CS/ECE 252 Introduction to Computer Engineering
Spring 2015 Section 2
Instructor: Mark D. Hill
TAs: Lisa Ossian and Sujith Surendran
Course URL: http://www.cs.wisc.edu/~markhill/cs252/Spring2015/

Homework 6 [Due at lecture on Wed, Apr 8]

Primary contact for this homework on Piazza is Sujith Surendran

Question 1 (6 Points)

Load the below LC-3 program in PennSim, and answer the following questions:

Address Memory Content Comment
x3000 0010 0100 0000 1010 R2=0
x3001 0010 0000 0000 1010 RO =3
x3002 0010 0010 0000 1010 R1=4
x3003 0000 0100 0000 0011 BRz x3007
x3004 0001 0100 0000 0010 R2=R2 + R0
x3005 0001 0010 0111 1111 R1=R1-1
x3006 0000 1111 1111 1100 BR x3003
x3007 0010 0110 0000 0010 Load x4000 into R3
x3008 0111 0100 1100 0000 Store 12 (xC) at x4000
x3009 1111 0000 0010 0101 HALT
x300A 0100 0000 0000 0000 Data value x4000
x300B 0000 0000 0000 0000 Data value x0
x300C 0000 0000 0000 0011 Data value x3
x300D 0000 0000 0000 0100 Data value x4



http://www.cs.wisc.edu/~markhill/cs252/Spring2015/
http://www.cs.wisc.edu/~markhill/cs252/Spring2015/

a) (3 points) Fill in the comments column with a summary of what each instruction
does.

b) (1 point) How many times does the instruction at address x3003 execute?
5

d) (2 points) Describe what this program does in 1-2 sentences (ie, specify how the
value at x4000 at the end of the execution relates to the Data Values at x300C
and x300D)

Ans => Mem[x4000] = Mem [x300C] * Mem[x300D]

Question 2 (8 Points)

The following LC-3 program compares the numbers in memory locations x4000
and x4001. It then puts the larger number among the two into location x4002. Fill
in the missing instructions of the code.

Suggestion: Verify your solution by executing it in PennSim.

0011 0000 0000 0000 ; Program starts at x3000
(a) 1010 001 000001001 ; Load value at x4000 into R1
(b) 1010 010 000001001 ; Load value at x4001 into R2
(c) 1001 011010 111111 ; R3 = NOT(R2)
(d) 0001 011 011 1 00001 ; R3=R3 + 1 (Now R3 =-Mem[4001])
(e) 0001 100 001 0 00011 ; R4 =R1 + R3 (ie, R4 = Mem[4000] - Mem [4001])

(f) 0000 100 000000010 ; Branch if negative flag is set to STORE_R2
(g) 1011 001 000000101 ; Store the value of R1 to x4002

(h) 0000 111 000000001 ; Branch to HALT

(i) 1011 010 000000011 ; STORE_R2 : Store the value of R2 to x4002

1111 0000 0010 0101 ; HALT

0100 0000 0000 0000 , DATA1: x4000
0100 0000 0000 0001 ; DATAZ2: x4001
0100 0000 0000 0010 ; DATA3: x4002



Question 3 (6 Points)

Write a small LC-3 binary code which counts the sum of consecutive integers
starting from 1 up to the number stored in memory location x4000. It then stores
this number in x4001. Your code should start at x3000

For example, if the number stored at x4000= 5, then after running your program,
the number at x4001 should be 1+2+3+4+5 = 15.

Assembly:

.ORIG x3000
LDI R1, x3009
AND RO, RO, #0
AND R2, R2, #0

LOOP: AND RO, RO, #1
ADD R2, R2, RO
ADD R1, R1, #-1
BRp LOOP

STI R2, x300A
HALT

Binary code:

0011 0000 0000 0000
1010 001 000001000
0101 000 000 1 00000
0101 010 010 1 00000
0001 000 000 1 00001
0001 010 010 0 00 00O
0001001001111111
0000 001 111111100
1011 0010 0000 0010
1111 0000 0010 0101
0100 0000 0000 0000
0100 0000 0000 0001



Problem 4 (10 points)

(4 Points) Consider an algorithm which counts the number of times the string
'cs' occurs in a string that is stored starting at location x5000. The count should
be stored at the location x4000.

For example, if the string at location x5000 is “abcs53cs23c4s3cs”, the count at
x4000 should be 3.

Show the algorithm as a flowchart by decomposing it into its basic constructs.

Note: The first character of the string is stored at memory location 0x5000. The
last character of the string is the NULL character (having an ASCII value 0x00).
One character is stored in each memory location (the lower order 8 bits represent
the ASCII character and higher order 8 bits are 0).

(6 Points) Convert the above algorithm to an LC-3 program. Submit the binary
code as a .txt file to the dropbox. Print out a screenshot of your code running in
PennSim. Your screenshot should show the final value in x4000 and x4001 before
the program executes the HALT instruction (keep a breakpoint at HALT, and take
a screenshot when the program hits the breakpoint). Turn in the screenshot as
a hard copy. Also mention on the screenshot which string you have stored
starting at x5000 while testing your code.



Assembly:

.ORIG x3000

LD RO, START_LOC
LD R1, INDEX

LD R4, NEG_C

LD R6, COUNT

LD R7, NEG_S

CHECK_FOR_C ADDR1, R1, #1 ;Increment the index.

ADD R2, R1, RO ;R2 has the address of next data

LDR R3, R2, #0 ;R3 has the data

BRz END_OF_DATA ;If there is no more data, leave program.
ADD R5, R3, R4 ;If data is C, R5 will have value 0

BRnp CHECK_FOR_C

CHECK_FOR_S ADD R2, R2, #1 ;Point to the next address

LDR R3, R2, #0 ;Check if R3is s
BRz END_OF_DATA
ADD R5, R3, R7 ;If data is s, R5 will have value 0

BRnp CHECK_FOR_C
ADD R6, R6, #1
BRnzp CHECK_FOR_S

END_OF_DATA  STI R6, RESULT_LOCATION

BRz END
END HALT
START_LOC .FILL x5000
INDEX JFILL #-1
NEG_C FILL #-99
COUNT .FILL x0
NEG_S JFILL #-115

RESULT_LOCATION .FILL x4000



