Book Entity Matching Using Magellan
Deliverable 4

Majid Aksari, Dillon Skeehan
November 25, 2015

Abstract

In this project we complete all steps of entity matching process includ-
ing crawling Web pages, information extraction, converting Web pages
into structured data, and finally using a data matching system to block
and match data. This report describes our experience using ” Magellan”
for matching the two book tables that we extracted from ”Barnes and
Nobel” and ” Amazon” websites.

1 Matching using ISBN

1.1 Start

Initial performance of the six learning algorithms on the training data I from
the sample S using just the page length feature.

Learning Method Precision | Recall | F1
Decision Tree 77.2% 74.99% | 80.37%
Random Forest 89.40% 77.47% | 87.11%
Support Vector Machine | 94.24% 72.88% | 81.71%
Naive Bayes 59.59% 87.33% | 72.2%
Log Regression 86.35% 73.30% | 75.67%
Lin Regression 82.47% 70.19% | 73.97%

After this initial cross validation, we selected the SVM learner given its con-
sistent precision and recall. This would prove troublesome as Magellan didn’t
support built in methods for debugging a SVM learner and we didn’t have pre-
vious experience working with SVM’s.

1.2 Iterative Debugging

When trained on a sample U and tested on V, we achieved the following results:

Learning Method Precision | Recall | F1
Support Vector Machine | 81.8% 69.2% | 75.0%

In order to improve precision, we then added a feature to compute the levenstein
distance for titles. We found the following for cross validation:

Learning Method Precision | Recall | F1

Decision Tree 61.5% 62.7% | 47.1%
Random Forest 66.1% 73.8% | 71.9%
Support Vector Machine | 79.6% 75.2% | 72.4%
Naive Bayes 73.4% 85.8% | 78.3%
Log Regression 79.3% 52.1% | 57.7%
Lin Regression 76.0% 74.8% | 79.8%

Upon retraining on a new sample U and testing on a sample V, we didn’t achieve
any better performance:

Learning Method Precision | Recall | F1
Support Vector Machine | 81.8% 69.2% | 75.0%

However, we did note that both the DT and RF learners improved with this
change, but not to the performance level of the SVM learner. We then added
another feature which broke down the authors of the book into 3-grams and
used a jaccard similarity measure to try to improve the matching. We achieved
the following results for cross validation.

Learning Method Precision | Recall | F1

Decision Tree 55.5% 57.4% | 44.7%
Random Forest 76.6% 49.1% | 73.3%
Support Vector Machine | 80.0% 78.1% | 74.3%
Naive Bayes 77.7% 92.6% | 77.6%
Log Regression 85.3% 50.6% | 54.5%
Lin Regression 75.1% 73.45% | 73.2%

1.3 Rules

At this point, we added an new rule to automatically add a tuple to the matching
set if the ISBN’s of the two book compared favorably. Thus our new rule would
help improve precision, given that recall was was already quite high. In doing
so we achieved the following results:

ISBN Rule Precision | Recall | F1
Support Vector Machine | 100.0% 86.67% | 92.86%

1.4 Final Results

Each learning was trained on the training set I and then tested on the test set
J. We achieved the following results:

Learning Method Precision | Recall | F1

Decision Tree 68.75% 91.67% | 78.57%
Random Forest 83.33% 83.33% | 83.33%
Support Vector Machine | 90.91% 83.33% | 86.96%
Naive Bayes 57.89% 91.67% | 70.97%
Log Regression 88.89% 66.67% | 76.19%
Lin Regression 90.91% 83.33% | 86.96%

We selected our best learning method Y as a SVM learner. Now with Y*, the
SVM learner plus the rules we implemented was trained on I and tested on J.
We achieved this final result:

Learning Method w/Rules | Precision | Recall | F1
Support Vector Machine 92.31% 100.0% | 96.0%

2 Matching excluding ISBN

Since including ISBN could make matching easier, we tried matching without
ISBN. We used as many features as possible, we added all the features generated
for title, author, book cover, number of pages, price, and publication year. Here
is our results from the first cross validation:

Learning Method Precision | Recall | F1

Decision Tree 68.75% 91.67% | 78.57%
Random Forest 83.33% 83.33% | 83.33%
Support Vector Machine | 90.91% 83.33% | 86.96%
Naive Bayes 57.89% 91.67% | 70.97%
Log Regression 88.89% 66.67% | 76.19%
Lin Regression 90.91% 83.33% | 86.96%

Linear regression, random forest, and svm all look good compared to others.
Below you can find the results of all models on the test data J:

Learning Method Precision | Recall | F1
Decision Tree 72.73% 76.19% | 74.42%
Random Forest 76.47% 61.9% | 68.42%
Support Vector Machine | 83.33% 71.43% | 76.92%
Naive Bayes 55.88% 90.48% | 69.09%
Log Regression 88.89% 72.43% | 5%
Lin Regression 90.91% 76.19% | 82.05%

Linear regression actually performs very well on the test data with 90%
precision and 76% recall, therefore, we choose it as our final classifier if we did
not have access to ISBN. We plan to further debug this classifier for our final
report.

3 Comments

e It would be helpful if I could see the function definitions, input, and output
when I hovered over the function names. I had to look at the source code
a few times to make sure about input and output.

e Generating features automatically sounds a good idea. However, we find
the workflow for creating features manually not intuitive or at least not
explained well.

e It is not clear if looking at the paths from random forest actually can help
in debugging. What can we do about the paths? What kind of insight
can we get?

e Combining the blocker outputs via union took a long time to run.

e We are not clear where the type of each attribute is specified. Magellan
kept telling us that price from ltable has a different type from price from
rtable and refused to automatically generate a feature for it.

4 Time Estimate

a) how much did it take to label the data? approximately 2 hour
b) to find the best learning-based matcher? approximately 25 hours

c¢) to add rules to the learning-based matcher? approximately 5 hours

