
1

CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING

UNIVERSITY OF WISCONSIN—MADISON

Prof. Mark D. Hill

TAs: Sujith Surendran, Pradip Vallathol

Midterm Examination 4

In Class (50 minutes)

Wednesday, Dec 11, 2013

Weight: 17.5%

NO: BOOK(S), NOTE(S), OR CALCULATORS OF ANY SORT.

The exam has 10 pages. Circle your final answers. Plan your time carefully since some problems are

longer than others. You must turn in the pages 1-8. Use the blank sides of the exam for scratch work.

Note: LC-3 instruction set is provided on Page 9. Trap Codes and Assembler Directives are

provided on the last page.

LAST NAME: ___

FIRST NAME: ___

ID# ___

2

Problem Maximum Points Points Earned

1 4

2 8

3 8

4 4

5 6

Total 30

3

Problem 1: Assembly Errors (4 Points)

Identify 4 errors in the following Assembly language program:

.ORIG x3501

 LD R0, DEFAULT

LOOP TRAP x20

 TRAP x21

AND R0, R0, R0

 BRzp LOOP

 TRAP x20

 NOT R2, #3 ---- (a)

 ADD R0, R0, ONE ---- (b)

 LD R1, R2, #3

 BRp LOOP

LOOP HALT ---- (c)

ONE .FILL x1
DEFAULT .ASCII #2 ---- (d)

.END

(a) NOT cannot have an immediate operand

(b) ADD cannot have a memory argument

(c) Double declaration of Loop

(d) .ASCII assembler directive does not exist in LC-3.

4

Problem 2: Two Pass Assembly Process (8 Points)

(a) (2 Points) Consider the following assembly code. What will be the output on the console

if you run this code on PennSim?

 .ORIG x3800

 LEA R3, INPUT
 LD R1, SIZE
 ADD R3, R3, R1

LOOP LDR R0, R3, 0

 TRAP x21
 ADD R3, R3, -1
 ADD R1, R1, -1

 BRp LOOP

 HALT

INPUT .STRINGZ "RtbY"
STRING .BLKW 3

SIZE .FILL 3
 .END

 Answer: Ybt

(b) (4 Points) In the first pass, the assembler creates the symbol table. Fill in the symbol table

created by the assembler for the program.

Label Address

LOOP 3803

INPUT 3809

STRING 380E

SIZE 3811

5

(c) (2 Points) In the second pass, the assembler creates a binary (.obj) version of the

program, using the entries from the symbol table. Assume that there exists another

program at 0x3000, whose assembly instructions are as shown below. If the following

symbol table entries were generated in the first pass of the assembly for this program,

write the binary code generated by the assembler for the two instructions at 0x3000 and

0x3001.

Symbol Table:

Label Address

INT x3021

LOOP x3011

 Generated Binary code:

Address Instruction Binary Code

x3000 LD R0, INT 0010 0000 0010 0000

x3001 BRp LOOP 0000 0010 0000 1111

1) PC’+offset = x3021

x3000 + 1 + offset = x3021

 Offset = x20

2) PC’+offset = x3011

x3001 + 1 + offset = x3011

 Offset = xF

6

Problem 3: Subroutines and Traps (8 Points)

Suppose we want to write a new TRAP subroutine, TRAP x33, which takes a string input

from the user. The trap subroutine starts from address x2200 and does the following:
1) It takes a character input from the user

2) It then displays this character (which the user inputs) on the console

3) After that, it stores the user input characters in consecutive memory locations starting from the

address location present in register R1. It then repeats (1), (2) and (3) until user inputs ‘Z’.

4) It uses a “callee-save” strategy and ensures that none of the register values are modified by it.

5) It uses R2 to store the ASCII value corresponding to -Z

(a) (6 Points) Fill in the missing parts of the trap subroutine.

 .ORIG x2200

 ST R0, SAVEREG1

 ST R1, SAVEREG2
 ST R2, SAVEREG3
 ST R7, SAVEREG4

 LD R2, NEGZ

NEXT TRAP x20
 TRAP x21

 STR R0, R1, #0
 ADD R1, R1, #1

 ADD R0, R0, R2
 BRnp NEXT

 LD R0, SAVEREG1

 LD R1, SAVEREG2
 LD R2, SAVEREG3
 LD R7, SAVEREG4

 RET

;Data Region
NEGZ .FILL xFFA6 ;xFFA6 = FFFF – ASCII value of Z

SAVEREG1 .BLKW 1
SAVEREG2 .BLKW 1

SAVEREG3 .BLKW 1
SAVEREG4 .BLKW 1

(b) (2 Points) Given the following Trap vector table entry:

Give the assembly instruction that you would use to call the TRAP routine corresponding

to this entry. Provide reasons to justify your answer.

 Ans: TRAP x44 because the starting location of trap routine is stored in x44.

Address Content

x44 X26

7

Problem 4: I/O (4 Points)

(a) (4 Points) The following code segment should display the string specified at the “INPUT”

label on to the console. Write the missing assembly instructions of the program (without

using PUTS/PUTC/TRAP instructions).

 Note: The instructions which are missing should jump to halt if it is the end of the

string. Else, it should print the character onto the console.

 .ORIG x3000

 LEA R2, INPUT

NEXT LDR R0, R2, #0

 BRz END
POLL LDI R1, DSR

 BRzp POLL

 STI R0, DDR

 ADD R2, R2, #1 ; Point to the next character
 BR NEXT

END HALT

INPUT .STRINGZ "All the best!" ; String to display
DSR .FILL xFE04 ; Display status register location
DDR .FILL xFE06 ; Display data register location
 .END

8

Problem 5: Short Answer Questions (6 Points)
(a) (1 Point) Briefly state a scenario where you would prefer interrupt-driven I/O over

polling based I/O?

If the I/O device takes a lot of time to execute the command, then polling consumes a lot

of cycles. In these cases, interrupt-driven I/O is preferred.

(b) (1 Point) Suppose two I/O devices sends interrupts to the CPU at the same time. How

does the CPU decide which interrupt to service first?

The one with a higher priority (ie, at a higher priority level) is executed first.

(c) (2 Points) An LC-3 assembly program contains the following instruction:

 FLOAT LD R2, FLOAT

The symbol table entry for FLOAT is x3000. What will be the value of R2 after the

execution of the above instruction?

 Ans : x25FF (the binary code for this instruction).

(d) (2 Points) Briefly state what happens in Linking and Loading phases for an assembly

program?

During the Linking phase, the symbols between different object files which are linked

together gets resolved.

During the loading phase, the executable image is copied onto the memory.

9

LC-3 Instruction Set (Entered by Mark D. Hill on 03/14/2007; last update 03/15/2007)

PC’: incremented PC. setcc(): set condition codes N, Z, and P. mem[A]:memory contents at address A.

SEXT(immediate): sign-extend immediate to 16 bits. ZEXT(immediate): zero-extend immediate to 16 bits.

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ADD DR, SR1, SR2 ; Addition

| 0 0 0 1 | DR | SR1 | 0 | 0 0 | SR2 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  SR1 + SR2 also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ADD DR, SR1, imm5 ; Addition with Immediate

| 0 0 0 1 | DR | SR1 | 1 | imm5 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  SR1 + SEXT(imm5) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ AND DR, SR1, SR2 ; Bit-wise AND

| 0 1 0 1 | DR | SR1 | 0 | 0 0 | SR2 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  SR1 AND SR2 also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ AND DR,SR1,imm5 ; Bit-wise AND with Immediate

| 0 1 0 1 | DR | SR1 | 1 | imm5 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  SR1 AND SEXT(imm5) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ BRx,label (where x={n,z,p,zp,np,nz,nzp}); Branch

| 0 0 0 0 | n | z | p | PCoffset9 | GO  ((n and N) OR (z AND Z) OR (p AND P))

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ if(GO is true) then PCPC’+ SEXT(PCoffset9)

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JMP BaseR ; Jump

| 1 1 0 0 | 0 0 0 | BaseR | 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ PC  BaseR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JSR label ; Jump to Subroutine

| 0 1 0 0 | 1 | PCoffset11 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ R7  PC’, PC  PC’ + SEXT(PCoffset11)

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JSRR BaseR ; Jump to Subroutine in Register

| 0 1 0 0 | 0 | 0 0 | BaseR | 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ temp  PC’, PC  BaseR, R7  temp

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LD DR, label ; Load PC-Relative

| 0 0 1 0 | DR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  mem[PC’ + SEXT(PCoffset9)] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LDI DR, label ; Load Indirect

| 1 0 1 0 | DR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DRmem[mem[PC’+SEXT(PCoffset9)]] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LDR DR, BaseR, offset6 ; Load Base+Offset

| 0 1 1 0 | DR | BaseR | offset6 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  mem[BaseR + SEXT(offset6)] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LEA, DR, label ; Load Effective Address

| 1 1 1 0 | DR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  PC’ + SEXT(PCoffset9) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ NOT DR, SR ; Bit-wise Complement

| 1 0 0 1 | DR | SR | 1 | 1 1 1 1 1 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  NOT(SR) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ RET ; Return from Subroutine

| 1 1 0 0 | 0 0 0 | 1 1 1 | 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ PC  R7

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ RTI ; Return from Interrupt

| 1 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ See textbook (2nd Ed. page 537).

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ST SR, label ; Store PC-Relative

| 0 0 1 1 | SR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[PC’ + SEXT(PCoffset9)]  SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ STI, SR, label ; Store Indirect

| 1 0 1 1 | SR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[mem[PC’ + SEXT(PCoffset9)]]  SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ STR SR, BaseR, offset6 ; Store Base+Offset

| 0 1 1 1 | SR | BaseR | offset6 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[BaseR + SEXT(offset6)]  SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ TRAP ; System Call

| 1 1 1 1 | 0 0 0 0 | trapvect8 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ R7  PC’, PC  mem[ZEXT(trapvect8)]

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ; Unused Opcode

| 1 1 0 1 | |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ Initiate illegal opcode exception

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10

TRAP CODES

ASSEMBLER DIRECTIVES

