CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING UNIVERSITY OF WISCONSIN—MADISON

Prof. Gurindar S. Sohi
TAs Ryan Johnson, Ramachandran Syamkumar, and Maheswaran Venkatachalam
Midterm Examination 1
In Class (50 minutes)
Friday, February 12, 2010
Weight: 17.5\%

CLOSED BOOK, NOTE, CALCULATOR, PHONE, \& COMPUTER.

The exam has four two-sided pages. Circle your final answers.
Plan your time carefully, since some problems are longer than others.
NAME: \qquad
SECTION: \qquad
ID\# \qquad

Problem Number	Maximum Points	Actual Points
1	4	
2	2	
3	4	
4	4	
5	4	
6	4	
7	2	
8	30	
Total	4	

Problem 1 (4 points)

a) What is the greatest magnitude negative number that can be represented in signed magnitude representation using 7 bits? Express your answer as a decimal number. $-2^{7-1}+1=-63$
b) What is the largest positive number that can be represented as a two's complement integer using 7 bits? Express your answer as a decimal number.
$2^{7-1}-1=63$

Problem 2 (2 points)

Compute (1110 AND 0111) OR (NOT 0101)
1110 AND $0111=0110$

NOT $0101=1010$

Answer $=0110$ OR $1010=\mathbf{1 1 1 0}$

Problem 3 (4 points)

Consider the quad number system (base 4) where only the digits $0-3$ are legal.
(a) What is the maximum unsigned decimal value that one can represent with 3 quad digits?

$$
\text { Answer }=4^{\mathrm{n}}-1=4^{3}-1=\mathbf{6 3}
$$

(b) What is the maximum unsigned decimal value that one can represent with n quad digits (Hint: your answer should be a function of n)?

Similar to a binary number system where the answer would be $2^{n}-1$, here the answer is $4^{\mathrm{n}}-1$.

Problem 4 (4 points)

Consider the 8 -bit binary bit pattern $\mathbf{1 0 1 0} \mathbf{1 0 1 0}$. What is its decimal (base ten) value if the bit pattern is interpreted as:
(a) An unsigned integer?

$$
2+8+32+128=\mathbf{1 7 0}
$$

(b) A two's complement integer?

Two's complement of the given number $=01010101+1=01010110$
Answer $=\mathbf{- 8 6}$

Problem 5 (6 points)

(a) Add the following 5-bit two's complement binary numbers: $\mathbf{1 0 1 0 1}+\mathbf{1 1 1 0 1}$. Express your answer in 5-bit two's complement. Please indicate if there was an overflow.

Sum $=110010$; Ignoring the overflowing bit, Answer $=\mathbf{1 0 0 1 0}$
No overflow (since carry into MSB is equal to carry out of MSB)
(b) Add the following 5-bit two's complement binary numbers: $\mathbf{0 0 1 1 1}+\mathbf{0 1 0 1 0}$. Express your answer in 5-bit two's complement. Please indicate if there was an overflow.

Sum $=10001$
Overflow (since carry into MSB is not equal to carry out of MSB)

Problem 6 (4 points)

(a) Convert the ASCII characters T\%a into binary. (See attached ASCII table.)
$\mathrm{T}=01010100$
$\%=00100101$
$\mathrm{a}=01100001$
(b) Convert the binary value $\mathbf{0 1 1 0} \mathbf{0 1 0 0} 01000100$ into an ASCII string. dD

Problem 7 (4 points)

(a) What is the base ten (decimal) value represented by binary $\mathbf{0 1 1 . 1 0 1}$?

3.625

(b) The bits for an IEEE floating point number are allocated as follows:

sign (1 bit)	exponent (8 bits)	fraction (23 bits)

where $\mathrm{N}=(-1)^{\mathrm{S}} \times 1$.fraction $\times 2^{\text {exponent-127 }}$
Convert 101111110100000000000000000000000 to decimal.
Sign $=1 ;$ Exponent $=126 ;$ Mantissa $=0.5$
Answer $=-1.5 * 2^{-1}=\mathbf{- 0 . 7 5}$

Problem 8 (2 points)

Give an example of an integer that can be represented in floating point format (32-bit IEEE 754 format), but cannot be represented as a 32-bit two's complement integer.
$\mathbf{2}^{32}$

ASCII Table

Character	Hex	Character	Hex	Character	Hex	Character	Hex
nul	00	sp	20	@	40	,	60
soh	01	!	21	A	41	a	61
stx	02	"	22	B	42	b	62
etx	03	\#	23	C	43	c	63
eot	04	\$	24	D	44	d	64
enq	05	\%	25	E	45	e	65
ack	06	\&	26	F	46	f	66
bel	07	,	27	G	47	g	67
bs	08	(28	H	48	h	68
ht	09)	29	I	49	i	69
1f	0A	*	2A	J	4A	1	6A
vt	0B	+	2B	K	4B	k	6B
ff	OC	,	2 C	L	4C	1	6C
cr	0D	-	2D	M	4D	m	6D
so	OE	.	2E	N	4E	n	6E
si	OF	1	2 F	O	4 F	o	6F
dle	10	0	30	P	50	p	70
dc1	11	1	31	Q	51	q	71
dc2	12	2	32	R	52	r	72
dc3	13	3	33	S	53	s	73
dc4	14	4	34	T	54	t	74
nak	15	5	35	U	55	u	75
syn	16	6	36	V	56	v	76
etb	17	7	37	W	57	w	77
can	18	8	38	X	58	x	78
em	19	9	39	Y	59	y	79
sub	1A	:	3A	Z	5A		7A
esc	1B	;	3B	[5B	1	7B
fs	1 C	<	3 C	\}	5 C	I	7 C
gs	1D	$=$	3D]	5D	\}	7D
rs	1 E	>	3E	\wedge	5 E	~	7E
us	1F	?	3 F	-	5 F	del	7F

Scratch Sheet (in case you need additional space for some of your answers)

