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Abstract 
Image colorization is a process that adds color to grayscale images. Manual image colorization              
is tedious and prone to human error. Existing approaches to colorize images automatically use              
either pixel-based scanning (expensive), are scribble-based (manual), assume strong correlation          
with target grayscale image, or require large number of training examples. In this project, we               
aim to look at approaches that perform automatic image colorization with a small number of               
similar reference images using Machine Learning. Initially, (1) we plan to design features which              
would capture different properties of a grayscale image for training ML models. Then, (2)              
grouping pixels into superpixels enables capturing of local information with reduced           
complexity. If we have a corpus of training images, (3) one or more of Machine Learning                
algorithms like support vector regression or k-means could be used to train an algorithm to               
colorize parts of images with reasonable accuracy. Based on the output of the model, (4) we                
perform some post-processing (like smoothing) to re-assign colors of segments predicted with            
low confidence. Via these four steps, we color images with reasonable accuracy using only a               
small subset of training images than needed in other approaches. 
 

1 Introduction 
One of major problems in the colorization process is that two objects with different colors may                
appear to have same color in the grayscale mode. One simple solution for this problem is to                 
seek user inputs for colors. However, doing so will make this solution very tedious as it requires                 
the user to repaint all the segments of the image. Another approach is to use machine learning                 
or other similar approaches for automatic colorization, but these approaches are           
computationally expensive. Our approach is to efficiently automate the process by training a             
machine learning model on a relatively small corpus of training images. The trained model              
would be then used to colorize images that are similar to those in the training set. For this                  
project, we work in the LAB color space instead of RGB, where L represents the luminance and                 
A and B represent the chrominance. Hence the input to our algorithm is the grayscale image                
which is L and the output would be A and B.  
 

2 Related Work  
Levin et al. [1] proposed a method in which the user chooses colors directly and is able to refine                   
the results by scribbling more colors in the image. A semi-automatic technique for colorization              
of grayscale image using a reference of colored image is described in Welsh et al. [2]. The                 
approach uses the luminance values of neighboring pixels in the target image to fill colors from                
corresponding location in the reference image. In this approach the user must find a reference               
image containing the colors over desired regions. Larsson et al. [3] proposed a deep learning               



 

method which is computationally expensive. In our project, we attempt to use the Levin et al                
technique along with machine learning approach to automatically colorize objects in the image             
based on some prior training data i.e. corpus of images while being faster than the deep                
learning approach. We also plan to comparatively analyze the performance of different            
machine learning algorithms.  
 

3 Training and Testing set to be used for ML Algorithm  
In order to train the machine learning model, we collected images belonging to the categories               
like lakes, scenic terrains and forests. We downloaded images from Instagram and Google             
Search Images with the appropriate tags to narrow down the image search and improve the               
results to avoid noise. We then scaled the pictures in our dataset to uniform sizes, and disposed                 
of any existing grayscale photographs. We split the sample set into train and test sets in the                 
ratio of 2:1. We verify our results with the actual colored images to estimate the performance                
of the algorithm. 
 

4 Algorithm 
The steps in our process can be outlined as follows: 
 
a. Color space pre-processing 
Each image in the training set is converted to grayscale and encoded in the LAB color space. L                  
encodes luminance and (A, B) encode color information. LAB is used over RGB because the               
usage of a LAB color space for a machine vision implementation can give better subjective               
image quality than the RGB color space, similar to [5]. 
 
Also, for our training model since input is grayscale image, we can use just L component to                 
design our feature vector and predict the (A, B) components.  
 
b. Image Segmentation: Simple Linear Iterative Clustering (SLIC) algorithm  
We found there are two approaches to color images:  
 

1) Predicting the color of each pixel  
2) Segmenting the image into superpixels and color each super pixel.  

 
Predicting color pixel by pixel is a highly computationally intensive process. Hence we chose the               
second approach and use a segmentation algorithm called Simple Linear Iterative Clustering            
(SLIC) algorithm. Superpixels group pixels helping us to process picture highlights close to one              
another. They have been demonstrated progressively valuable for applications such as Image            
Segmentation. The segmentation approach makes utilization of Achanta et al’s [4] SLIC            
superpixels and the DBSCAN clustering algorithm. These superpixels are then processed using            
the DBSCAN algorithm to shape clusters of superpixels to produce the last division.  
 
The algorithm segments the image into superpixels using a weighting variable, relating spatial             
distances to shading distances, and super pixel attributes are figured out from the middle              
shading values. Note we utilize a relative low weighting of spatial distance to color distances in                
framing superpixels. Using a low weighting in SLIC algorithm decreases the possibility of under              



 

segmenting an image and the devotion of highlight limits is better saved. The super pixel seed                
points have been initialized in a hexagonal framework instead of a square framework. The              
rationale is that this will outcome in a division that will be ostensibly 6-associated which ideally                
encourages any subsequent post-processing that tries to blend super pixels. 

 
Figure 1: SLIC algorithm segments the image into multiple super pixels 

 
c. Generation of feature vectors  
For each segment, we construct a feature vector which will be the input to our machine                
learning classifier. We construct features from a δ × δ window centered around the centroid               
of the segment. We then perform a 2D FFT on the square to give us feature vectors. It should                   
be noted that the square only contains the L values of the image. The shortcomings of this                 
approach are it ignores the shape of the segment. It also considers only a small fraction of the                  
pixels in a large segment which might not be an adequate representation. Another approach, is               
to construct a bounding box around the segment and select n pixels at equal intervals within                
the box. Pixels outside the segment but within the box are assigned L = 0. We then apply the                   
2-D FFT on this resultant representation. 
  
A feature vector which is used to learn a prediction model is constructed for each               
superpixel segment. It consists of the following features: 
  

❏ Mean and Variance of Luminance values: This feature has the information of the             
noise distribution in the segment. The mean value averages contribution of each            
pixel intensity in the superpixel and the variance provides information about the            
luminance distribution within a superpixel.  

❏ Centroid: Simple properties of the image which are found via image moments            
include area or the total intensity, its centroid, and its orientation related            
information. Specifically the centroid is useful to determine segments whose          
location generally remains constant throughout different images. Image moments         
are useful to describe objects after segmentation.  

  
To capture texture information of the segment and its corresponding neighborhood: 
  

❏ Superpixel Histogram: Normalization of histogram is necessary as it represents          
probability values and is independent of the size of the superpixel. 



 

❏ Locality Histogram: As super pixel segmentation may possibly divide the objects,           
the locality histogram represents information such as whether the superpixel is a            
part of a continuous object or whether it lies on an edge between 2 objects. The                
locality histogram is used get a global perspective of the current segment.  

❏ Gradient Magnitude: The gradient magnitude is for capturing information about          
sharp changes in luminance in each δ × δ area around the center of the               
superpixel. Here we only consider the magnitude as we wish to be generic across all               
orientations of the superpixel.  

 

 

Figure 2: For each row starting from the left, the sample image, the histogram feature,               
and the gradient magnitude feature. The locality histogram is the same for both             
images, whereas the gradient magnitude is different and helps distinguish the images 

 
 
d. Classifier  
The code predicts 2 values for each segment - A and B and we train two models, one for A                    
and one for B. On providing a test grayscale image, the models predict the corresponding A                
and B values for each superpixel. The input to both classifiers will be the feature vector                
representation of the corresponding superpixel. On combining them, we get the final            
colored image.  
  
Which model to use? 
  
We started off with basic linear regression for the model. Later we shifted to use the SVR                 
model (Improved accuracy). Both SVR and Nearest Neighbour Approach is described below. 
  
Support Vector Regression (SVR): The main idea of SVR is to fit a hyperplane such that each                 
point is within some ‘Error’ of the hyperplane, while simultaneously minimizing the margin             
||w||​2 ​. SVR centers around solving the following optimization problem 

 
min​ w        ​(1 − yw​T ​X )​+  ​such that  ||w||​2  ​<  Error 



 

Where X is the a matrix where each row is a feature vector and y is the corresponding                  
chrominance value. The weight vector w defines the margin and direction of the regressed              
hyperplane. We attempt to minimize the hinge loss while constraining the margin to be less               
than a parameter ‘Error’. This can be solved iteratively by using the proximal point              
algorithm. At each stage the update function is given by 

w​t+1  ​= prox(w​t  ​− τ X ​T ​(X w​t  ​− y) 
  
  
Nearest Neighbour Approach: The kNN model is capable of predicting a wide variety of              
colors rather than SVR model. Given a set of labeled colored segments, for a test segment,                
we search for the best fit segment and assign its corresponding A and B values. 
  
For computing the similarity between pixels, we compute the euclidean distances E​1 ​, E​2 ​, E​3 ​,                 
E​4 ​, E​5 ​between each of the corresponding 5 features: Mean, Variance, Centroid, Superpixel              
Histogram, Locality Histogram and Gradient Magnitude of the test segment and a reference             
segment. The similarity score for each reference segment is obtained by taking a weighted              
combination of the Euclidean distances as shown below. The segment with the lowest             
score is the most similar segment and its color is assigned to the superpixel. 
  

s = w​1 ​E​1 ​+ w​2 ​E​2 ​+ w​3 ​E​3 ​+ w​4 ​E​4 ​+ w​5 ​E​5 

 
  

Figure 3: Support Vector Regression (left) is used to fit a line to a set of 2-d points and                   
the boundaries of the Nearest Neighbors approach (right) in 2-d 

  
 
 
 
 



 

e. Colorize 
With a particular level of confidence, the model trained above outputs the chrominance             
values.  

❏ If the confidence of the prediction is too low​: the corresponding superpixel will not              
be colored. This ensures better accuracy and resistance to noisy labels. We then use              
the scribble based colorization to propagate colors to these super pixels. 

❏ If the confidence of the prediction is good​: The confidently colored super pixels act              
as scribbles. These scribbles act as a reference for propagating color to uncolored             
regions. The basic idea is to color similar intensity pixels with similar colors. It              
attempts to minimize the difference between the color of the pixel and the affinity              
weighted average of its neighbors. 

 

5 Flowcharts 
Roughly, we have three major processes: 
 
Pre-processing step for all images (for both training and predicting) 

 
 
Training phase for the corpus of images 

 
Colorization phase given a test image 

 
 

6 Discussion 
❏ K-Nearest Neighbors versus SVR: ​From the experiments, SVR failed in predicting           

lots of different shades of the similar colors resulting in missing out on subtle              
changes. On the other hand, k-NN can predict such details with high accuracy as it               
relies on reference images. 

 



 

 
 
 

  

Figure 4: using SVR lacks different shades of same color. The k-NN approach recognizes              
more diverse colors including the blueness for the sky and greenish shades for plants. 

 
❏ So is k-NN the best solution? No, it has its limitations too: ​k-NN approach is highly                

dependent on the reference images and hence prone to noise based on the             
irrelevancy of the reference images. Though It is good at predicting diversity of             
colors, it makes errors on very slight changes in texture of the segments and makes               
noisy predictions as shown in figure 6 and 9, though that has to partially account               
towards using very less reference images. 

  
The below set of images shows how this algorithm works for different input images and 
different set of reference images. 

 

Figure 5: The prediction is quite relevant 

 



 

 
Figure 6: The soil is shaded with a bluish tinge as the texture difference between the end of the 

water and the sand is very subtle 
 

 

Figure 7:The prediction is quite relevant 

 

Figure 8 below shows a very good example that, using just a few training examples, a good                 
colorization can be done. But the catch here is, the category (For example: Lake in figure 8) of                  
that image should be known prior such that suitable training sets can be used, instead of using                 
a very big generic set of training examples. 
 

 

Figure 8: Using just very few training examples, this is being predicted with a very good 
relevancy.  

 



 

 

Figure 9: very subtle change between the water and the shore results in the bluish shade in the 
image for the sand. But the difference in color between the water and the sky makes more 

sense as the change in texture is a bit more obvious. 

 

Figure 10: using n=3, which is a very small training set, this relevant colorized example stands as 
an example that this way to colorize does a good job when there are small number of training 

images. 
 
  
In figure 11, due to the Nearest Neighbors model’s limitation with respect to subtle change               
in texture makes prediction errors in predicting color. Though figure 9 partly shows similar              
issue, the use of very less training examples there prevents it from calling the subtle               
chance, the only fault parameter. 

 

 

Figure 11: The Nearest Neighbors model makes prediction errors in predicting color where             
there is subtle change in texture 

 



 

 

7 Conclusion 
In this project, we explored a new method to colorize grayscale images using various              
machine learning based approaches. To come up with good set of features which would              
accurately capture important properties of a grayscale image of each segments is a pivot.              
The experiments between different machine learning based models and different sets of            
training images helped us understand why one model performs better over the another. If              
used efficiently, this way to colorize can be used as an efficient domain specific colorizer               
where the input image to colorize is presented along with a particular domain (ex: lakes,               
mountains, etc) and only the images in that domain are used to train the model resulting in                 
the usage of very less number of train set saving time and the performance.  
  
8 Future Work 

❏ Although this works reasonably well, there might be rough edges between adjacent            
pixels that could have been formed. We have to try out smoothing if that is the                
case. Hence if a pixel has a highly improbable color, it is flagged and re-assigned the                
color corresponding to the maximum likelihood estimate in that region.  

❏ Although works reasonably well on a small set of training images, ​our current              
algorithm works better when the training set comprises of similar images. The            
model is susceptible to noise when non related images are introduced, which            
requires some internal classification. 

❏ Evaluation and optimization of this approach in different use cases including the            
dynamic change in size of the train set to be used based on the model and the input                  
should be played around with. 
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Project Description  
● http://pages.cs.wisc.edu/~marannan/Project_Report_CS534.pdf 
● Code 

○ Total number of lines - 2505 
○ Open source libraries 

■ CIRCULARSTRUCT 
■ CLEANUPREGIONS 
■ DBSCAN 
■ DRAWREGIONBOUNDARIES 
■ FINDDISCONNECTED 
■ MAKEREGIONSDISTINCT 
■ MASKIMAGE 
■ MCLEANUPREGIONS 
■ REGIONADJACENCY 
■ RENUMBERREGIONS 
■ SLIC 
■ SPDBSCAN 
■ TESTDBSCAN 

● Contribution 
○ Arjun - Machine learning methods for training models. 
○ Ashok - Segmentation and feature vectors generation. 
○ Manoj - Preprocess, colorize and report. 

 

http://pages.cs.wisc.edu/~marannan/Project_Report_CS534.pdf

