of this claim). If
When line 18 is reached each input byte was processed ang 1 thenPU, is the Primary which starts in the same initial
the corresponding position in the history buffer holds the sarstate as the traditional DFA and obviously traverses the same
state as that obtained by the traditional DFA algorithm aftesequence of states while active.plft> 1, thenVj < p : PU;
processing that position. Hence the history buffer containsust have stopped before positian Let m be the largest
exactly the same sequence (trace) of states that the traditiqpadition processed by anyU;, j < p. Since PU,_; cannot
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stop before the beginning ehunk,, it follows that position | ; Input: VMAX = the maximum validation size.....
m was also processed YU,,. Since the last”U to visit m 2 len — |I|;

did not visit the next positionn + 1, it follows that the last | @ forall the PUy, k € {2..N —1} do in parallel

visitor of m coupled with PU, at positionm. By induction | ¢ L €nde = MIN(ndexiy & VMAX 1, len);
hypothesishistory[m] is the same as for a traditional DFA, ° Z”dl Homfﬂnaallfgﬁon

Since history[m] was the state produced YU, it follows 6 forall the PU,, such that(aé.tivek, ==true) do in parallel

that all states produced byU, after positionm, positionn 7 inputy, «— I[index,];

included, are the same as for a traditional DFA. Hence thé | Stater — DFA[state,][inputy];
9 if accepting (statey) then

property holds for positiom which concludes the induction| ,, | potential_match — true; /I but keep going
proof. ] o ) u Sl if history[index;] == state;, then
After scanning the entire input, at line 18, we must decide: | activey — false;

if any potential matches are indeed real matches. For thi& else

we simply look at the states saved in the history and rep )ﬁﬁ history[index:] = statey

index;, < index;, + 1;

the accepting ones. This is sound according to Claim 1. The if index; == end,, then
common case in IPSs is that no matches are found so the | activey, — false;
overhead for the extra bookkeeping is incurred only forasmall -
fraction of the packets 16 ok fimit — len;
raction P : . _ .| 1o forall the k, k € {1.N — 1} do

Algorithm 6 addresses two additional issues: flexibility in2o if index;, > end,, then
the choice of secondary starting states and matching semantiés: Otk_t"mit - ?ndk:

Ly . . . 22 State < slatey,

Flexibility in Secondary Starting States: The starting stat_e. P for i— Ok_”m’i“t to len — 1 do
for a Secondary no longer has to be the same as the initial ¢ — I[if;

state of the DFA. This allows for the choice of other convenients state — DFA([state][c];
state such as the most frequent one, which in the presence 6f IfLaCrCe(iEPr??\/lat(c:SP:ifu)n??n
anchored expressions might not be the initial state.

Flexibility in Matching Semantics: The basic matching -

. . i . 28 if potential_match == true then
algorithm is often extended to return more information than, for i = 0 to ok_limit — 1 do
just whether a match occurred or not: the offset within theo ¢ Ifif; DA state] ¢
H H state «— state|(c|;
input where the accepting state has been reached and/or t:r;e it accepting  (state) then

signature number for that matched (a single DFA typically:; | return MatchFound ;
tracks multiple signatures). Furthermore, multiple matches [ -
may exist as the reference algorithm may visit accepting: return NoMatch ;

states more than once. For example if one recognizes thAlgorithm 7: SPPM with N PUs, using bounded vali-
two signatures *day and. *week with a single DFA and dation region.Matches PRE.

the input isThis week on Monday night! , we have a

match for the second signature at the end of the second word

and one for the first signature at the end of the fourth word. VI. EXPERIMENTAL EVALUATION
Since thehistory buffer contains the same trace as that of a We compared results using SPPM against the traditional

serial DFA, one can get either the first match or all matches-, method. There are many more variations of SPPM than
by changing the Sef"‘“’h order at lines 20-24. Algorithm 6 CWF can cover here. But the cases that we do cover show
return any information about the matches that the trad|t|0n[%at SPPM has very good potential for massive parallelization

algorithm can. of pattern matching. The simple, single threaded version can
; L ; achieve speedups of 40%, and these are larger on faster CPUs.
C. Bounding the Validation Region ; .
9 ) 9 ) ) Simulation of parallel SPPM show that the speedup can be
In the worst case speculation fails and the whole input i§mst linear iV = the number of CPUs, even for values of
traversed sequentially. There is nothing we can do to guaranj¢@s |arge as 50. This is because typically validation happens
aworst case latency smaller tharnd equivalently a process-ishin 4 few bytes. The generalization of SPPM to handle
ing efficiency of more tharl/N. But we can ensure that the, iy GRE (not just PRE) comes at a performance cost
memory efficiency is larger thag/IV which corresponds 1o\ hich depends on the number of matches in the input (almost

the case where all PUs traverse the input to the end. We GaQ, i there are no matches). Bounding the validation region
limit the size of each validation region @ positions, and is a good option to guard memory efficiency.

stop the validation stage for all PUs other than the primary

when they reach that limit, as shown in Algorithm 7.Mfis )

large enough convergence may still happen (see Sec.VI-#), Experimental Setup

but we bound the number of memory accesses perform@dyload: As input we extracted the TCP payloads of 175,668
during the validation stage t@V — 2)V for the N — 2 non- HTTP packets from a two-hour trace captured at the border
primary PUs doing validation anld| — |I|/N for the primary. router of our department. Figure 6 shows the cumulative
Thus M < |I|(2 — 1/N) + (N — 2)V < 2|I] + NV and distribution function ¢df) for packet lengths. The average
M. >1/(2+ NV/|I]). length was 1052 bytes. The most frequent packet sizes were
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]
08 1 %Iarge

2 1(59.9%)

@ 06 ]

% medium

3 04l (34.37%) 3 |

§ 0 small | Setl Set2 |

(5.73%) ; Number of DFAs 106 1
02 ? 1 Number of Signatures| 639 811
Only PRE? Yes No
0 s S ‘ ‘ ‘ S S— Number of States 217362 | 170265
0 200 400 600 800 1000 1200 1400 Number of Matches | 298 44060
Fig. 6. cdf for the sizes of 175k [Pé'ic kg%sgze Fig. 7. DFA sets used in experiments
1448 bytes (50.88%), 1452 bytes (4.62%) and 596 bytes 50 ‘ ; ‘ ‘ ‘ ‘ ‘
(3.82%). Furthermore 5.73% of the packets were smaller than , 4o | Xeon nw
250 bytes, 34.37% were between 251 and 1,250 and 59.90%;3130 i
were larger than 1,251. 87 [ & .
) ) ) =T L Pent|um S K
Signatures: We used 1450 Snort HTTP signatures. Since a - |+ - Sy y
© L

single DFA containing all signatures would not fit in the o 10
memory, an automated procedure inspired from [32] was used o ¥
to divide them into 107 DFAs. These DFAs are grouped in . i Xeon‘-ege”d -
two sets (see Fig.7): ¥ Core2

o Setlcontains 106 DFAs composed only of PREs. F Pentium

» Set2a single DFA from a mixture of PRE and anchored B0 T 00 200 800 800 1000 1200 1400

signatures. packet size

We treatS_etZseparater be9ause it co_ntams anchored_5|g g. 8. Speedup of Alg. 3 (single threaded SPPM) over the sequential
tures and it can be used with the basic PRE-only versionsmia Algorithm (on Set)
SPPM only at the cost of reporting false matches. Nevertheless 5q

-20 |

we still report results for this combination because it could be | PRE version uw
a valid design decision where false positives would later be & w T
discarded. gao &

Match behavior: A common IPS behavior is to resume &2 j

scanning after a match is handled and deigned non-malicious3 10 g

This behavior can be approximated by always fully scanning &

the input. However, our default behavior is to return after the b Legend

first match, as in Algorithm 1. In the few cases when we ° match FRE

chose the alternative behavior of resumed scanning (for both -20 ¢

the traditional algorithm and the speculative one), we explicitly .39

600 800 1000 1200 1400

i i i i 0 200 400
state it. This only makes a difference for packets that contain packet size

a match.
Fig. 9. Speedup of two variants of Alg. 3 (on XeBet): (1) matching
. . . only PRE, and (2) matching all GRE
B. Evaluation of Algorithm 3 (Single Threaded, Software

Implementation)

We implemented four versions of Algorithm 3, the singlggefayit) behavior which returns the first match and does not
threaded implementation which uses speculation to overlgp, ;e scanning, as well as the the behavior that resumes
memory accesses. Figure 10 shows the resulting speedypsnning after each match (distinction done by the “resume?”
when compared to the traditional sequential algorithrithie “YES/NO” columns in Fig. 10). We measured the actual
two *PRE” columns show the results for the basic versioynning times using hardware performance counters and ran
intended to use only PRE as input. The two “GRE” columng, eriments on three architectures, a Pentium M at 1.5GHz,
show the results for the version modified to work with all \'|htel Core 2 at 2.4GHz and a Xeon E5520 at 2.27GHz. We
GRE as described in Sect.V-B. For both versions we tried t@?plain the higher speedup on the more performing processors

3By using the corresponding behavior in terms of returning the first mat&ﬂ Fig. 10 by the larger gap between the processor spged
or scanning the whole packet and the memory latency. Figure 8 shows how the packet size
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input: PRE input: GRE Set | N Vv Vinaa V<1 | V<2 | V<3
Sign. resume? resume? Setl | 2 481 | 481 98.51 98.82 98.88
System | Set NO YES NO YES Setl | 10 2.12 8.24 99.26 99.58 99.64
Pentium | Setl || 16.61 | 1658 | 16.62 | 16.61 Setl | S0 |/ 1.24 | 9.09 99.50 | 99.84 | 99.89
Pentium | Set2 || 21.27* | 18.44* | 9.15 | 16.55 Setl | 100 || 1.12 | 9.29 99.54 99.87 99.93
Core 2 Setl 30.61 36.65 16.79 | 26.18 Set2 | 2 45.97 | 45.97 47.27 75.67 81.75
Core2 | setz || 3457% | 32.79* | 069 | 27.48 Set2 | 10 15.99 | 86.33 51.78 83.51 90.29
Xeon Setl 41.41 44.45 20.96 | 34.58 Set2 | 50 478 96.56 53.23 85.85 92.70
Xeon set2 || 3894 | 3614* | 502 | 2965 Set2 | 100 || 3.26 | 9850 || 5352 | 86.27 | 93.16
Fig. 10. Speedup for versions of Alg.3 classified by the Fig. 11. Validation region (V) statistics. N= Number of PUS.= average
expected input (PRE vs. GRE), and by whether or not scanning V size over all chunksV;,,.. = average value of maximum validation size
is resumed after each match. Tests marked with *' have 7 false (Vimaz) In each packetV < K shows the percent of chunks for which
positives. validation occurs inK bytes.
o almost linear up taV = 20 and it slowly diverges afterwords.

The processing efficiency approaches 50% and the memory
efficiency 90% by the time we reacN = 100 (see Figs. 14
and 16).

In [18] we show the influence of packet size on performance
metrics. For space reasons we do not reproduce the graphs
here, but as expected the algorithm performs better on larger
packets. The greatest impact is observed for memory efficiency
which degrades fast for small packets/ssincreases.

0 10 20 30 40 50 60 70 80 90 100
Fig. 12. Speedup for Alg.4 (basic SPPM for Hﬁ'ﬁfr of PUs

- D. Validation Region

We found that the validation typically happens quickly.
When N = 10 and all the DFAs inSetlare matched against
the entire input, validation happens after a single byte for 99%
of the chunks.

The scanning time for a packet is determined Wy, =
the largest validation region in the packet (see Fig.5). Figure
11 shows for each signature set, and eatk- 2,10, 50, 100
the values fol’ = average validation size over all chunks, and

0 e | /A— average value oV, ... over all packets. It also shows
0 10 20 30 40 50 60 70 80 90 100 . . . e
Fig. 13. Speedup of Alg.6 (SPPM for GRE) NUmber of PUs the percent of chunks for which validation happens within
1, 2 or 3 bytes. Figures 18 and 19 present the cumulative
distributions for the sizes of the validation regions whén=

influences the speedup for the PRE-only version of Algorithad- Figure 18 captures the sizes of all validation regions, which

3 using Sett for packets smaller than 20 bytes speculatiol§ relevant to memory efficiency. Figure 19 captures only the

may result in slowdowns. For packets larger than 150 byti¥gest validation region for each packet, which is relevant to

the speedup does not change significantly with the packet sieacessing efficiency.

Each PRE-only version of the algorithm has a total of 7 false

positives when used with o8et2(which is not PRE). E. Evaluation of Algorithm 6 (SPPM for General Regular
The generalization of Algorithm 3 to work with GRE come€xpressions) Using Simulation

at the cost of additional overhead. Figure 9 compares theFigure 13 shows the speedup of Algorithm 6. Gatlit

speedup for the two versions by packet size and shows a Clgafs results almost identical to those for Algorithm 4. We

decrease of about 10% for the general version, on the Xe@fblain this on the small number of matches. &i2although

architecture. As dlscusseq in Sect.VI-G this supports a mogﬁborithm 6 exhibits speedups, it is greatly outperformed by

whgre anchored expressions are handled separrately andﬁ%%rithm 4. Figures 15 and 17 show processor and memory

basic PRE-only algorithm is used for the rest. efficiencies of Algorithm 6. As expected, d®et2these are

lower than those for Algorithm 4.

C. Evaluation of Algorithm 4 (Basic SPPM for Prefix Closed
Regular Expressions) Using Simulation F. Evaluation of Algorithm 7 (SPPM for PRE, with Bounded

We evaluated Algorithm 4 for up t&V = 100 processing Validation Region) Using Simulation
units. We used a simulation of parallel architecture and reportWe measured the performance of Algorithm 7 by limiting
speedups and efficiency based on our performance motted validation region to various sizes. In theory, this cannot
which relies on the number of accesses to the DFA tablecrease the processing efficiency (or the speedup). It can
(lines 9 and 18 of Algorithm 4). These metrics are describexhly improve the worst case for memory efficiency, and
in Sect. IV-C by equations 1. Fig. 12 shows that speedup psotect against certain algorithmic attacks. On our test data we
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Fig. 21. Effect of bounded validation SR IIBz'%rformance
observed that if the limit is sufficiently large (about 10 bytegyetrics for N=100

than the memory and processor efficiency (and implicitly the

speedup) are about the same as for unbounded memory ﬁ‘c:i?e that the difference between the PRE and GRE versions
Figs 20 and 21). of SPPM can be much larger than 2% (see Figs. 9, 1052
] o in Figs. 12 and 13). This supports the idea of partitioning the

G. Anchored expressions and Rejecting States signatures in anchored and PRE, and handling them separately.

We gathered all anchored signatures into one DFA ahis separation allows the selection of Algorithm 4 which
explained in Sect.V-A. We verified that the minimized DFAoutperforms Algorithm 6. Alternatively, Algorithm 4 could be
has indeed a rejecting state and then we scanned the inpsed for all GRE with the risk of having false positives and
using Algorithm 5. Compared to the traditional algorithm, thikaving to handle them elsewhere. Because it is hard to quantify
version reduced the number of memory accesses by 99%. The computation done by an IPS when a possible match is
actual matching time was reduced to 2%, that is a 50x speedrtgported, we do not explore this option further. Also, note that
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such false positives could also be used for algorithmic attacksMany techniques have been proposed that use Ternary
to slow the IPS. Content addressable Memories (TCAMSs). Alicheetyal. [2]
propose a TCAM-based multi-byte string matching algorithm.
VII. RELATED WORK Yu et al. [33] propose a TCAM-based scheme for matching
Signature matching is at the heart of intrusion preventiogimple regular expressions or strings. Weinsbetgal. [31]
but traditional matching methods have large memory foontroduces the Rotating TCAM (RTCAM), which uses shifted
prints, slow matching times, or are vulnerable to evasiopatterns to increase matching speeds further. In all TCAM
Many techniques have been and continue to be proposedapproaches, pattern lengths are limited to TCAM width and the
address these weaknesses. complexity of acceptable regular expressions is greatly limited.
Early string-based signatures used multi-pattern matchif@AMs do provide fast lookup, but they are expensive, power-
algorithms such as Aho-Corasick [1] to efficiently match mulhungry, and have restrictive limits on pattern complexity that
tiple strings against payloads. Many alternatives and enhanogsst be accommodated in software. Our approach is not
ments to this paradigm have since been proposed [29], [8hnstrained by the limits of TCAM hardware and can handle
[27], [17], [28]. With the rise of attack techniques involvingregular expressions of arbitrary complexity.
evasion [20], [21], [10], [23] and mutation [13], though, string- The work most closely related to ours is the parallel lexer
based signatures have more limited use, and modern systéros [12]. This was concurrent work with ours, which we
have moved to vulnerability-based signatures written as regueere not aware at [18]. The core idea is similar to SPPM but
expressions [30], [6], [26], [22]. In principle, DFA-basedheir application domain is different: they use speculation to
regular expression matching yields high matching speeds, patallelize token detection. As opposed to SPPM they start the
combined DFAs often produce a state-space explosion [Zfeculative matching a few bytes before the desired location,
with infeasible memory requirements. Many techniques hawéth the hope to reach a stable state by that point. In their
been proposed to reduce the DFA state space [24], [25], aase matches are frequent, and the language (tokens for some
to perform edge compression [16], [3], [14], [9]. These techrigher syntax) is simpler. We feel that speculation in [12]
nigues are orthogonal to our own, which focuses specifically justified by the fact that lexing isnemory-lessin the
on latency and can be readily applied to strings or regulsense that the state at the beginning of a token is always
expressions with or without alternative encoding. the same no matter where parsing started, comments aside.
Other work uses multi-byte matching to increase matchinglid token beginnings are always coupling positions. In our
throughput. Clark and Schimmel [7] and Brodi al. [5] case matches are infrequent. We give more insight on why the
both present designs for multi-byte matching in hardwarspeculation works, prove that a linear history is efficient and
Becchi and Crowley [4] also consider multi-byte matching fogive more implementation details and insight about coupling.
various numbers of bytes, atride, as they term it. These Such insight is essential for the requirements of intrusion
techniques increase throughput at the expense of changilgection.
DFA structure, and some form of edge compression is typically
required to keep transition table memory to a reasonable size.
Our work on the other hand reduces latency by subdividing a
payload and matching the chunks in parallel without changingWe presented speculative pattern matching method which
the underlying automaton. It would be interesting to applg a powerful technique for low latency regular-expression
speculative matching to multi-byte structured automata.  matching. The method is based on three important obser-
Kruegelet al.[15] propose a distributed intrusion detectiorvations. The first key insight is that the serial nature of
scheme that divides the load across multiple sensors. Traffie memory accesses is the main latency-bottleneck for a
is sliced at frame boundaries, and each slice is analyzed byraditional DFA matching. The second observation is that a
subset of the sensors. In contrast, our work subdivides indivigReculation that does not have to be right from the start can
ual packets or flows, speculatively matches each fragmenthireak this serialization. The third insight, which makes such
parallel, and relies on fast validation. Whereas Kruegel's woekspeculation possible, is that the DFA based scanning for the
assumes individual, distinct network sensors, our work cétrusion detection domain spends most of the time in a few
benefit from the increasing availability of multicore, SIMD hot states. Therefore guessing the state of the DFA at a certain
and other n-way processing environments. position and matching from that point on has a very good
Parallel algorithms for regular expression and string matcbhance that in a few steps will reach the “correct” state. Such
ing have been developed and studied outside of the intrusigmesses are later on validated using a history of speculated
detection context. Hillis and Steele [11] show that an input states. The payoff comes from the fact that in practice the
size n can be matched ifi2(log(n)) steps givenn x a pro- validation succeeds in a few steps. A linear history is also
cessors, where is the alphabet size. Their algorithm handlesssential for an efficient implementation of SPPM. It is also
arbitrary regular expressions but was intended for Connectiarkey component for the ability to retrieve information about
Machines-style architectures with massive numbers of avdite matching states for arbitrary regular expressions, without
able processors. Similarly, Misra [19] derives @flog(n))- sacrificing performance with excessive bookkeeping in the
time string matching algorithm usin@(n * length(string)) frequent case when matches are not found.
processors. Again, the resulting algorithm requires a largeOur results predict that speculation-based parallel solutions
number of processors. can scale very well. Moreover, as opposed to other methods

VIII. CONCLUSIONS
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in the literature, our technique does not impose restrictiofs] R. Smith, C. Estan, and S. Jha. XFA: Faster signature matching with
on the regular-expressions being matched. We believe that €xtended automata. BEEE Symposium on Security and Privatjay

sp_eculatio_n is a very pov_vgrful idea and ot_her application§ f%fa] R. Sbmmer and V. Paxson. Enhancing byte-level network intrusion
this technique may benefit in the context of intrusion detection.
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