CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING UNIVERSITY OF WISCONSIN—MADISON

Prof. Mark D. Hill

TAs: Sujith Surendran, Pradip Vallathol

Midterm Examination 1

In Class (50 minutes)

Wednesday, October 2, 2013

Weight: 17.5%

NO: BOOK(S), NOTE(S), OR CALCULATORS OF ANY SORT.

The exam has 8 pages. **Circle your final answers**. Plan your time carefully since some problems are longer than others. You **must turn in the pages 1-7**. Use the blank sides of the exam for scratch work.

LAST NAME:	 	 	
FIRST NAME:	 	 	
ID#			

Problem	Maximum Points	Points Earned
1	6	
2	2	
3	4	
4	2	
5	6	
6	3	
7	2	
8	3	
9	2	
Total	30	

(6 Points)

For the following problems, circle the best answer. Choose only one answer per question.

- i How many unique bit patterns can be represented using n bits?
 - a n
 - b 2n
 - c 2n
 - d 2(n-1)
- ii How many Instruction Set Architectures (ISAs) are usually implemented by a given microarchitecture?
 - a None
 - b 1
 - c 2
 - d There is no limit
- iii What is the binary representation of the hexadecimal value **0x6D**
 - a 0110 1100
 - b 0110 1101
 - c 0011 1100
 - d 0011 1101

iv In how many ways can **0** be represented in Signed Magnitude form?

- a 1
- b 2
- c None
- d Cannot be determined
- v Which of the following are specified by an Instruction Set Architecture (ISA)?
 - a Addressing modes
 - b Instructions
 - c Data types
 - d All of the above
- vi Digital designs are preferred over analog designs because it is hard to increase the accuracy of analog designs.
 - a True
 - b False

(2 Points)

Perform binary arithmetic for the following pairs of 6-bit 2's complement numbers.

a 011001 + 101101 ----b 010111 - 111110

Problem 3

(4 Points)

Perform the specified logical operations on the following binary numbers. Express your result in **hexadecimal**.

a 10111110 AND (NOT (10010001)) (2 Points)

b (NOT(0011)) OR (1101 AND 0101)

(2 Points)

(2 Points)

Convert the ASCII string "Fall_13" to its **hexadecimal** representation. Only represent the characters within the quotation marks and assume it is null terminated. **Hint: See ASCII to hexadecimal table on the last page of the exam.**

Problem 5

(6 Points)

What are the smallest and largest numbers that can be represented using 5-bits in the following formats?

Format	Smallest number	Largest number
Unsigned integer		
Signed Magnitude		
2's complement		

Problem 6	(3 Points)	
Answer the following questions briefly. (1 or 2 sentences)		
a Why cannot natural language be used as programming languages?	(1 Point)	

b What is the advantage of using fixed point representation of fractions? What is the advantage of using the IEEE floating point representation? (2 Points)

Problem 7

(2 Points)

Arrange the following in order, from highest to lowest level of abstraction. The first element in the sequence has been filled for you.

- i. Binary/Machine code
- ii. Transistors/Devices
- iii. Programming language
- iv. Microarchitecture
- v. Problem Statement

1	v. Problem Statement
2	
3	
4	
5	

(3 Points)

Convert the decimal value **2.5** into its single-precision floating point representation. Write your answer in **hexadecimal**.

Recall that the bits for the IEEE floating point number are as follows:

	Sign (1 bit)	Exponent (8 bits)	Fraction (23 bits)
--	--------------	-------------------	--------------------

where N = $(-1)^{\text{sign}} * 2^{\text{exponent}-127} * 1$. fraction

Problem 9

(2 Points)

Does the following binary arithmetic operation result in an overflow for the following 4-bit 2's complement numbers?

1100 + 1001

Illustrate your answer by converting the operands and result to decimal. Assume the result is also represented using 4-bits.

Character	Hex	Character	Hex	Character	Hex	Character	Hex
nul	00	sp	20	@	40	`	60
soh	01	!	21	А	41	a	61
stx	02	"	22	В	42	b	62
etx	03	#	23	С	43	с	63
eot	04	\$	24	D	44	d	64
enq	05	%	25	Е	45	e	65
ack	06	&	26	F	46	f	66
bel	07	' (Apostr.)	27	G	47	g	67
bs	08	(28	Н	48	h	68
ht	09)	29	Ι	49	i	69
lf	0A	*	2A	J	4A	j	6A
vt	0B	+	2B	Κ	4B	k	6B
ff	0C	, (Comma)	2C	L	4C	1	6C
cr	0D	-	2D	Μ	4D	m	6D
so	0E	. (Period)	2E	Ν	4E	n	6E
si	0F	/	2F	0	4F	0	6F
dle	10	0	30	Р	50	р	70
dc1	11	1	31	Q	51	q	71
dc2	12	2	32	R	52	r	72
dc3	13	3	33	S	53	S	73
dc4	14	4	34	Т	54	t	74
nak	15	5	35	U	55	u	75
syn	16	6	36	V	56	v	76
etb	17	7	37	W	57	w	77
can	18	8	38	Х	58	Х	78
em	19	9	39	Y	59	У	79
sub	1A	:	3A	Ζ	5A	Z	7A
esc	1 B	;	3B	[5B	{	7B
fs	1C	<	3C	\	5C	1	7C
gs	1D	=	3D]	5D	}	7D
rs	1E	>	3E	^	5E	~	7E
us	1F	?	3F	_ (Undrscre)	5F	del	7F

ASCII Table