
1

CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING

UNIVERSITY OF WISCONSIN—MADISON

Prof. Gurindar S. Sohi

TAs Ryan Johnson, Ramachandran Syamkumar, and Maheswaran Venkatachalam

Midterm Examination 3

In Class (50 minutes)

Friday, April 9, 2010

Weight: 17.5%

CLOSED BOOK, NOTE, CALCULATOR, PHONE, & COMPUTER.

The exam has five two-sided pages. Circle your final answers.

The last page has the LC-3 Instruction Set. It is detachable.

Plan your time carefully, since some problems are longer than others.

NAME: __

SECTION: __

ID# __

2

Problem Number Maximum Points Actual Points

1 5

2 3

3 5

4 4

5 8

6 5

Total 30

3

Problem 1 (5 points)

a. (2 points) What is the largest magnitude negative number that we can represent as an

immediate value within an LC-3 AND instruction?

- 2
4
 = - 16 decimal

b. (3 points) Assume that a BRANCH (opcode 0000) instruction is present in memory

location x3000. What is the range of the memory addresses that this instruction can

branch to?

Lowest memory location it can branch to = x3001 – x0100 = x2F01

Highest memory location it can branch to = x3001 + x00FF = x3100

Problem 2 (3 points)

Many Instruction Set Architectures (ISAs) have an instruction called NOP (No Operation). A

NOP instruction just increments the PC, while leaving the current state of the system unchanged

(registers, memory, and condition codes are not modified). Provide a single LC-3 instruction

which is functionally equivalent to a NOP. You must provide the 16 bit machine code for your

instruction and not just the name of the instruction.

We can use the unconditional branch instruction for this purpose:

Binary 0000 111 000000000

4

Problem 3 (5 points)

The PC contains x3010. The following memory locations contain values as shown:

Memory Location Contents

x3014 x712A

x712A x712B

x712B x0112

x712C x824C

a. (3 points) The following LC-3 instructions are then executed, causing a value to be

loaded into R6. What is that value?

Memory Location Contents

x3010 1110 1000 0000 0011

x3011 0110 1011 0000 0000

x3012 0110 1101 0100 0000

LEA R4, x3014; R4 � x3014

LDR R5, R4, x0000; R5 � Mem[x3014] = x712A

LDR R6, R5, x0000; R6 � Mem[x712A] = x712B

b. (2 points) We could replace the three-instruction sequence (in part a) with a single

instruction (at memory location x3010). What is it? (Show the 16 bits of the instruction)

We could do this using an LDI instruction.

1010 110 000000011

5

Problem 4 (4 points)

The following table shows a part of LC-3 memory:

Memory Location Contents

x3100 1001 001 001 111111

x3101 0001 010 000 000 001

x3102 1001 010 010 111111

x3103 0000 010 111111100

State what is known about R1 and R0 (before the execution of the program) if the conditional

branch in x3103 redirects control of the program to location x3100.

R1 � not R1

R2 � R0 + R1

R2 � not R2

The branch is taken implies that the the result of the third instruction was zero. We then just

work backwards in an attempt to the find the relationship between R1 and R0. So R2 was x0000

at the end of execution of instruction 3. So R2 was xFFFF at the end of execution of instruction

2. This implies that R0 + R1 = xFFFF at the end of execution of instruction 1. i.e., R0 and R1

are NOTs of each other at the end of instruction 1. Thus, R0 = R1 at the beginning of the

program.

6

Problem 5 (8 points)

We are about to execute the following program:

Memory Location Contents

x3000 0111 001 010 000101

x3001 1011 010 000000010

x3002 0110 011 001 000001

x3003 1010 100 000000000

The state of the machine before the program executes is given below:

Register R1: x4000

Register R2: x5000

Memory Location Contents

x3004 x6000

x3005 x6001

x4000 x123A

x4001 x123B

x6000 x8000

x6001 x8001

a. (2 points) The instruction in location x3000 updates a certain memory location X with a

certain value Y. What are the values of X and Y?

X = R2 + 5 = x5005; Y = R1 = x4000

b. (2 points) The instruction in location x3001 updates a certain memory location X with a

certain value Y. What are the values of X and Y?

X = Mem[x3002 + x0002] = Mem[x3004] = x6000; Y = R2 = x5000

7

c. (2 points) The instruction in location x3002 updates a certain register X with a certain

value Y. What are the values of X and Y?

X = R3; Y = Mem[R1 + x0001] = Mem[x4001] = x123B

d. (2 points) The instruction in location x3003 updates a certain register X with a certain

value Y. What are the values of X and Y?

X = R4; Y = Mem[Mem[x3004]] = x5000

Problem 6 (5 points)

a. (2 points) Write an LC-3 instruction that clears the contents of R2.

0101 010 010 1 00000; AND R2, R2, x0000

b. (3 points) The following program increments R0 by 1, if R1 > R2. Fill in the missing

instruction.

Memory Location Contents

x3000 1001 010 010 111111

x3001 0001 010 010 1 00001

x3002 0001 010 001 000 010

x3003 _______________________

x3004 0001 000 000 1 00001

x3005 1111 0000 0010 0101 ; HALT

0000 110 000000001

8

Scratch Page (in case you need additional space for some of your answers)

9

LC-3 Instruction Set

PC’: incremented PC. setcc(): set condition codes N, Z, and P. mem[A]:memory contents at address A.

SEXT(immediate): sign-extend immediate to 16 bits. ZEXT(immediate): zero-extend immediate to 16 bits.

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ADD DR, SR1, SR2 ; Addition

| 0 0 0 1 | DR | SR1 | 0 | 0 0 | SR2 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ���� SR1 + SR2 also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ADD DR, SR1, imm5 ; Addition with Immediate

| 0 0 0 1 | DR | SR1 | 1 | imm5 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ���� SR1 + SEXT(imm5) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ AND DR, SR1, SR2 ; Bit-wise AND

| 0 1 0 1 | DR | SR1 | 0 | 0 0 | SR2 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ���� SR1 AND SR2 also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ AND DR, SR1, imm5 ; Bit-wise AND with Immediate

| 0 1 0 1 | DR | SR1 | 1 | imm5 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ���� SR1 AND SEXT(imm5) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ BRx, label (where x = {n,z,p,zp,np,nz,nzp}) ; Branch

| 0 0 0 0 | n | z | p | PCoffset9 | GO ���� ((n and N) OR (z AND Z) OR (p AND P))

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ if (GO is true) then PC ���� PC’ + SEXT(PCoffset9)

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JMP BaseR ; Jump

| 1 1 0 0 | 0 0 0 | BaseR | 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ PC ���� BaseR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JSR label ; Jump to Subroutine

| 0 1 0 0 | 1 | PCoffset11 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ R7 ���� PC’, PC ���� PC’ + SEXT(PCoffset11)

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JSRR BaseR ; Jump to Subroutine in Register

| 0 1 0 0 | 0 | 0 0 | BaseR | 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ temp ���� PC’, PC ���� BaseR, R7 ���� temp

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LD DR, label ; Load PC-Relative

| 0 0 1 0 | DR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ���� mem[PC’ + SEXT(PCoffset9)] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LDI DR, label ; Load Indirect

| 1 0 1 0 | DR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ���� mem[mem[PC’ + SEXT(PCoffset9)]] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LDR DR, BaseR, offset6 ; Load Base+Offset

| 0 1 1 0 | DR | BaseR | offset6 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ���� mem[BaseR + SEXT(offset6)] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LEA, DR, label ; Load Effective Address

| 1 1 1 0 | DR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ���� PC’ + SEXT(PCoffset9) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ NOT DR, SR ; Bit-wise Complement

| 1 0 0 1 | DR | SR | 1 | 1 1 1 1 1 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ���� NOT(SR) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ RET ; Return from Subroutine

| 1 1 0 0 | 0 0 0 | 1 1 1 | 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ PC ���� R7

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ RTI ; Return from Interrupt

| 1 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ See textbook (2
nd
 Ed. page 537).

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ST SR, label ; Store PC-Relative

| 0 0 1 1 | SR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[PC’ + SEXT(PCoffset9)] ���� SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ STI, SR, label ; Store Indirect

| 1 0 1 1 | SR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[mem[PC’ + SEXT(PCoffset9)]] ���� SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ STR SR, BaseR, offset6 ; Store Base+Offset

| 0 1 1 1 | SR | BaseR | offset6 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[BaseR + SEXT(offset6)] ���� SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ TRAP ; System Call

| 1 1 1 1 | 0 0 0 0 | trapvect8 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ R7 ���� PC’, PC ���� mem[ZEXT(trapvect8)]

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ; Unused Opcode

| 1 1 0 1 | |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ Initiate illegal opcode exception

10

