CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING UNIVERSITY OF WISCONSIN—MADISON

Prof. Mark D. Hill

TAs: Pradip Vallathol, Sujith Surendran

Midterm Examination 2

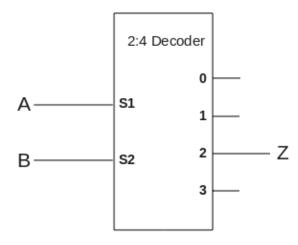
In Class (50 minutes)

Friday, October 25, 2013

Weight: 17.5%

NO: BOOK(S), NOTE(S), OR CALCULATORS OF ANY SORT.

The exam has 8 pages. **Circle your final answers**. Plan your time carefully since some problems are longer than others. You **must turn in the pages 1-8**. Use the blank sides of the exam for scratch work.


LAST NAME:	
FIRST NAME:	
ID#	

Problem	Maximum Points	Points Earned
1	5	
2	2	
3	4	
4	4	
5	2	
6	5	
7	3	
8	2	
9	3	
Total	30	

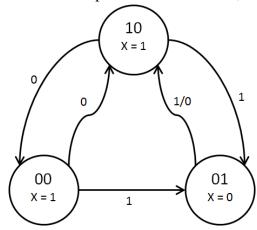
Problem 1 (5 Points)

For the following questions, select the **best** answer. Choose only **one answer per question**.

- i. What is the **addressability** (number of bytes per memory location) of a 1024 byte memory which uses 8 bits for each memory address?
 - a. 2 bytes
 - b. 4 bytes
 - c. 256 bytes
 - d. 512 bytes.
- ii. How many **transistors** are required to build a 2-input AND gate?
 - a. 3
 - b. 4
 - c. 5
 - d. 6
- iii. Which of the following can be used to distinguish instructions from data?
 - a. The number of bits used to represent them
 - b. The special format they follow
 - c. Both a and b
 - d. They cannot be distinguished
- iv. Which of the following **phases of the instruction cycle** are necessary for the processing of all instructions?
 - a. EXECUTE
 - b. EVALUATE ADDRESS
 - c. DECODE
 - d. None of the above
- v. Which of the following is the **logic equation** for Z in the following diagram?
 - a. Z = A AND B
 - b. Z = NOT(A) AND B
 - c. Z = A AND NOT(B)
 - d. Z = A NOR B

Problem 2 (2 Points)

Implement NOT(A) using a 2-input NAND gate.


Problem 3 (4 Points)

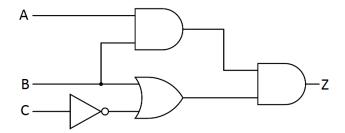
For the following truth table, with A, B and C as inputs and Z as the output, draw the gate level circuit using **3-input AND** gates, **2-input OR** gates and **NOT** gates.

Α	В	С	Z
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Problem 4 (4 Points)

Complete the **Next State truth table** and the **Output truth table** for the following Finite State Machine (FSM). Each state is represented as S_1S_0 . For example, the state marked as "10" has $S_1 = 1$ and $S_0 = 0$. X is the output in each state. S_1 'S₀' represents the next state.

Next State Truth Table


S_1	S_0	IN	S ₁ '	S ₀ '

Output Truth Table

S_1	S_0	X

Problem 5 (2 Points)

For the following logic circuit, write the **logic expression** of Z in terms of A, B and C. [e.g.: (W AND (NOT X)) OR Y].

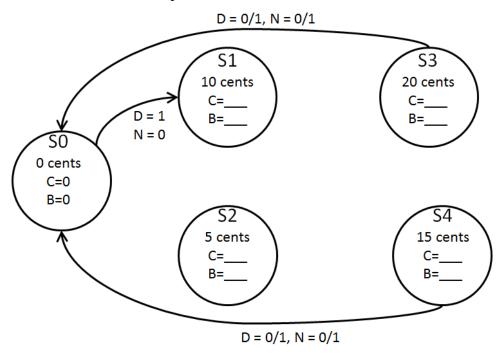
Problem 6 (5 Points)

Consider a vending machine which delivers a package of cookies after 15 cents are deposited. It has a single coin slot which accepts only **dimes (D) (10 cents)** or **nickels (N) (5 cents)**. Once the sum reaches (or exceeds) 15 cents a cookie is delivered. If the sum exceeded 15 cents (for example you input 2 dimes), you also get back 5 cents.

The **Finite State Machine (FSM)** is defined as follows:

Inputs: [Only one of D and N can be one in a clock cycle]

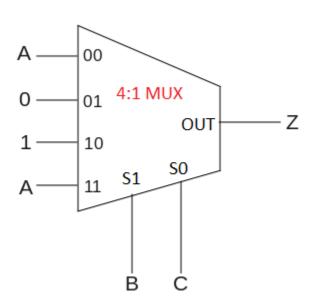
D=1 implies one dime (10 cents) was deposited


N=1 implies one nickel (5 cents) was deposited

Outputs:

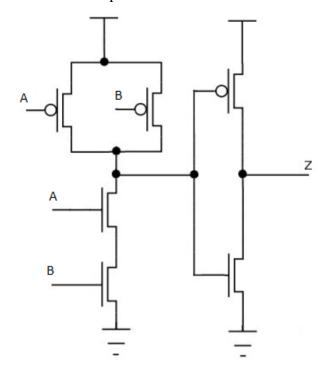
C=1 implies cookie to be delivered

B=1 implies 5 cents to be given back


a. Complete the **state diagram** for the vending machine. Clearly show the input that causes each state transition, and output at each state. (4 **Points**)

b. How many **flip-flops** (**storage elements**) will be needed to implement the finite state machine designed in (a)? (1 **Point**)

Problem 7 (3 Points)


Complete the truth table for the following combinational circuit that uses a 4:1 multiplexer, and has A, B, C as the inputs and Z as the output.

A	В	C	Z
0	0	0	
0	0	1	
0	1	0	1
0	1	1	
1	0	0	
1	0	1	0
1	1	0	
1	1	1	

Problem 8 (2 Points)

Complete the truth table for the following transistor-level circuit, where A, B, C are inputs and Z is the output.

A	В	Z
0	0	
0	1	
1	0	
1	1	

Pro	Problem 9			
	Answer the following questions briefly (1 or 2 sentences)			
	a.	Mention two important things that happen during the FETCH phase of the cycle.	ne instruction (1 Point)	
	b.	What are the two components of an instruction ?	(1 Point)	
	c.	What is the role of the Control Unit in the von-Neumann model?	(1 Point)	