CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING UNIVERSITY OF WISCONSIN—MADISON

Prof. Gurindar S. Sohi
TAs Ryan Johnson, Ramachandran Syamkumar, and Maheswaran Venkatachalam
Midterm Examination 3
In Class (50 minutes)
Friday, April 9, 2010
Weight: 17.5\%

CLOSED BOOK, NOTE, CALCULATOR, PHONE, \& COMPUTER.

The exam has five two-sided pages. Circle your final answers.
The last page has the LC-3 Instruction Set. It is detachable.
Plan your time carefully, since some problems are longer than others.
NAME: \qquad
SECTION: \qquad
ID\# \qquad

Problem Number	Maximum Points	Actual Points
1	5	
2	4	
3	8	
4	5	
5	3	
6	30	
Total		

Problem 1 (5 points)

The PC contains x3010. The following memory locations contain values as shown:

Memory Location	Contents
$x 3015$	x 712 A
x 712 A	x 712 F
x 712 B	x 0112
x 712 C	x 824 C

a. (3 points) The following LC-3 instructions are then executed, causing a value to be loaded into R6. What is that value?

Memory Location	Contents
x 3010	1110100000000100
x 3011	0110101100000000
x 3012	0110110101000000

LEA R4, x3015; R4 $\leftarrow \mathrm{x} 3015$

LDR R5, R4, x0000; R5 < Mem[x3015] = x712A

LDR R6, R5, x0000; R6 $\leftarrow \operatorname{Mem}[\mathrm{x} 712 \mathrm{~A}]=\mathbf{x 7 1 2 F}$
b. (2 points) We could replace the three-instruction sequence (in part a) with a single instruction (at memory location x 3010). What is it? (Show the 16 bits of the instruction)

We could do this using an LDI instruction.

1010110000000100

Problem 2 (4 points)

The following table shows a part of LC-3 memory:

Memory Location	Contents
x 3101	0001010000000001
x 3102	1001010010111111
x 3103	0000010111111101

State what is known about R1 and R0 (before the execution of the program) if the conditional branch in x3103 redirects control of the program to location x3101.
$\mathrm{R} 2 \leftarrow \mathrm{R} 0+\mathrm{R} 1$
$\mathrm{R} 2 \leftarrow \operatorname{not} \mathrm{R} 2$

The branch is taken implies that the the result of the second instruction was zero. We then just work backwards in an attempt to the find the relationship between R1 and R0. So R2 was x0000 at the end of execution of instruction 2. So R2 was xFFFF at the end of execution of instruction 1. This implies that $\mathrm{R} 0+\mathrm{R} 1=\mathrm{xFFFF}$ at the beginning of the program. i.e., R 0 and R 1 are NOTs of each other. $\mathbf{R 0}=\mathbf{N O T}(R 1)$.

Problem 3 (8 points)

We are about to execute the following program:

Memory Location	Contents
x 3000	0111001010000101
x 3001	1011010000000010
x 3002	0110100001000001
x 3003	1010011000000000

The state of the machine before the program executes is given below:
Register R1: x6000
Register R2: x7000

Memory Location	Contents
x 3004	x 6000
x 3005	x 6001
x 4000	x 123 A
x 4001	x 123 B
x 6000	x 801 F
x 6001	x 800 F

a. (2 points) The instruction in location x 3000 updates a certain memory location X with a certain value Y . What are the values of X and Y ?
$\mathbf{X}=\mathrm{R} 2+5=\mathbf{x} 7005 ; \mathrm{Y}=\mathrm{R} 1=\mathbf{x} 6000$
b. (2 points) The instruction in location x 3001 updates a certain memory location X with a certain value Y . What are the values of X and Y ?
$\mathbf{X}=\operatorname{Mem}[\mathrm{x} 3002+\mathrm{x} 0002]=\operatorname{Mem}[\mathrm{x} 3004]=\mathbf{x 6 0 0 0} ; \mathbf{Y}=\mathrm{R} 2=\mathbf{x} 7000$
c. (2 points) The instruction in location x 3002 updates a certain register X with a certain value Y . What are the values of X and Y ?

$$
\mathbf{X}=\mathbf{R} \mathbf{4} ; \mathbf{Y}=\operatorname{Mem}[\operatorname{R1} 1+\mathrm{x} 0001]=\operatorname{Mem}[\mathrm{x} 6001]=\mathbf{x 8 0 0 F}
$$

d. (2 points) The instruction in location x 3003 updates a certain register X with a certain value Y . What are the values of X and Y ?
$\mathbf{X}=\mathbf{R 3} ; \mathbf{Y}=\operatorname{Mem}[\operatorname{Mem}[\mathrm{x} 3004]]=\mathbf{x 7 0 0 0}$

Problem 4 (5 points)

a. (2 points) Write an LC-3 instruction that copies the contents of R2 into R1.

00010010101 00000; ADD R1, R2, x0000
b. (3 points) The following program increments R0 by 1 , if R1 \leq R2. Fill in the missing instruction.

Memory Location	Contents
x 3000	1001010010111111
x 3001	0001010010100001
x 3002	0001010001000010
x 3003	0001000000100001
x 3004	$1111000000100101 ;$ HALT
x 3005	

0000001000000001

Problem 5 (5 points)

a. (2 points) What is the largest magnitude negative number that we can represent as an immediate value within an LC-3 ADD instruction?
$-2^{4}=\mathbf{- 1 6}$ decimal
b. (3 points) Assume that a BRANCH (opcode 0000) instruction is present in memory location x 7000 . What is the range of the memory addresses that this instruction can branch to?

Lowest memory location it can branch to $=\mathrm{x} 7001-\mathrm{x} 0100=\mathbf{x 6 F 0 1}$

Highest memory location it can branch to $=x 7001+x 00 \mathrm{FF}=\mathbf{x 7 1 0 0}$

Problem 6 (3 points)

Many Instruction Set Architectures (ISAs) have an instruction called NOP (No Operation). A NOP instruction just increments the PC, while leaving the current state of the system unchanged (registers, memory, and condition codes are not modified). Provide a single LC-3 instruction which is functionally equivalent to a NOP. You must provide the 16 bit machine code for your instruction and not just the name of the instruction.

We can use the unconditional branch instruction for this purpose:

Binary 0000111000000000

Scratch Page (in case you need additional space for some of your answers)
P^{\prime} : incremented PC. setcc () : set condition codes N, Z, and P. mem[A]:memory contents at address A. SEXT (immediate) : sign-extend immediate to 16 bits. ZEXT(immediate) : zero-extend immediate to 16 bits.

+---+---+---+--+---+--+---+---+---+---+---+---+--+---+---+---+ if (GO is true) then PC \leftarrow PC' + SEXT (PCoffset9)
+---+---+---+---+---+---+----+---+---+---++---+---+---+---+---+---+ JMP BaseR ; Jump

