CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING
UNIVERSITY OF WISCONSIN – MADISON
Prof. Parmesh Ramanathan & Mark D. Hill
TAs Kasturi Bidarkar, Ryan Johnson, Jie Liu, & Ramachandran Syamkumar
Midterm Examination 2
In Class (50 minutes)
Friday, October 23, 2009
Weight: 15%

CLOSED BOOK, NOTE, CALCULATOR, PHONE, & COMPUTER.
The exam has four two-sided pages.
Plan your time carefully, since some problems are longer than others.

NAME:__
SECTION:__
ID#:___
<table>
<thead>
<tr>
<th>Problem Number</th>
<th>Maximum Points</th>
<th>Actual Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>
Problem 1 (3 points)

Write the Boolean expression corresponding to the following truth table. You need not simplify the expression.
E.g. \(Z = _ _ _ _ + _ _ _ _ + \ldots \)

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>Z</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

\(Z = (\neg A \& \neg B \& \neg C) | (\neg A \& \neg B \& C) | (A \& B \& \neg C) \)

Problem 2 (4 points)

Suppose a 32-bit instruction takes the following format:

<table>
<thead>
<tr>
<th>OPCODE</th>
<th>SR</th>
<th>DR</th>
<th>IMM</th>
</tr>
</thead>
</table>

If there are 350 opcodes and 32 registers:

a) What is the minimum number of bits required to represent the OPCODE?

\[350 \leq 512 = 2^9 \Rightarrow 9 \text{ bits} \]

b) What are the minimum number of bits required to represent source register (SR) and destination register (DR)?

\[32 = 2^5 \Rightarrow 5 \text{ bits} \]

c) (2 points) What is the range of values that can be represented by the immediate (IMM)? Assume IMM is a two's complement value.

\[32 - (9 + 5 + 5) = 13 \]
\[-2^{12} \leq \text{IMM} \leq 2^{12} - 1 \]
Problem 3 (4 points)

The figure below shows a combinational logic circuit. A, B, and C are the inputs to the circuit, Z is the output, and D, E, F, G, H are internal wires.

a) What is the output Z when A = 1, B = 0, C = 1? Explain by identifying the values of internal wires.

D = 0
E = 1
F = 1
G = 0
H = 0
Z = 0

b) What is the output Z when C = 0? Explain.

C = 0
H = 1
Z is always 1.
Problem 4 (3 points)

Fill in the truth table for C and D for the following transistor level circuit. Note that the two wires labeled B are assumed to be connected to each other.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Problem 5 (4 points)

The figure below is a finite state machine (FSM) diagram, where the start state is S. Complete the questions according to the behavior of this machine.

![Finite State Machine Diagram]

a) If an input sequence is: 100110, write the state changes (eg. S → __ → __ → ...).

S → S → A → A → B → B → C

b) For the same input sequence 100110, what is the output sequence?

0 0 0 0 0 1

c) (2 points) Assume the current state is A, what input sequence will put the FSM back to state S?

1 0 1
Problem 6 (3 points)

The figure above is a circuit with three 2-to-1 multiplexers. What is the output Y? Explain.

MUX0 outputs D0 value 1.
MUX1 outputs D1 value 0.
MUX2 selects D1 (MUX1's output), thus $Y = 0$.

Problem 7 (2 points)

A load to a memory uses a 6-bit address $A[5:0]$ to obtain a 11-bit value $V[10:0]$. What is the total number of bits that can be stored in all of the memory?

$2^6 \times 11 = 64 \times 11 = 704$
Problem 8 (3 points)

a) For this R-S latch, what are the values of a and b if S = 1, and R = 0?
 a = 0
 b = 1

b) Then, R changes to 1 (now S = 1, R = 1). What are the values of a and b?
 a = 0
 b = 1

c) Then, S changes to 0 (now S = 0, R = 1). What are the values of a and b?
 a = 1
 b = 0

Problem 9 (4 points)

Circle the correct answer.

a) A 4-state finite state machine can be implemented using 2 D-latches. [True / False]
b) The ADD instruction leaves the program counter unchanged. [True / False]
c) The instruction register holds the address of the instruction to be executed next. [True / False]
d) The LDR (load) instruction writes to a register. [True / False]