CS/ECE 252 HOMEWORK \#4 SOLUTION

Problem 1 (8 points)

Design a finite state machine that recognizes the particular pattern "111". The input to a finite state machine (FSM) is a sequence of binary bits in series. When the FSM sees three 1's in a row, it it should output "1" - otherwise it should output a "0".
a. Create a finite state machine that recognizes consecutive patterns. For example (reading bits left to right):
input sequence -> 011110010
FSM output -> 000110000
That is, when the previous three bits in the input were "1" it outputs a 1 . In this situation, it happened twice.

The start state is S .
b. Create a finite state machine that would reset and look for a new series of three 1's after it sees a "111" pattern. For example,
input sequence -> 011110111
FSM output -> 000100001

The start state is S .

Problem 2 (8 points)
The following table represents a small memory. Refer to this table for the following questions:

Address	Data
0000	1111111100100100
0001	1100000001000000
0010	0010100100000101
0011	0000000001010001
0100	0110001010001010
0101	0110111001101111
0110	0000000000000010
0111	1110010111010110

a. What binary value does location 4 contain? Location 7 ? Location 4: 0110001010001010 in binary or x682A in hex Location 7: 1110010111010110 in binary or xE5D6 in hex
b. Interpret location 0 as a two's complement integer.
-220
c. Interpret location 5 as an ASCII value. no
d. Interpret location 3 as an unsigned integer.

81
e. In the von Neumann model, the contents of a memory location can be interpreted as an instruction. If the binary patterns in location 1 and location 4 were interpreted as a LC- 3 instruction, what instructions would they represent?
Location 1: JMP R1
Location 4: LDR R1 R2 \#10
f. A binary value can also be interpreted as a memory address. If the value stored in location 6 is a memory address, to which location does it refer? What binary value is stored in that memory location?
Location 6 refers to location 2, which contains binary value 0010100100000101.

Problem 3 (6 points)

Suppose a 64-bit instruction takes the following format:

\section*{| OPCODE | SR | DR | IMM |
| :--- | :--- | :--- | :--- |}

There are 237 opcodes and 64 registers.
a. What is the minimum number of bits required to represent an OPCODE?

237 opcodes $<256=2 \wedge 8 \quad 8$ bits opcode
b. What is the minimum number of bits required to represent a register?

64 registers $=2^{\wedge} 6 \quad 6$ bits opcode
c. What is the maximum number of bits that can be used to represent the immediate field (IMM)?

64-8-6-6 = 44 bits IMM
d. If the immediate (IMM) uses two's complement representation, what is its maximum range of values?
IMM ranges from -(2^43) to (2^43)-1, or -8796093022208 to 8796093022207

Problem 4 (4 points)

Write the operations that occur in each phase of the instruction cycle for the LDR instruction.
FETCH: Load MAR with PC, and increment PC.
Fetch instruction (LDR) in memory and place it into MDR.
Load IR with contents of MDR.
DECODE: Take the OPCODE and identify the LDR instruction.
EVALUATE ADDRESS: Calculate LDR source memory address by adding the base offset to the contents of the source register.

FETCH OPERANDS: Load MAR with LDR source memory address calculated by EVALUATE ADDRESS.
Read from memory.
Place source operand into MDR.
EXECUTE: Skipped.
STORE RESULT: Write result into its designated destination.

Problem 5 (4 points)

Problem 4.14 on page 113 of ItCS.
At FETCH phase, PC = x36A2 (from Example 4.5), IR is loaded with the JMP instruction and the PC is incremented to $\times 36 A 3$. At the EXECUTE phase, PC is loaded with the new value from the content of R3 ($x 369 \mathrm{C}$). At the next instruction cycle, the processor will start executing at address $\times 369 \mathrm{C}$.

