
1

CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING

UNIVERSITY OF WISCONSIN—MADISON

Prof. Mark D. Hill

TAs: Pradip Vallathol, Sujith Surendran

Midterm Examination 3

In Class (50 minutes)

Monday, Nov 18, 2013

Weight: 17.5%

NO: BOOK(S), NOTE(S), OR CALCULATORS OF ANY SORT.

The exam has 8 pages. Circle your final answers. Plan your time carefully since some problems are

longer than others. You must turn in the pages 1-7. Use the blank sides of the exam for scratch work.

Note: LC-3 instruction set is provided on the Last Page

LAST NAME: ___

FIRST NAME: ___

ID# ___

2

Problem Maximum Points Points Earned

1 2

2 2

3 5

4 5

5 2

6 6

7 8

Total 30

3

Problem 1 (2 Points)

Assume that you wrote a program to print “CS/ECE 252 Rocks!!” on the screen. But when

you executed it, you saw that none of the characters were displayed. While debugging, you

find that you had wrongly placed an instruction just before printing “CS/ECE 252 Rocks!!”.

The instruction you placed is:

0000 111 111111111

Now, can you explain why “CS/ECE 252 Rocks!!” did not get printed on the screen?

Problem 2 (2 Points)

Assume that you need to store one of your favourite numbers, 0x3030, into R1 using an

instruction placed at 0x3000. However, your friend Phoebe tells you that it is impossible to

put 0x3030 into R1 using a single instruction. Do you agree with her? If you agree, give a

reason why it is not possible to do this. If you do not agree, then write the instruction (in hex)

which stores the value 0x3030 into R1 using just one instruction placed at 0x3000.

Note: You cannot assume the values of any of the registers or memory locations.

4

Problem 3 (5 Points)
The following is a code snippet from a program which your best friend Ross has written for

his class project:

Address Instruction Comments

0x3000 0110 100 011 000001

0x3001 0001 101 101 000 100

0x3002 0001 011 011 1 00001 R3  R3 + 1

0x3003 0001 010 010 1 11111 R2  R2 – 1

0x3004 0000 101 111111011

0x3005 1111 0000 0010 0101 Halt

a) (3 Points) As you can see, Ross has not commented few of the instructions. Write

comments for these uncommented instructions.

Note: LC-3 instruction set is provided on the last page

b) (2 Points) Suppose Ross also told you that the initial values of the memory locations

0x3100 to 0x3103 before executing the code are as shown below. He has also informed

you that the values of R3 = 0x3100, R2 = 0x2, and R5 = 0 before executing the code.

Now, he asks you what the value of R5 is after running the code. What would be the

correct answer?

Note: Show your work for partial credit.

Address Initial Value

0x3100 0000 0000 0000 0101

0x3101 0000 0000 0000 0100

0x3102 0000 0000 0000 0011

0x3103 0000 0000 0000 0001

5

Problem 4 (5 Points)
Assume that you are asked to work in a team and create a program for class assignment and

you teamed with Rachel this time. The program you both are supposed to create should load

a value from memory location x3012 into R1 if the value in register R1 is odd. If value in R1

is even, then the value at memory location x3010 should be stored into R1. The program

should start at memory location x3000. Luckily, Rachel has written comments for all

instructions. She has also written one instruction all by herself. Complete the missing

instructions of the program.

Problem 5 (2 Points)
Your friend Chandler has written a code which has the following two instructions. Since you

are smarter than him, write one instruction (in hexadecimal) which has the same effect as the

combination of the following two instructions:

0010 011 000000011
0111 100 011 000000

Address Instruction Comments

0x3000 Generate condition if value in R1 is odd

0x3001 Branch to 0x3004 if condition is true

0x3002 R1  Mem[0x3010]

0x3003 Branch to HALT (0x3005)

0x3004 R1  Mem[0x3012]

0x3005 1111 0000 0010 0101 HALT

6

Problem 6 (6 Points)

Assume that the initial value at register R3 is 1111111111111111. Using only one AND

instruction, mention if it is possible to change this value to any of the following values

(given below). If yes, also give the instruction (in hex) which will cause this change. If No,

argue why this cannot be done.

Note: You cannot assume the values of any other register.

a. 0000000000001111

b. 1111111111110000

c. 1111111111100000

7

Problem 7 (8 Points)
Assume that you finally decided to write a program alone for your 2nd class project. After

you successfully ran the code and found it to be working, you showed it to your friend

Monica for suggestions. Monica suggested that you replace 4 sets of instructions (with just a

rearranged version of your code, but she finds that “better”!). Your code as well as Monica’s

suggestions is shown below. For each of these sets, specify if the code would produce the

same effect if your code is replaced with Monica’s suggestion. Provide reasons to support

your answer in the comments section. Assume that R3=1, R4=2 before executing each of

these sets. Make no assumptions about any other registers or memory locations.

Set # Your code Monica’s suggestion

1

0101 100 100 1 00000 (R4  R4 AND 0)

0101 011 011 1 00000 (R3  R3 AND 0)

0000 010 000000011 (Branch if Z to PC’+3)

0101 011 011 1 00000 (R3  R3 AND 0)

0101 100 100 1 00000 (R4  R4 AND 0)

0000 010 000000011 (Branch if Z to PC’+3)

 Comments:

2

0001 100 100 1 11111 (R4  R4-1)

0001 011 011 1 11111 (R3  R3-1)

0000 010 000000011 (Branch if Z to PC’+3)

0001 011 011 1 11111 (R3  R3-1)

0001 100 100 1 11111 (R4  R4-1)

0000 010 000000011 (Branch if Z to PC’+3)

 Comments:

3 0001 100 100 1 11111 (R4  R4-1)

0011 011 000000011 (R3  Mem[PC’+3])

0011 011 000000011 (R3  Mem[PC’+3])

0001 100 100 1 11111 (R4  R4-1)

 Comments:

4

0001 100 011 1 11111 (R4  R3-1)

0111 011 011 000011 (R3  Mem[R3+3])

0111 011 011 000011 (R3  Mem[R3+3])

0001 100 011 1 11111 (R4  R3-1)

 Comments:

8

LC-3 Instruction Set (Entered by Mark D. Hill on 03/14/2007; last update 03/15/2007)

PC’: incremented PC. setcc(): set condition codes N, Z, and P. mem[A]:memory contents at address A.

SEXT(immediate): sign-extend immediate to 16 bits. ZEXT(immediate): zero-extend immediate to 16 bits.

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ADD DR, SR1, SR2 ; Addition

| 0 0 0 1 | DR | SR1 | 0 | 0 0 | SR2 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  SR1 + SR2 also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ADD DR, SR1, imm5 ; Addition with Immediate

| 0 0 0 1 | DR | SR1 | 1 | imm5 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  SR1 + SEXT(imm5) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ AND DR, SR1, SR2 ; Bit-wise AND

| 0 1 0 1 | DR | SR1 | 0 | 0 0 | SR2 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  SR1 AND SR2 also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ AND DR,SR1,imm5 ; Bit-wise AND with Immediate

| 0 1 0 1 | DR | SR1 | 1 | imm5 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  SR1 AND SEXT(imm5) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ BRx,label (where x={n,z,p,zp,np,nz,nzp}); Branch

| 0 0 0 0 | n | z | p | PCoffset9 | GO  ((n and N) OR (z AND Z) OR (p AND P))

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ if(GO is true) then PCPC’+ SEXT(PCoffset9)

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JMP BaseR ; Jump

| 1 1 0 0 | 0 0 0 | BaseR | 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ PC  BaseR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JSR label ; Jump to Subroutine

| 0 1 0 0 | 1 | PCoffset11 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ R7  PC’, PC  PC’ + SEXT(PCoffset11)

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JSRR BaseR ; Jump to Subroutine in Register

| 0 1 0 0 | 0 | 0 0 | BaseR | 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ temp  PC’, PC  BaseR, R7  temp

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LD DR, label ; Load PC-Relative

| 0 0 1 0 | DR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  mem[PC’ + SEXT(PCoffset9)] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LDI DR, label ; Load Indirect

| 1 0 1 0 | DR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DRmem[mem[PC’+SEXT(PCoffset9)]] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LDR DR, BaseR, offset6 ; Load Base+Offset

| 0 1 1 0 | DR | BaseR | offset6 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  mem[BaseR + SEXT(offset6)] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LEA, DR, label ; Load Effective Address

| 1 1 1 0 | DR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  PC’ + SEXT(PCoffset9) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ NOT DR, SR ; Bit-wise Complement

| 1 0 0 1 | DR | SR | 1 | 1 1 1 1 1 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  NOT(SR) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ RET ; Return from Subroutine

| 1 1 0 0 | 0 0 0 | 1 1 1 | 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ PC  R7

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ RTI ; Return from Interrupt

| 1 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ See textbook (2nd Ed. page 537).

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ST SR, label ; Store PC-Relative

| 0 0 1 1 | SR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[PC’ + SEXT(PCoffset9)]  SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ STI, SR, label ; Store Indirect

| 1 0 1 1 | SR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[mem[PC’ + SEXT(PCoffset9)]]  SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ STR SR, BaseR, offset6 ; Store Base+Offset

| 0 1 1 1 | SR | BaseR | offset6 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[BaseR + SEXT(offset6)]  SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ TRAP ; System Call

| 1 1 1 1 | 0 0 0 0 | trapvect8 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ R7  PC’, PC  mem[ZEXT(trapvect8)]

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ; Unused Opcode

| 1 1 0 1 | |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ Initiate illegal opcode exception

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

