CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING COMPUTER SCIENCES DEPARTMENT UNIVERSITY OF WISCONSIN – MADISON

Prof. Mark D. Hill & Prof. Mikko Lipasti TAs Sanghamitra Roy, Eric Hill, Samuel Javner, Natalie Enright Jerger, & Guoliang Jin

> Midterm Examination 1 In Class (50 minutes) Monday, October 1, 2007 Weight: 15%

CLOSED BOOK, NOTE, CALCULATOR, PHONE, & COMPUTER.

The exam has **four** two-sided pages.

Plan your time carefully, since some problems are longer than others.

NAME: _____

SECTION: _____

ID#_____

Problem Number	Maximum Points	Graded By	
1	4	EH	
2	3	EH	
3	3	NEJ	
4	4	NEJ	
5	4	SR	
6	4	SJ	
7	4	GJ	
8	4	SJ/SR/NEJ	
Total	30		

Problem 1 (4 points)

a)What is the largest (most positive) integer that can be represented as an *unsigned* integer using 13 bits?

111111111111 $_{b} = (2^{13} - 1)_{d} = 8191_{d}$ Full credit for any one of $(2^{13} - 1)_{d}$ or 8191_{d}

b)What is the largest (most positive) integer that can be represented as a *two's complement* integer using 13 bits?

 $011111111111_{b} = (2^{12} - 1)_{d} = 4095_{d}$ Full credit for any one of $(2^{12} - 1)_{d}$ or 4095_{d}

Problem 2 (3 points)

Consider bitwise logical operations: Compute (1101 AND 0111) OR (NOT 0011)

(1101 AND 0111) OR (NOT 0011) = (0101) OR (1100) = 1101

Problem 3 (3 points)

Convert the number -84 (base ten) into two's complement representation with 8 bits.

 $+84_{d} = 01010100_{b}$ $-84_{d} = 10101011_{b} + 1_{b} = 10101100_{b}$

Problem 4 (4 points)

Consider the 8-bit binary bit pattern **10010010**. What is its decimal (base ten) value if the bit pattern is interpreted as:

a) An unsigned integer?

 $10010010_{b} = 128 + 16 + 2 = 146_{d}$

b) A two's complement integer?

 $10010010_{b} = -(01101101 + 1)_{b} = -(01101110)_{b} = -(64 + 32 + 8 + 4 + 2)_{d} = -110_{d}$

Problem 5 (4 points)

a) Add the following 5-bit two's complement binary numbers: **01111 + 01101**. Express your answer in 5-bit two's complement. Please indicate if there was an overflow.

11100 - There is overflow.

b) Add the following 5-bit two's complement binary numbers: **11110** + **01111**. Express your answer in 5-bit two's complement. Please indicate if there was an overflow.

01101 - There is no overflow.

Problem 6 (4 points)

a) Convert the ASCII string "**F4n**" into binary. (See attached ASCII table. Only convert the characters between the quotation marks.)

"F4n" = 0x46347E = 01000110 00110100 01111110 (00000000 at end OK)

b) Convert the binary value **0010010001101011** into an ASCII string.

0010010001101011 = 0x246B = "\$k"

Problem 7 (4 points)

a) What is the base ten (decimal) value represented by binary 110.101?

110.101 =
$$1 \times (2^2) + 1 \times (2^1) + 0 \times (2^0) + 1 \times (2^{-1}) + 0 \times (2^{-2}) + 1 \times (2^{-3})$$

= $4 + 2 + 0 + 1/2 + 0 + 1/8$
= $6 5/8$ (or $53/8$, 6.625 , etc.)

b) The bits for an IEEE floating point number are allocated as follows:

sign (1 bit)	exponent (8 bits)	fraction (23 bits)
--------------	-------------------	--------------------

where N = $(-1)^{S}$ x 1.fraction x 2^{exponent-127}

N = (-1)¹ x (1.11)_b x 2¹²⁹⁻¹²⁷ = -1 x (1.11)_b x 2² = -(111)_b = -7

Problem 8 - Circle the correct answer (2 points each)

I.Which of the following is a universal computing device?

- a. A 16-button(0-9, period, $=/+/-/x/\div$) calculator
- b. A laptop computer running Windows XP
- c. An ultrafast supercomputer
- d. All of the above
- e. Both (b) and (c)

II.When referring to an algorithm, definiteness means:

- a. Each step must be precisely defined
- b. The algorithm's variables must not overflow a fixed number of bits
- c. The number of unknowns and equations is the same
- d. None of the above

Character	Hex	Character	Hex	Character	Hex	Character	Hex
nul	00	sp	20	@	40	N	60
soh	01	!	21	A	41	a	61
stx	02	"	22	В	42	b	62
etx	03	#	23	С	43	с	63
eot	04	\$	24	D	44	d	64
enq	05	%	25	E	45	e	65
ack	06	&	26	F	46	f	66
bel	07	'	27	G	47	g	67
bs	08	(28	Н	48	h	68
ht	09)	29	Ι	49	i	69
lf	0A	*	2A	J	4A	j	6A
vt	0B	+	2B	K	4B	k	6B
ff	0C	1	2C	L	4C	1	6C
cr	0D	-	2D	Μ	4D	m	6D
so	0E		2E	N	4E	n	6E
si	0F	/	2F	0	4F	0	6F
dle	10	0	30	Р	50	р	70
dc1	11	1	31	Q	51	q	71
dc2	12	2	32	R	52	r	72
dc3	13	3	33	S	53	s	73
dc4	14	4	34	Т	54	t	74
nak	15	5	35	U	55	u	75
syn	16	6	36	V	56	v	76
etb	17	7	37	W	57	w	77
can	18	8	38	X	58	x	78
em	19	9	39	Y	59	у	79
sub	1A	:	3A	Z	5A	Z	7A
esc	1B	;	3B	[5B	{	7B
fs	1C	<	3C	λ	5C	I	7C
gs	1D	=	3D]	5D	}	7D
rs	1E	>	3E	^	5E	~	7E
us	1F	?	3F	_	5F	del	7F

ASCII Table

Scratch Sheet (in case you need additional space for some of your answers)