
ModelSim®
SE

Tutorial
V e r s i o n 5 . 7 f

P u b l i s h e d : 2 9 / A p r / 0 3
T h e w o r l d ’ s m o s t p o p u l a r H D L s i m u l a t o r

2

Model
ModelSim /VHDL, ModelSim /VLOG, ModelSim /LNL, and ModelSim /PLUS are
produced by Model Technology™, a Mentor Graphics Corporation company.
Copying, duplication, or other reproduction is prohibited without the written consent
of Model Technology.

The information in this manual is subject to change without notice and does not
represent a commitment on the part of Model Technology. The program described
in this manual is furnished under a license agreement and may not be used or
copied except in accordance with the terms of the agreement. The online
documentation provided with this product may be printed by the end-user. The
number of copies that may be printed is limited to the number of licenses
purchased.

ModelSim is a registered trademark and Signal Spy, TraceX, ChaseX and Model
Technology are trademarks of Mentor Graphics Corporation. PostScript is a
registered trademark of Adobe Systems Incorporated. UNIX is a registered
trademark of AT&T in the USA and other countries. FLEXlm is a trademark of
Globetrotter Software, Inc. IBM, AT, and PC are registered trademarks, AIX and
RISC System/6000 are trademarks of International Business Machines
Corporation. Windows, Microsoft, and MS-DOS are registered trademarks of
Microsoft Corporation. OSF/Motif is a trademark of the Open Software Foundation,
Inc. in the USA and other countries. SPARC is a registered trademark and
SPARCstation is a trademark of SPARC International, Inc. Sun Microsystems is a
registered trademark, and Sun, SunOS and OpenWindows are trademarks of Sun
Microsystems, Inc. All other trademarks and registered trademarks are the
properties of their respective holders.

Copyright © 1990 -2003, Model Technology, a Mentor Graphics Corporation
company. All rights reserved. Confidential. Online documentation may be printed
by licensed customers of Model Technology and Mentor Graphics for internal
business purposes only.

Model Technology
8005 Boeckman Road, Bldg. E4
Wilsonville, OR 97070 USA

phone: (503) 685-0820
fax: (503) 685-0910
e-mail: support@model.com, sales@model.com
home page: http://www.model.com
support page: http://www.model.com/support
Sim SE Tutorial

mailto:support@model.com
mailto:sales@model.com
http://www.model.com

 T-3
Table of Contents

Introduction .T-5

Lesson 1 - Creating a Project .T-11

Lesson 2 - Basic VHDL simulation .T-17

Lesson 3 - Basic Verilog simulation .T-25

Lesson 4 - Mixed VHDL/Verilog simulation .T-37

Lesson 5 - Debugging a VHDL design .T-45

Lesson 6 - Finding names and values .T-53

Lesson 7 - Using the Wave window .T-57

Lesson 8 - Simulating with the Performance Analyzer T-65

Lesson 9 - Simulating with Code Coverage .T-75

Lesson 10 - Comparing waveforms .T-97

Lesson 11 - Debugging with the Dataflow window T-109

Lesson 12 - Running a batch-mode simulation T-125

Lesson 13 - Executing commands at load timeT-129

Lesson 14 - Tcl/Tk and ModelSim .T-131

License Agreement .T-145

Index .T-151
ModelSim SE Tutorial

T-4

Model
Sim SE Tutorial

 T-5
Introduction

Chapter contents
Software versions T-6

ModelSim’s graphic interface T-6

Standards supported T-6

Assumptions T-7

Where to find our documentation T-8

Technical support and updates T-9

Before you begin T-9
ModelSim SE Tutorial

T-6 Introduction

Model
Software versions

This documentation was written to support ModelSim SE 5.7e for UNIX and Microsoft
Windows 98/Me/NT/2000/XP. If the ModelSim software you are using is a later release,
check the README file that accompanied the software. Any supplemental information
will be there.

Although this document covers both VHDL and Verilog simulation, you will find it a
useful reference even if your design work is limited to a single HDL.

ModelSim’s graphic interface

While your operating system interface provides the window-management frame,
ModelSim controls all internal-window features including menus, buttons, and scroll bars.
The resulting simulator interface remains consistent within these operating systems:

• SPARCstation with OpenWindows, OSF/Motif, or CDE

• IBM RISC System/6000 with OSF/Motif

• Hewlett-Packard HP 9000 Series 700 with HP VUE, OSF/Motif, or CDE

• Linux (Red Hat v. 6, 7 or later) with KDE or GNOME

• Microsoft Windows 98/Me/NT/2000/XP

Because ModelSim’s graphic interface is based on Tcl/Tk, you also have the tools to build
your own simulation environment. Easily accessible preference variables and configuration
commands, simulator preference variables, and graphic interface commands give you
control over the use and placement of windows, menus, menu options and buttons.

Standards supported

ModelSim VHDL supports both the IEEE 1076-1987 and 1076-1993 VHDL, the
1164-1993 Standard Multivalue Logic System for VHDL Interoperability, and the
1076.2-1996 Standard VHDL Mathematical Packages standards. Any design developed
with ModelSim will be compatible with any other VHDL system that is compliant with
either IEEE Standard 1076-1987 or 1076-1993.

ModelSim Verilog is based on IEEE Std 1364-1995 and a partial implementation of
1364-2001 (see /<install_dir>/modeltech/docs/technotes/vlog_2001.note for
implementation details) Standard Hardware Description Language. The Open Verilog
International Verilog LRM version 2.0 is also applicable to a large extent. Both PLI
(Programming Language Interface) and VCD (Value Change Dump) are supported for
ModelSim PE and SE users.

In addition, all products support SDF 1.0 through 3.0, VITAL 2.2b, VITAL’95 – IEEE
1076.4-1995, and VITAL 2000 – IEEE 1076.4-2000.
Sim SE Tutorial

Assumptions T-7
Assumptions

We assume that you are familiar with the use of your operating system. You should be
familiar with the window management functions of your graphic interface: either
OpenWindows, OSF/Motif, CDE, KDE, GNOME, or Microsoft Windows 98/Me/NT/
2000/XP.

We also assume that you have a working knowledge of VHDL and Verilog. Although
ModelSim is an excellent tool to use while learning HDL concepts and practices, this
document is not written to support that goal.
ModelSim SE Tutorial

T-8 Introduction

Model
Where to find our documentation

ModelSim documentation is available from our website at
www.model.com/support/documentation.asp or in the following formats and locations:

Document Format How to get it

Start Here for ModelSim SE
(installation & support
reference)

paper shipped with ModelSim

PDF, HTML select Main window > Help > SE Documentation; also available
from the Support page of our web site: www.model.com

ModelSim SE Quick Guide
(command and feature
quick-reference)

paper shipped with ModelSim

PDF select Main window > Help > SE Documentation, also available
from the Support page of our web site: www.model.com

ModelSim SE Tutorial PDF, HTML select Main window > Help > SE Documentation; also available
from the Support page of our web site: www.model.com

ModelSim SE User’s
Manual

PDF, HTML select Main window > Help > SE Documentation

ModelSim SE Command
Reference

PDF, HTML select Main window > Help > SE Documentation

ModelSim Foreign
Language Interface
Reference

PDF, HTML select Main window > Help > SE Documentation

Std_DevelopersKit User’s
Manual

PDF www.model.com/support/pdf/sdk_um.pdf

The Standard Developer’s Kit is for use with Mentor Graphics
QuickHDL.

ModelSim Command Help ASCII type help [command name] at the prompt in the Main window

Error message help ASCII type verror <msgNum> at the prompt in the Main window or at a
shell prompt

Tcl Man Pages (Tcl
manual)

HTML select Main window > Help > Tcl Man Pages, or find
contents.htm in \modeltech\docs\tcl_help_html

application notes HTML www.model.com/resources/techdocs.asp

frequently asked questions HTML www.model.com/resources/faqs.asp

tech notes ASCII select Main window > Help > Technotes, or located in the
\modeltech\docs\technotes directory
Sim SE Tutorial

http://www.model.com/support/documentation.asp
http://www.model.com/products/release.asp
http://www.model.com/products/release.asp
http://www.model.com/products/release.asp
http://www.model.com/support/pdf/sdk_um.pdf
http://www.model.com/resources/techdocs.asp
http://www.model.com/resources/faqs.asp

Technical support and updates T-9
Technical support and updates

The Model Technology web site includes links to support, software updates, and many
other information sources for both Model Technology and Mentor Graphics customers.

Support

Online and email technical support options, maintenance renewal, and links to
international support contacts:
www.model.com/support/default.asp

Updates

Access to the most current version of ModelSim:
www.model.com/products/release.asp

Latest version email

Place your name on our list for email notification of news and updates:
www.model.com/support/register_news_list.asp

Before you begin

Preparation for some of the lessons leaves certain details up to you. You will decide the best
way to create directories, copy files and execute programs within your operating system.
(When you are operating the simulator within ModelSim’s GUI, the interface is consistent
for all platforms.)

Additional details for VHDL, Verilog, and mixed VHDL/Verilog simulation can be found
in the ModelSim User’s Manual and Command Reference. (See "Where to find our
documentation" (T-8).)

Examples show Windows path separators - use separators appropriate for your operating
system when trying the examples.

Command, button, and menu equivalents

Many of the lesson steps are accomplished by a button or menu selection. When
appropriate, VSIM command line (PROMPT:) or menu (MENU:) equivalents for these
selections are shown in parentheses within the step. This example shows three options to
the run -all command, a button, prompt command, and a menu selection.

(PROMPT: run -all) (MENU: Simulate > Run > Run -All)

Drag and drop

Drag and drop allows you to copy and move signals among windows. If drag and drop
applies to a lesson step, it is noted in a fashion similar to MENUS and PROMPTS with:
DRAG&DROP.
ModelSim SE Tutorial

http://www.model.com/support/default.asp
http://www.model.com/products/release.asp
http://www.model.com/support/register_news_list.asp

T-10 Introduction

Model
Command history

As you work on the lessons, keep an eye on the Main transcript window. The commands
invoked by buttons and menu selections are echoed there. You can scroll through the
command history with the up and down arrow keys, or the command history may be
reviewed with several shortcuts at the ModelSim/VSIM prompt.

Reusing commands from the Main transcript

ModelSim’s Main transcript can be saved, and the resulting file used as a DO (macro) file
to replay the transcribed commands. You can save the transcript at any time before or
during simulation. You have the option of clearing the transcript (File > Transcript > Clear
Transcript) if you don’t want to save the entire command history.

To save the contents of the transcript select File > Transcript > Save Transcript As from
the Main menu.

Replay the saved transcript with the do command:

do <do file name>

For example, if you saved a series of compiler commands as mycompile.do (the .do
extension is optional), you could recompile with one command:

do mycompile.do

Shortcut Description

click on prompt left-click once on a previous ModelSim or VSIM prompt in
the transcript to copy the command typed at that prompt to
the active cursor

his or history shows the last few commands (up to 50 are kept)

Note: Neither the prompt nor the Return that ends a command line are shown in the
examples.
Sim SE Tutorial

 T-11
Lesson 1 - Creating a Project

The goals for this lesson are:
• Create a project

A project is a collection entity for an HDL design under specification or test. Projects ease
interaction with the tool and are useful for organizing files and specifying simulation
settings. At a minimum, projects have a work library and a session state that is stored in a
.mpf file. A project may also consist of:

• HDL source files or references to source files

• other files such as READMEs or other project documentation

• local libraries

• references to global libraries

For more information about using project files, see the ModelSim User’s Manual.
ModelSim SE Tutorial

T-12 Lesson 1 - Creating a Project

Model
Creating a project

1 Start ModelSim with one of the following:

for UNIX at the shell prompt:

vsim

for Windows - your option - from a Windows shortcut icon, from the Start menu, or
from a DOS prompt:

modelsim.exe

Upon opening ModelSim for the first time, you will see the Welcome to ModelSim
dialog. (If this screen is not available, you can display it by selecting Help > Welcome
Menu from the Main window.)

2 Select Create a Project from the Welcome dialog, or File > New > Project (Main
window). In the Create Project dialog, enter "test" as the Project Name and select a

Note: If you didn’t add ModelSim to your search path during installation, you will have
to include the full path when you type this command at a DOS prompt.
Sim SE Tutorial

Creating a project T-13
directory where the project file will be stored. Leave the Default Library Name set to
"work."

Upon selecting OK, you will see a blank Project tab in the workspace area of the Main
window and the Add Items to the Project dialog.

workspace
ModelSim SE Tutorial

T-14 Lesson 1 - Creating a Project

Model
3 The next step is to add the files that contain your design units. Click Add Existing File
in the Add items to the Project dialog. For this exercise, we’ll add two Verilog files.
Click the Browse button in the Add file to Project dialog and open the examples
directory in your ModelSim installation. Select tcounter.v and counter.v. Select
Reference from current location and then click OK. Close the Add items to the
Project dialog.

4 Click your right mouse button (2nd button in Windows; 3rd button in UNIX) in the
Project page and select Compile > Compile All.
Sim SE Tutorial

Creating a project T-15
5 The two files are compiled. Click on the Library tab and expand the work library by
clicking the "+" icon. You’ll see the compiled design units listed.

6 The last step in this exercise is to load one of the design units. Double-click counter on
the Library page. You’ll see a new page appear in the Workspace that displays the
structure of the counter design unit.

At this point, you would generally run the simulation and analyze or debug your design.
We’ll do just that in the upcoming lessons. For now, let’s wrap up by ending the simulation
and closing the project. Select Simulate > End Simulation and confirm that you want to
ModelSim SE Tutorial

T-16 Lesson 1 - Creating a Project

Model
quit simulating. Next, select File > Close > Project and confirm that you want to close the
project.

Note that a test.mpf file has been created in your working directory. This file contains
information about the project test that you just created. You can open this project in future
sessions by selecting File > Open > Project.
Sim SE Tutorial

 T-17
Lesson 2 - Basic VHDL simulation

The goals for this lesson are:
• Create a library and compile a VHDL file

• Load a design

• Learn about the basic ModelSim windows, mouse, and menu conventions

• Force the value of a signal

• Run ModelSim using the run command

• Set a breakpoint

• Single-step through a simulation run

The project feature covered in Lesson 1 executes several actions automatically such as
creating and mapping work libraries. In this lesson we will go through the entire process so
you get a feel for how ModelSim really works.
ModelSim SE Tutorial

T-18 Lesson 2 - Basic VHDL simulation

Model
Compiling the design

1 Start by creating a new directory for this exercise (in case other users will be working
with these lessons). Create the directory, then copy all of the VHDL (.vhd) files from
\<install_dir>\modeltech\examples to the new directory.

Make sure the new directory is the current directory. Do this by invoking ModelSim
from the new directory or by selecting File > Change Directory (Main window).

2 Start ModelSim with one of the following:

for UNIX at the shell prompt:

vsim

for Windows - your option - from a Windows shortcut icon, from the Start menu, or
from a DOS prompt:

modelsim.exe

Click Close if the Welcome dialog appears.

3 Before you compile any HDL code, you’ll need a design library to hold the
compilation results. To create a new design library, make this menu selection in the
Main window: File > New > Library.

(PROMPT: vlib work
vmap work work)

Make sure Create: a new library and a logical mapping to it is selected. Type
"work" in the Library Name field and then select OK.

Note: If you didn’t add ModelSim to your search path during installation, you will have
to include the full path when you type this command at a DOS prompt.
Sim SE Tutorial

Compiling the design T-19
This creates a subdirectory named work - your design library - within the current
directory. ModelSim saves a special file named _info in the subdirectory.

4 Compile the file counter.vhd into the new library by selecting Compile > Compile.

(PROMPT: vcom counter.vhd)

This opens the Compile HDL Source Files dialog. (You won’t see this dialog if you
invoke vcom from the command line.)

Complete the compilation by selecting counter.vhd from the file list and clicking
Compile. Select Done when you are finished.

You can compile multiple files in one session from the file list. Individually select and
compile the files in the order required by your design.

Note that you can have ModelSim determine the compile order. See "Auto-generating
compile order" in the Project chapter of the ModelSim User’s Manual for details.

Note: Do not create a Library directory using UNIX or Windows commands, because
the _info file will not be created. Always use the File menu or the vlib command from
either the ModelSim or UNIX/DOS prompt.
ModelSim SE Tutorial

T-20 Lesson 2 - Basic VHDL simulation

Model
Loading the design

1 In the Library tab of the Main window Workspace, click the "+" sign next to the ’work’
library to see the counter design unit.

Double-click counter to load the design unit.

(PROMPT: vsim counter)

2 Next, select View > All Windows from the Main window menu to open all ModelSim
windows.

(PROMPT: view *)

For descriptions of the windows, consult the ModelSim User’s Manual.
Sim SE Tutorial

Loading the design T-21
3 Next let’s add top-level signals to the Wave window by selecting Add > Wave >
Signals in Region from the Signals window menu.

(PROMPT: add wave /counter/*)
ModelSim SE Tutorial

T-22 Lesson 2 - Basic VHDL simulation

Model
Running the simulation

We will start the simulation by applying stimulus to the clock input.

1 Click in the Main window and enter the following command at the VSIM prompt:

force clk 1 50, 0 100 -repeat 100

(Signals MENU: Edit > Clock)

ModelSim interprets this force command as follows:

• force clk to the value 1 at 50 ns after the current time

• then to 0 at 100 ns after the current time

• repeat this cycle every 100 ns

2 Now you will exercise two different Run functions from the toolbar buttons on either
the Main or Wave window. (The Run functions are identical in the Main and Wave
windows.) Select the Run button first. When the run is complete, select Run -All.

Run. This causes the simulation to run and then stop after 100 ns.

(PROMPT: run 100) (Main MENU: Simulate > Run > Run 100ns)

Run -All. This causes the simulator to run forever. To stop the run, go on to the next
step.

(PROMPT: run -all) (Main MENU: Simulate > Run > Run -All)

3 Select the Break button on either the Main or Wave window toolbar to interrupt the
run. The simulator will stop running as soon as it gets to an acceptable stopping point.

(Main MENU: Simulate > Break)

The arrow in the Source window points to the next HDL statement to be executed. (If
the simulator is not evaluating a process at the time the Break occurs, no arrow will be
displayed in the Source window.)
Sim SE Tutorial

Running the simulation T-23
4 Next, you will set a breakpoint in the function on line 18. Scroll the Source window
until line 18 is visible. Click on or near line number 18 to set the breakpoint.

You should see a red dot next to the line number where the breakpoint is set. The
breakpoint can be toggled between enabled and disabled by clicking it. When a
breakpoint is disabled, the dot appears open. To delete the breakpoint, click the line
number with your right mouse button and select Remove Breakpoint 18.

(PROMPT: bp counter.vhd 18)

5 Select the Continue Run button to resume the run that you interrupted. ModelSim will
hit the breakpoint, as shown by an arrow in the Source window and by a Break message
in the Main window.

(PROMPT: run -continue) (MENU: Simulate > Run > Continue)

Note: Breakpoints can be set only on lines with blue line numbers.
ModelSim SE Tutorial

T-24 Lesson 2 - Basic VHDL simulation

Model
6 Click the Step button in the Main or Source window several times to single-step
through the simulation. Notice that the values change in the Variables window (you
may need to expand the Variables window).

(PROMPT: step) (MENU: Simulate > Run > Step)

7 This concludes the basic VHDL simulation tutorial. When you’re done, quit the
simulator by entering the command:

quit -force

This command exits ModelSim without asking for confirmation.
Sim SE Tutorial

 T-25
Lesson 3 - Basic Verilog simulation

The goals for this lesson are:
• Compile a Verilog design

• View signals in the design

• Examine the hierarchy of the design

• Simulate the design

• Change the default run length

• Set a breakpoint

The project feature covered in Lesson 1 executes several actions automatically such as
creating and mapping work libraries. In this lesson we will go through the entire process so
you get a feel for how ModelSim really works.
ModelSim SE Tutorial

T-26 Lesson 3 - Basic Verilog simulation

Model
Compiling the design

1 Start by creating a new directory for this exercise (in case other users will be working
with these lessons). Create the directory, then copy all of the Verilog (.v) files from
\<install_dir>\modeltech\examples to the new directory.

Make sure the new directory is the current directory. Do this by invoking ModelSim
from the new directory or by selecting File > Change Directory (Main window).

2 Start ModelSim with one of the following:

for UNIX at the shell prompt:

vsim

for Windows - your option - from a Windows shortcut icon, from the Start menu, or
from a DOS prompt:

modelsim.exe

Click Close if the Welcome dialog appears.

3 Before you compile any HDL code, you’ll need a design library to hold the
compilation results. To create a new design library, make this menu selection in the
Main window: File > New > Library.

(PROMPT: vlib work
vmap work work)

Make sure Create: a new library and a logical mapping to it is selected. Type
"work" in the Library Name field and then select OK.

Note: If you didn’t add ModelSim to your search path during installation, you will have
to include the full path when you type this command at a DOS prompt.
Sim SE Tutorial

Compiling the design T-27
This creates a subdirectory named work - your design library - within the current
directory. ModelSim saves a special file named _info in the subdirectory.

In the next step you’ll compile the Verilog design. The example design consists of two
Verilog source files, each containing a unique module. The file counter.v contains a
module called counter, which implements a simple 8-bit binary up-counter. The other
file, tcounter.v, is a testbench module (test_counter) used to verify counter.

Under simulation you will see that these two files are configured hierarchically with a
single instance (instance name dut) of module counter instantiated by the testbench.
You'll get a chance to look at the structure of this code later. For now, you need to
compile both files into the work design library.

4 Compile the counter.v, and tcounter.v files into the work library by selecting Compile
> Compile from the Main window menu.

(PROMPT: vlog counter.v tcounter.v)

This opens the Compile HDL Source Files dialog.

Note: Do not create a Library directory using UNIX or Windows commands, because
the _info file will not be created. Always use the File menu or the vlib command from
either the ModelSim or UNIX/DOS prompt.
ModelSim SE Tutorial

T-28 Lesson 3 - Basic Verilog simulation

Model
Select counter.v and tcounter.v (use Ctrl + click) and then choose Compile and then
Done.

Note: The order in which you compile the two Verilog modules is not important (other
than the source-code dependencies created by compiler directives). This may again seem
strange to Verilog-XL users who understand the possible problems of interface checking
between design units, or compiler directive inheritance. ModelSim defers such checks
until the design is loaded. So it doesn’t matter here if you choose to compile counter.v
before or after tcounter.v.
Sim SE Tutorial

Loading the design T-29
Loading the design

1 In the Library tab of the Main window Workspace, click the "+" sign next to the ’work’
library to see the counter and test_counter design units.

Double-click test_counter to load the design unit.

(PROMPT: vsim test_counter)

2 Bring up the Signals, Source, and Wave windows by entering the following command
at the VSIM prompt within the Main window:

 view signals source wave

(Main MENU: View > <window name>)
ModelSim SE Tutorial

T-30 Lesson 3 - Basic Verilog simulation

Model
3 Now let’s add signals to the Wave window with ModelSim’s drag and drop feature.

In the Signals window, select Edit > Select All to select the three signals. Drag the
signals to either the pathname or the values pane of the Wave window.

HDL items can also be copied from one window to another (or within the Wave and
List windows) with the Edit > Copy and Edit > Paste menu selections.
Sim SE Tutorial

Loading the design T-31
4 You may have noticed when you loaded the design in Step 1 that a new tab appeared
in the Workspace area of the Main window.

The Structure tab shows the hierarchical structure of the design. By default, only the
top level of the hierarchy is expanded. You can navigate within the hierarchy by
clicking on any line with a "+" (expand) or "-" (contract) symbol. The same navigation
technique works anywhere you find these symbols within ModelSim.

By clicking the "+" next to dut you can see all three hierarchical levels: test_counter,
dut (counter), and a function called increment. (If test_counter is not displayed, you
simulated counter instead of test_counter.)

5 Click on increment and notice how other ModelSim windows are automatically
updated as appropriate. Specifically, the Source window displays the Verilog code at
the hierarchical level you selected in the Structure tab, and the Signals window
displays the appropriate signals. Using the Structure tab in this way is analogous to
scoping commands in interpreted Verilog simulators.

For now, make sure the test_counter module is showing in the Source window by
clicking on the top line in the Structure tab.

Structure pane
ModelSim SE Tutorial

T-32 Lesson 3 - Basic Verilog simulation

Model
Running the simulation

Now you will exercise different Run functions from the toolbar.

1 Select the Run button on the Main window toolbar. This causes the simulation to run
and then stop after 100 ns (the default simulation length).

(PROMPT: run) (MENU: Simulate > Run > Run 100 ns)

2 Next change the run length to 500 on the Run Length selector and select the Run
button again.

Now the simulation has run for a total of 600ns (the default 100ns plus the 500 you just
asked for). The status bar at the bottom of the Main window displays this information.

3 The last command you executed (run 500) caused the simulation to advance for 500ns.
You can also advance simulation to a specific time. Type:

run @ 3000

This advances the simulation to time 3000ns. Note that the simulation actually ran for
an additional 2400ns (3000 - 600).
Sim SE Tutorial

Running the simulation T-33
4 Now select the Run -All button from the Main window toolbar. This causes the
simulator to run until the stop statement in tcounter.v.

(PROMPT: run -all) (MENU: Simulate > Run > Run -All)

You can also use the Break button to interrupt a run.

(MENU: Simulate > Break)
ModelSim SE Tutorial

T-34 Lesson 3 - Basic Verilog simulation

Model
Debugging

Next we’ll take a brief look at an interactive debugging feature of the ModelSim
environment.

1 Let’s set a breakpoint at line 29 in the counter.v file (which contains a call to the
Verilog function increment). To do this, select dut in the Structure tab of the
Workspace. Move the cursor to the Source window and scroll the window to display
line 29. Click on or to the left of the 29 to set a breakpoint. You should see a red dot
next to the line number where the breakpoint is set.

The breakpoint can be toggled between enabled and disabled by clicking it. When a
breakpoint is disabled, the dot appears open. To delete the breakpoint, click the line
number with your right mouse button and select Remove Breakpoint 29.

2 Select the Restart button to reload the design elements and reset the simulation time
to zero.

(Main MENU: Simulate > Run > Restart) (PROMPT: restart)

Note: Breakpoints can be set only on lines with blue line numbers.
Sim SE Tutorial

Debugging T-35
Make sure all items in the Restart dialog box are selected, then click Restart.

3 Select the Run -All button to re-start the simulation run.

(PROMPT: run -all) (Main MENU: Simulate > Run > Run -All)

When the simulation hits the breakpoint, it stops running, highlights the line with an
arrow in the Source window, and issues a Break message in the Main window.

4 When a breakpoint is reached, typically you will want to know one or more signal
values. You have several options for checking values:

• look at the values shown in the Signals window

• hover your mouse pointer over the count variable in the Source window and a
"balloon" will pop up with the value

• select the count variable in the Source window, right-click it, and select Examine
from the context menu;

• use the examine command to output the value to the Main window transcript:

examine count
ModelSim SE Tutorial

T-36 Lesson 3 - Basic Verilog simulation

Model
5 Let’s move through the Verilog source functions with ModelSim’s Step command.
Click Step on the toolbar.

This command single-steps the debugger.

6 Experiment by yourself for awhile. Set and clear breakpoints and use the Step, Step
Over, and Continue Run commands until you feel comfortable with their operation.
When you’re done, quit the simulator by entering the command:

 quit -force
Sim SE Tutorial

 T-37
Lesson 4 - Mixed VHDL/Verilog simulation

The goals for this lesson are:
• Compile multiple VHDL and Verilog files

• Simulate a mixed VHDL and Verilog design

• View the design in the Structure tab

• View the HDL source code in the Source window

Note: You must be using ModelSim SE/PLUS or ModelSim SE/MIXED to do this
lesson.
ModelSim SE Tutorial

T-38 Lesson 4 - Mixed VHDL/Verilog simulation

Model
Compiling the design

1 Start by creating a new directory for this exercise. Create the directory, then copy the
VHDL and Verilog example files to the directory:

<install_dir>\modeltech\examples\mixedHDL*.vhd
<install_dir>\modeltech\examples\mixedHDL*.v

Make sure the new directory is the current directory. Do this by invoking ModelSim
from the new directory or by using the File > Change Directory command from the
ModelSim Main window.

2 Start ModelSim with one of the following:

for UNIX at the shell prompt:

vsim

for Windows - your option - from a Windows shortcut icon, from the Start menu, or
from a DOS prompt:

modelsim.exe

Click Close if the Welcome dialog appears.

3 Before you compile any HDL code, you’ll need a design library to hold the
compilation results. To create a new design library, make this menu selection in the
Main window: File > New > Library.

(PROMPT: vlib work
vmap work work)

Make sure Create: a new library and a logical mapping to it is selected. Type
"work" in the Library Name field and then select OK.

Note: If you didn’t add ModelSim to your search path during installation, you will have
to include the full path when you type this command at a DOS prompt.
Sim SE Tutorial

Compiling the design T-39
This creates a subdirectory named work - your design library - within the current
directory. ModelSim saves a special file named _info in the subdirectory.

4 Compile the HDL files by selecting Compile > Compile from the menu:

(PROMPT: vlog cache.v memory.v proc.v)

(PROMPT: vcom util.vhd set.vhd top.vhd)

This opens the Compile HDL Source Files dialog.

A group of Verilog files may be compiled in any order. However, in a mixed
VHDL/Verilog design, the Verilog files must be compiled before the VHDL files.

Compile the Verilog source by double-clicking each of these Verilog files in the file
list (this invokes the Verilog compiler, vlog):

• cache.v

• memory.v

• proc.v

Note: Do not create a Library directory using UNIX or Windows commands, because
the _info file will not be created. Always use the File menu or the vlib command from
either the ModelSim or UNIX/DOS prompt.
ModelSim SE Tutorial

T-40 Lesson 4 - Mixed VHDL/Verilog simulation

Model
5 Depending on the design, the compile order of VHDL files can be very specific. In the
case of this lesson, the file top.vhd must be compiled last.

Stay in the Compile HDL Source Files dialog and double-click the VHDL files in this
order (this invokes the VHDL compiler, vcom):

• util.vhd

• set.vhd

• top.vhd

6 Click Done to dismiss the dialog.
Sim SE Tutorial

Loading the design T-41
Loading the design

1 Load the design by selecting Simulate > Simulate from the menu.

(PROMPT: vsim top)

The Simulate dialog appears. Click the "+" sign next to ’work’ to see the design units.
(You won’t see this dialog box if you invoke vsim with top from the command line.)
Select top and then click OK.

2 From the Main menu select View > All Windows to open all ModelSim windows.

(PROMPT: view *)
ModelSim SE Tutorial

T-42 Lesson 4 - Mixed VHDL/Verilog simulation

Model
3 Take a look at the Structure tab in the Workspace.

Notice the hierarchical mixture of VHDL and Verilog in the design. VHDL levels are
indicated by a square “prefix”, while Verilog levels are indicated by a circle “prefix.”
Try expanding (+) and contracting (-) the structure layers. You’ll find Verilog modules
that have been instantiated by VHDL architectures, and similar instantiations of
VHDL items by Verilog.

4 In the Structure tab, click the Verilog module c cache. The source code for the Verilog
module is now shown in the Source window.
Sim SE Tutorial

Loading the design T-43
5 We’ll use ModelSim’s Find function to locate the declaration of cache_set within
cache.v.

From the Source window menu select: Edit > Find.

The Find in dialog is displayed.

In the Find: field, type cache_set and click Find Next. The cache_set instantiations
are now displayed in the Source window. (Click Close to dismiss the Find in: dialog
box.)

Note that cache_set is a VHDL entity instantiated within the Verilog file cache.v.
ModelSim SE Tutorial

T-44 Lesson 4 - Mixed VHDL/Verilog simulation

Model
6 Go back to the Main window, expand the c cache entry by clicking the "+" sign, and
scroll down and click on s0 cache_set(only). The Source window shows the VHDL
code for the cache_set entity.

Before you quit, try experimenting with some of the commands you’ve learned from
previous lessons – add signals to the Wave window, run the simulation, etc. Note that
in this design, clk is already driven, so you won’t need to use the force command.

7 When you’re ready to quit simulating, enter the command:

 quit -force
Sim SE Tutorial

 T-45
Lesson 5 - Debugging a VHDL design

The goals for this lesson are:
• Map a logical library name to an actual library

• Recognize assertion messages in the Main window transcript

• Change the assertion break level

• Restart the simulation run using the restart command

• Examine composite types displayed in the Variables window

• Change the value of a variable

In this lesson we will debug an assertion message using the Source, Signals, and Variables
windows. For another debugging lesson, see Lesson 11 - Debugging with the Dataflow
window.
ModelSim SE Tutorial

T-46 Lesson 5 - Debugging a VHDL design

Model
Compiling and loading the design

1 Create a new directory for this exercise and copy the following VHDL (.vhd) files from
\<install_dir>\modeltech\examples to the new directory.

• gates.vhd

• adder.vhd

• testadder.vhd

2 Make sure the new directory is the current directory. Do this by invoking ModelSim
from the new directory or by using the File > Change Directory command from the
ModelSim Main window.

3 Start ModelSim with one of the following:

for UNIX at the shell prompt:

vsim

for Windows - your option - from a Windows shortcut icon, from the Start menu, or
from a DOS prompt:

modelsim.exe

4 Enter the following command at the ModelSim prompt in the Main window to create
a new library:

vlib library_2

5 Map the new library to the work library using the vmap command:

vmap work library_2

ModelSim adds this mapping to the modelsim.ini file.

6 Compile the source files into the new library by entering this command at the
ModelSim prompt:

vcom -work library_2 gates.vhd adder.vhd testadder.vhd

Note: If you didn’t add ModelSim to your search path during installation, you will have
to include the full path when you type this command at a DOS prompt.
Sim SE Tutorial

Compiling and loading the design T-47
7 Open the Simulate dialog by selecting Simulate > Simulate. Expand the work library
and increase the width of the name column by clicking and dragging on the border
between the Name and Type columns.

8 Make sure Simulator Resolution is set to nanoseconds, select test_adder_structural,
and then click OK.

(PROMPT: vsim -t ns work.test_adder_structural)
ModelSim SE Tutorial

T-48 Lesson 5 - Debugging a VHDL design

Model
Running the simulation

1 Start by opening the Process, Variables, and Signals windows using the command
below. Note that you can abbreviate window names.

view p si v

(Main MENU: View > <window name>)

2 Now run the simulation for 1000 ns:

run 1000

A message in the Main window will notify you that there was an assertion error.
Sim SE Tutorial

Debugging the simulation T-49
Debugging the simulation

Let’s find out what is wrong. Perform the following steps to track down the assertion
message.

1 First, change the simulation assertion options. Select Simulate > Simulation Options
from the Main window menu.

2 Select the Assertions tab. Change the selection for Break on Assertion to Error and
click OK. This will cause the simulator to stop at the HDL assertion statement.

3 Restart the simulation using the following command:

restart -f

The -f option causes ModelSim to restart without popping up the confirmation dialog.

4 Run the simulation again for 1000 ns.

run 1000
ModelSim SE Tutorial

T-50 Lesson 5 - Debugging a VHDL design

Model
The Source window opens automatically to show the line where the break occurred.
Notice that the arrow in the Source window is pointing to the assertion statement.

5 If you look at the Variables window now, you can see that i = 6. This indicates that the
simulation stopped in the sixth iteration of the test pattern’s loop.

6 Expand the variable named test_patterns by clicking the [+]. (You may need to resize
the window for a better view.)

7 Also expand the sixth record in the array test_patterns(6), by clicking the [+]. The
Variables window should be similar to the one below.
Sim SE Tutorial

Debugging the simulation T-51
The assertion shows that the Signal sum does not equal the sum field in the Variables
window. Note that the sum of the inputs a, b, and cin should be equal to the output
sum. But there is an error in the test vectors. To correct this error, you need to restart
the simulation and modify the initial value of the test vectors.

8 Restart the simulation again:

restart -f

9 Update the Variables window by selecting the test process in the Process window.

10 In the Variables window, expand test_patterns and test_pattern(6) again. Then
highlight the .sum record by clicking on the variable name (not the box before the
name) and select Edit > Change from the menu.
ModelSim SE Tutorial

T-52 Lesson 5 - Debugging a VHDL design

Model
11 Change the value to 00000111 and then click Change. (Note that this is a temporary
edit, you must use your text editor to permanently change the source code.)

12 Run the simulation again for 1000 ns.

run 1000

At this point, the simulation will run without errors.

This brings you to the end of this lesson, but feel free to explore the system further. When
you are ready to end the simulation session, quit ModelSim by entering the following
command at the VSIM prompt:

quit -f
Sim SE Tutorial

 T-53
Lesson 6 - Finding names and values

The goals for this lesson are:
• Find items by name in tree windows

• Search for item values in the List and Wave windows

Start any of the lesson simulations to try out the Find and Search functions illustrated
below.
ModelSim SE Tutorial

T-54 Lesson 6 - Finding names and values

Model
Finding items by name in tree windows

You can find HDL item names with the Edit > Find menu selection in these windows:
Dataflow, List, Process, Signals, Source, Structure, Variables, and Wave windows.

Select Edit > Find to bring up the Find dialog box (List window version shown).

Enter an item label and Find it by searching Right or Left through the window display.
Sim SE Tutorial

Searching for item values in the List and Wave windows T-55
Searching for item values in the List and Wave windows

You can search for HDL item values in the List and Wave windows. Select Edit > Search
from the window’s menu to bring up the Signal Search dialog box (List window version
shown).

You can locate values for the Signal Name(s) shown at the top of the dialog box. The
search is based on these options:

• Search Type: Any Transition
Searches for any transition in the selected signal(s).

• Search Type: Rising Edge
Searches for rising edges in the selected signal(s).

• Search Type: Falling Edge
Searches for falling edges in the selected signal(s).

• Search Type: Search for Signal Value
Searches for the value specified in the Value field; the value should be formatted using
VHDL or Verilog numbering conventions.
ModelSim SE Tutorial

T-56 Lesson 6 - Finding names and values

Model
• Search Type: Search for Expression
Searches for the expression specified in the Expression field evaluating to a boolean
true. Activates the Builder button so you can use the Expression Builder if desired.

The expression may involve more than one signal but is limited to signals logged in
the List or Wave window. Expressions may include constants, variables, and Tcl
macros. If no expression is specified, the search will give an error. See the ModelSim
Command Reference for more information on expression syntax.

• Search Options: Match Count
You can search for the nth transition or the nth match on value; Match Count indicates
the number of transitions or matches to search.

• Search Options: Ignore Glitches
Ignore zero width glitches in VHDL signals and Verilog nets.

The result of your search is indicated at the bottom of the dialog box.
Sim SE Tutorial

 T-57
Lesson 7 - Using the Wave window

The goals for this lesson are:
• Practice using the Wave window time cursors.

• Practice zooming the waveform display.

• Practice using Wave window keyboard shortcuts.

• Practice combining items into a virtual object.

• Practice creating and viewing datasets.
ModelSim SE Tutorial

T-58 Lesson 7 - Using the Wave window

Model
Using time cursors in the Wave window

Any of the previous lesson simulations may be used with this part of the lesson, or use your
own simulation if you wish.

When the Wave window is first drawn, there is one cursor located at time zero. Clicking
anywhere in the waveform display brings that cursor to the mouse location. You can add
cursors to the waveform pane by selecting Insert > Cursor (or the Add Cursor button
shown below). The selected cursor is drawn as a bold solid line; all other cursors are drawn
with thin lines. Remove cursors by selecting them and selecting Edit > Delete Cursor (or
the Delete Cursor button shown below).

Naming cursors

By default cursors are named "Cursor <n>". To rename a cursor, click the name in the left-
hand cursor pane with your right mouse button. Type a new name and press the <Enter>
key on your keyboard.

interval measurement

selected cursor is bold

select name or value here
to jump to that cursor

locked cursor is red

Add Cursor
add a cursor to the Wave
window

Delete Cursor
delete the selected cursor
from the window
Sim SE Tutorial

Using time cursors in the Wave window T-59
Locking cursors

You can lock a cursor in position so it won’t move. Click a cursor with your right-mouse
button and select Lock <cursor name>. The cursor turns red and you can no longer move
it with the mouse. As a convenience, you can hold down the <shift> key and click-and-drag
the cursor. Once you let go of the cursor, it will be locked in the new position. To unlock a
cursor, right-click it and select Unlock <cursor name>.

Finding cursors

The cursor value corresponds to the simulation time of that cursor. Choose a specific cursor
view by selecting View > Cursors (Wave window). You can also select and scroll to a
cursor by double-clicking its value in the cursor-value pane.

Alternatively, you can click a value with your right mouse button, type the value to which
you want to scroll, and press the Enter key.

Making cursor measurements

Each cursor is displayed with a time box showing the precise simulation time at the bottom.
When you have more than one cursor, each time box appears in a separate track at the
bottom of the display. ModelSim also adds a delta measurement showing the time
difference between two adjacent cursor positions.

If you click in the waveform display, the cursor closest to the mouse position is selected
and then moved to the mouse position. Another way to position multiple cursors is to use
the mouse in the time box tracks at the bottom of the display. Clicking anywhere in a track
selects that cursor and brings it to the mouse position.

Cursors will "snap" to a waveform edge if you click or drag a cursor to within ten pixels of
a waveform edge. You can set the snap distance in the Window Preferences dialog (select
Tools > Window Preferences). You can position a cursor without snapping by dragging
in the area below the waveforms.

You can also move cursors to the next transition of a signal with these toolbar buttons:

Find Previous
Transition
locate the previous signal
value change for the
selected signal

Find Next Transition
locate the next signal
value change for the
selected signal
ModelSim SE Tutorial

T-60 Lesson 7 - Using the Wave window

Model
Zooming - changing the waveform display range

Zooming lets you change the simulation range in the waveform pane. You can zoom using
a context menu, toolbar buttons, mouse, keyboard, or commands.

Using the Zoom menu

You can access Zoom commands from the View menu on the toolbar or by clicking the
right mouse button in the waveform pane.

The Zoom menu options include:

• Zoom In
Zooms in by a factor of two, increasing the resolution and decreasing the visible range
horizontally. (command: .wave.tree zoomin)

• Zoom Out
Zooms out by a factor of two, decreasing the resolution and increasing the visible range
horizontally. (command: .wave.tree zoomout)

• Zoom Full
Redraws the display to show the entire simulation from time 0 to the current simulation
time. (command: .wave.tree zoomfull)

• Zoom Last
Restores the display to where it was before the last zoom operation.
(command: .wave.tree zoomlast)

• Zoom Range
Brings up a dialog box that allows you to enter the beginning and ending times for a range
of time units to be displayed. (command: .wave.tree zoomrange)

Zooming with toolbar buttons

These zoom buttons are available on the toolbar:

Zoom In 2x
zoom in by a factor of two
from the current view

Zoom Out 2x
zoom out by a factor of
two from the current view

Zoom Full
zoom out to view the full
range of the simulation
from time 0 to the current
time

Zoom Mode
change the mouse pointer
to zoom mode; see below
Sim SE Tutorial

Zooming - changing the waveform display range T-61
Zooming with the mouse

To zoom with the mouse, first enter zoom mode by selecting View > Mouse Mode > Zoom
Mode (Wave window). The left mouse button (<Button-1>) then offers 3 zoom options by
clicking and dragging in different directions:

• Down-Right: Zoom Area (In)

• Up-Right: Zoom Out

• Up-Left: Zoom Fit

The zoom amount is displayed at the mouse cursor. A zoom operation must be more than
10 pixels to activate.

Keyboard shortcuts for zooming

Using the following keys when the mouse cursor is within the Wave window will cause the
indicated actions:

Key Action

i I or + zoom in

o O or - zoom out

f or F zoom full

l or L zoom last

r or R zoom range

<arrow up> scroll pathname, values, or waveform pane up

<arrow down> scroll pathname, values, or waveform pane down

<arrow left> scroll pathname, values, or waveform pane left

<arrow right> scroll pathname, values, or waveform pane right

<page up> scroll waveform display up by page

<page down> scroll waveform display down by page

<Control - arrow left> scroll waveform display left one page

<Control - arrow right> scroll waveform display right one page

<tab> searches forward (right) to the next transition on the
selected signal

<shift-tab> searches backward (left) to the previous transition on the
selected signal

<Control-f> (Windows)
<Control-s> (UNIX)

opens the find dialog box; searches within the specified
field in the pathname pane for text strings
ModelSim SE Tutorial

T-62 Lesson 7 - Using the Wave window

Model
Combining items in the Wave window

The Wave window allows you to combine signals into buses. Select Tools > Combine
Signals to open the Combine Selected Signals dialog.

A bus is a collection of signals concatenated in a specific order to create a new virtual signal
with a specific value.

In the illustration below, three data signals have been combined to form a new bus called
"bus". Notice, the new bus has a value that is made up of the values of its component signals
arranged in a specific order. Virtual objects are indicated by an orange diamond.
Sim SE Tutorial

Creating and viewing datasets T-63
Creating and viewing datasets

Datasets allow you to view previous simulations or to compare simulations. To view a
dataset, you must first save a ModelSim simulation to a WLF file (using the vsim -wlf
option or File > Save > Dataset command). Once you have saved a WLF file, you can open
it as a view-mode dataset.

In this lesson you will compare two simple Verilog designs: a structural description and an
RTL description of a 4-bit, binary counter. To begin, you will simulate the structural
description and save it to a WLF file. Then you will simulate the RTL version. Finally, you
will open the WLF file as a dataset and compare the two simulations in the Wave window.

Simulating the structural version

1 Start by creating a new working directory, making it the current directory, and copying
the files from \modeltech\examples\datasets into it.

2 Use the vlib command to create a work library in the current directory.

vlib work

(MENU: File > New > Library)

3 Use the vmap command to map the work library to a physical directory.

vmap work work

Your modelsim.ini file will be updated with this mapping.

4 Compile the structural version of the counter.

vlog cntr_struct.v

(MENU: Compile > Compile)

5 Load the design and save the simulation to a WLF file named struct.wlf.

vsim -wlf struct.wlf work.cntr_struct

6 Now you will run a DO file that applies stimulus to the design, runs the simulation, and
adds waves to the Wave window. Feel free to open the DO file and look at its contents.

do stimulus.do

(MENU: Tools > Execute Macro)

The waves that appear in the Wave window are saved automatically into the struct.wlf
file.

7 Quit the simulation.

quit -sim

(MENU: Simulate > End Simulation)
ModelSim SE Tutorial

T-64 Lesson 7 - Using the Wave window

Model
Simulating the RTL version

1 Compile the RTL version of the counter.

vlog cntr_rtl.v

2 Simulate the design.

vsim work.cntr_rtl

(MENU: Simulate > Simulate)

3 Run the DO file to apply stimulus to the design.

do stimulus.do

Comparing the two designs

To compare the two simulations, we will create a second pane in the Wave window, open
the struct.wlf file, and add the signals from the dataset to the new pane.

1 Add a second pane to the Wave window.

Wave MENU: Insert > Window Pane

Notice that a thick, white vertical bar at the left edge of the window indicates that the
new pane is active.

2 Open struct.wlf.

dataset open struct.wlf

(Wave MENU: File > Open > Dataset)

3 Add signals for the "struct" dataset.

add wave *

Notice that the pathname prefix for the signals you just added is the dataset name
"struct". The pathname prefix for the active simulation is "sim".

The results for each simulation should be the same. You can continue experimenting
with the two simulations or quit the simulation.

quit -sim

(Main MENU: Simulate > End Simulation)
Sim SE Tutorial

 T-65
Lesson 8 - Simulating with the Performance Analyzer

The goals for this lesson are:
• Run a simulation with Performance Analyzer turned on

• View the Hierarchical Profile display

• Use the Performance Analyzer statistics displayed in the Hierarchical Profile to speed
up simulation

The Performance Analyzer identifies the percentage of simulation time spent in each
section of your code. With this information, you can identify bottlenecks and reduce
simulation time by optimizing your code. Users have reported up to 75% reductions in
simulation time after using the Performance Analyzer.

This lesson introduces the Performance Analyzer and shows you how to use the main
Performance Analyzer commands.

Note: You must be using ModelSim SE to complete this lesson.
ModelSim SE Tutorial

T-66 Lesson 8 - Simulating with the Performance Analyzer

Model
Compiling and loading the design

This lesson will use an example design that contains lower-level VHDL blocks in the files
control.vhd, retrieve.vhd, and store.vhd; and top-level block, test bench and configuration
files – ringrtl.vhd, testring.vhd, and config_rtl.vhd.

1 Start by creating a new working directory, making it the current directory, and copying
the files from \modeltech\examples\profiler into it.

2 Use the vlib command to create a work library in the current directory.

vlib work (MENU: File > New > Library)

3 Use the vmap command to map the work library to a physical directory.

vmap work work

Your modelsim.ini file will be updated with this mapping.

4 Compile the lower level blocks of the design.

vcom control.vhd retrieve.vhd store.vhd

(MENU: Compile > Compile)

5 Compile the top-level block, testbench and configuration files.

vcom ringrtl.vhd testring.vhd config_rtl.vhd

(MENU: Compile > Compile)

6 Use the vsim command to load the design configuration.

vsim work.test_bench_rtl

(MENU: Simulate > Simulate)
Sim SE Tutorial

Running the simulation T-67
Running the simulation

1 Turn on profiling prior to running the simulation.

profile on

(MENU: Tools > Profile > Profile On)

2 We’re going to run the simulation using a DO file that reports how long the simulation
takes to run. Take a look at the commands in the timerun.do file. The seconds Tcl
command is used to time the simulation.

do timerun.do

Notice as the simulation runs that the status bar shows how many profile samples are
being taken.

Make a note of the run time reported in the Transcript window. We’ll use it later to
compare how much we’ve increased simulation speed. (Your times may differ from
those shown here due to differing system configurations.)
ModelSim SE Tutorial

T-68 Lesson 8 - Simulating with the Performance Analyzer

Model
3 Display the Hierarchical Profile output.

view_profile

(MENU: Tools > Profile > View hierarchical profile)

Note that two lines – retrieve.vhd:35 and store.vhd:43 – are taking the majority of the
simulation time.

You can filter out everything below a certain percentage with the Under % field on
the toolbar. The default value is 1%. Any usage less than 1% will not be displayed.
Sim SE Tutorial

Running the simulation T-69
Clicking any line in the Hierarchical Profile window will open the Source window and
allow you to view the relevant source code for that line. The selected line will be
highlighted in the Source window as shown below. (Here, we’ve double-clicked
retrive.vhd:35.)
ModelSim SE Tutorial

T-70 Lesson 8 - Simulating with the Performance Analyzer

Model
Speeding up the simulation

The information provided by the Performance Analyzer can be used to speed up the
simulation. Click the pathname for retrieve.vhd:35 and store.vhd:43 and view the source
code. In both cases, the source includes a loop which could have an exit.

1 Modify the loops to include exits inside the IF statements, or compile the following
files included for that purpose – store_exit.vhd and retrieve_exit.vhd.

vcom retrieve_exit.vhd store_exit.vhd

(MENU: Compile > Compile)

2 Compile the top level blocks and configuration files again to account for the lower
level changes.

vcom ringrtl.vhd testring.vhd config_rtl.vhd

(MENU: Compile > Compile)

3 Reset the simulation to time zero and restart with the modified files.

restart -f

(MENU: Simulate > Run > Restart)
Sim SE Tutorial

Speeding up the simulation T-71
4 Run timerun.do again and note the difference in run time.

do timerun.do

Run time has been cut almost in half by inserting exits in the loops.

5 Take another look at the Performance Analyzer data.

view_profile

(MENU: Tools > Profile > View hierarchical profile)

A lot of time is still being spent in the loops. To further reduce simulation time, these
loops can be replaced by indexing an array.
ModelSim SE Tutorial

T-72 Lesson 8 - Simulating with the Performance Analyzer

Model
6 Remove the loops and add an array, or compile the following files which already
contain the modifications.

vcom retrieve_array.vhd store_array.vhd

(MENU: Compile > Compile)

7 Compile the top-level blocks and configuration files again.

vcom ringrtl.vhd testring.vhd config_rtl.vhd

(MENU: Compile > Compile)

8 Restart the simulation with the modified files.

restart -f

(MENU: Simulate > Run > Restart)

9 Run timerun.do again and note the difference in simulation run time. Your time may
differ from that shown here, but the new run should be very fast – roughly ten times
faster than the original simulation time.

do timerun.do
Sim SE Tutorial

Speeding up the simulation T-73
10 Look again at the Hierarchical Profile and you will see more lines showing.

view_profile

(MENU: Tools > Profile > View hierarchical profile)

%Under filter

Update icon

Note: Your results may look slightly different as a result of the computer you’re using
and different system calls that occur during the simulation.
ModelSim SE Tutorial

T-74 Lesson 8 - Simulating with the Performance Analyzer

Model
11 Set the Under% filter to "2" and click the Update icon. This will filter out all usage
values below 2%.

12 Use the report command to output a file with the profile data.

profile report -hierarchical -file hier.rpt -cutoff 4

This command outputs a hierarchical profile of performance data with the file name
hier.rpt.

13 Quit the simulation.

quit -f
Sim SE Tutorial

 T-75
Lesson 9 - Simulating with Code Coverage

The goals for this lesson are:
• Create a new project for code coverage

• Compile the project

• Load and run the project with code coverage

• View code coverage statistics

• Create code coverage reports

• Exclude lines and files from coverage statistics

• Merge coverage results from two simulations

ModelSim Code Coverage allows you to identify which statements and branches in your
code are being executed by the testbench. Coverage data is collected on an instance by
instance basis, with statement and branch executions counted for each instance. Multiple
statements on a line are counted individually. Reports show the line number and character
number of the last character in the statement. Conditional "if" and "case" statements are
collected as branch statistics – each "hit" of a true or false condition in an if statement is
counted.

Code Coverage allows you to use pragmas to turn code coverage off and on. You can merge
the results of multiple tests, making it possible to use multiple test benches or multiple
stimulus files. And Code Coverage is non-intrusive (instrumented code is not required) and
only minimally impacts simulation performance (typically 5-10%).
ModelSim SE Tutorial

T-76 Lesson 9 - Simulating with Code Coverage

Model
Create a new project for code coverage

1 Create a new working directory, make it the current directory, and copy the files from
<install directory>\modeltech\examples\coverage into it.

2 Start ModelSim and select File > New > Project to open the Create Project dialog.

3 Type "cover" in the Project Name field.

4 Browse to the location of your current working directory.

5 The Default Library Name should be "work."

6 Select OK to create the new project, cover.mpf. This will open the Add items to the
Project dialog.

7 Select Add Existing File and add all files from the new working directory you created
in step 1 above. See "Creating a project" (T-12) in Lesson 1 if you need a reminder on
how to do this operation.
Sim SE Tutorial

Compile the project T-77
Compile the project

1 Compile the files using the vlog and vcom commands.

vlog Micro.v Modetwo.v Pre.v
vcom Tx.vhd Buffers.vhd Delta.vhd Fifo.vhd Fs_add.vhd Post.vhd testdel.vhd
Arb.vhd

(Menu: Compile > Compile All)

Load and run the project with code coverage

1 Use the vsim -coverage command to load the design with code coverage invoked.

vsim -coverage work.test_delta

(Menu: Simulate > Simulate)

To load the design using the graphic interface (instead of using vsim -coverage at the
command line) select Simulate > Simulate from the Main menu, or click the Simulate
icon. Either action will open the Simulate dialog shown below.

Note: The "No default binding" warning messages that diplay in the Transcript window
are related to the compile order of the files. These message are expected and do not affect
the simulation.
ModelSim SE Tutorial

T-78 Lesson 9 - Simulating with Code Coverage

Model
Select the Design tab, then select the test_delta entity from the work library.

Select the Options tab and check Enable source file coverage.

Click OK to load the design with code coverage invoked.
Sim SE Tutorial

Load and run the project with code coverage T-79
2 Run the simulator for 1 millisecond.

run 1 ms

(You’ll see some initialization warnings in the Main window transcript due to
unknown states of some instances. These will not affect the operation of the design
created for this tutorial. For details on how to disable initialization warnings, see the
when command in the Command Reference.)
ModelSim SE Tutorial

T-80 Lesson 9 - Simulating with Code Coverage

Model
View code coverage statistics

Code coverage statistics can be viewed in both the Main and Source windows.

Main window statistics

When a design is loaded with code coverage invoked, the columns shown below are added
to the Files and sim tabs of the Main window Workspace. The performance of "if" and
"case" conditional statements are collected as branch statistics.

In addition, code coverage statistics are displayed in the following three panes of the Main
window: Missed Coverage, Current Exclusions, and Instance Coverage. The Missed
Coverage pane lists statements and branches that have not been executed (zero hits)
according to their line numbers. The Current Exclusions pane lists user and pragma
exclusions from code coverage statistics according to line number. The Instance Coverage
pane lists statement and branch coverage statistics for each instance in a non-hierarchical
display.

1 Select the testdel.vhd file in the Files tab of the Main window Workspace. This will
place the missed coverage statistics for testdel.vhd in the Missed Coverage pane. Click
the plus sign to expand the hierarchy as shown here.
Sim SE Tutorial

View code coverage statistics T-81
The Missed Coverage pane includes coverage information for both missed statements
and missed branches. Select the Branch tab to display missed branches.

2 Select any statement or branch in the Missed Coverage pane to display that item in the
Source window.

3 Right-click any statement or branch in the Missed Coverage pane to open the Exclude
Selection button, which allows you to exclude your selection from the code coverage
statistics. If you choose to exclude a line, you will see that line displayed in the Current
Exclusions pane.

4 The Current Exclusions pane displays all user and pragma exclusions for the design.
Click the plus and minus boxes to expand and contract the displayed hierarchy.

Right-click any item in the Current Exclusions pane to open a context menu. With this
menu you can cancel the exclusion of the selected (non-pragma) item, load or save an
exclusion file, and hide or show pragma exclusions.
ModelSim SE Tutorial

T-82 Lesson 9 - Simulating with Code Coverage

Model
5 The Instance Coverage pane displays statement and branch coverage statistics for each
instance in a flat, non-hierarchical view. Select any instance in the Instance Coverage
pane to see its source code displayed in the Source window.

6 Right-click any item in the Instance Coverage pane to open a context menu. This menu
allows you to create coverage reports, set a display filter, or clear code coverage data
for every item in the design.
Sim SE Tutorial

View code coverage statistics T-83
Source window statistics

Code coverage statistics are displayed in the Source window when coverage is invoked.

You can view the source code for specific modules or entities by double-clicking an item
in the Files or sim tab of the Main window Workspace, or by selecting any item in the
Missed Coverage or Instance Coverage panes.

1 In the Files tab of the Main window Workspace, double-click the testdel.vhd file to
open it in the Source window.

2 To go directly to a line of code that contains a statement that has not executed, click
the plus sign next to the testdel.vhd file name in the Missed Coverage pane (with the
Statement tab selected) and select line 286.
ModelSim SE Tutorial

T-84 Lesson 9 - Simulating with Code Coverage

Model
The Source window now displays line 286 highlighted in yellow, as shown below.

A red X in the Hits column indicates that a statement in that line has not been executed
(zero hits). A green E in the hits column indicates a line that has been excluded from
code coverage statistics. A red XT or XF in the BC (Branch Coverage) column
indicates that a true or false branch (respectively) of a conditional statement has not
been executed. Lines that contain unexecuted statements and branches are highlighted
in pink.

3 Hover the mouse cursor over the code for line 295 as we’ve done below. You will see
the checkmark in the Hits column and the XF in the BC column change to numbers –
indicating the number of times the statements and branches in that line were executed.
Sim SE Tutorial

View code coverage statistics T-85
The BC column displays the number of hits of both true and false conditions. In this
case the true branch was executed 375 times and the false branch was not executed.

4 Open the Source window’s View menu and select Show coverage numbers. The Hits
and BC columns will display execution counts instead of checkmarks and X’s.
ModelSim SE Tutorial

T-86 Lesson 9 - Simulating with Code Coverage

Model
Create code coverage reports

ModelSim allows you to create code coverage reports using the graphic interface or by
entering commands at the command line.

Coverage reporting with the graphic interface

You use the Coverage Report dialogto create coverage reports via the graphic interface.
This dialog can be opened with any of the following three methods: 1) select Tools >
Coverage > Reports from the Main window menu; 2) right-click any item in the
Workspace of the Main window and select Coverage > Coverage Reports from the
context menu (and submenu); 3)right-click any item in the Instance Coverage pane and
select Coverage reports from the context menu.

1 Select Tools > Coverage > Reports from the Main window menu.

2 Select Report on all instances and No Filtering. Leave the Other Options unselected.
Sim SE Tutorial

Create code coverage reports T-87
3 Use the default report pathname, report.txt, or assign a new one; then click OK. This
will create a report that will be displayed in Notepad as a text file.

4 Close Notepad.

5 Select Tools > Coverage > Reports again from the main menu.

6 Select Report on a specific instance.

7 In the Instance Name field enter "sim:/test_delta" (without quotes) or browse to select
it.

8 Select No Filtering and the Include Line Details option.
ModelSim SE Tutorial

T-88 Lesson 9 - Simulating with Code Coverage

Model
9 Enter a new report pathname. ModelSim will create the report and display it in
Notepad as shown below.

Experiment with the other code coverage reports and filters available with the Coverage
Report dialog.
Sim SE Tutorial

Create code coverage reports T-89
Coverage reporting at the command line

ModelSim gives you the ability to create reports from the command line using the coverage
report command.

1 To save a summary of the code coverage statistics by source file, enter the following
command at the command line:

coverage report -file cover.dat

2 Open the file cover.dat to see how the data is stored. The notepad command works
well for getting a quick view of text files.

notepad cover.dat

See the coverage report command in the ModelSim Command Reference for complete
details on creating reports at the command line.
ModelSim SE Tutorial

T-90 Lesson 9 - Simulating with Code Coverage

Model
Exclude lines and files from coverage statistics

ModelSim allows you to exclude lines and files from code coverage statistics using the
graphic interface, the coverage exclude command, or by setting pragmas in the code.

Using the graphic interface

1 If it is not already selected, select the Files tab in the Main window workspace.

2 Right-click the Modetwo.v
file and select Coverage >
Exclude Selected File.
Modetwo.v will appear in the
Current Exclusions pane.

You can also exclude lines
from coverage statistics using
the Missed Coverage pane.

3 Select the Arb.vhd file from the Files tab of the Main window Workspace. This will
make Arb.vhd appear in the Missed Coverage pane.

4 From the Statement tab of the Missed Coverage pane click on the plus sign associated
with Arb.vhd to show all statements that have not executed.

5 Right-click line 226 to select it and bring up the Exclude Selection button.

6 Click the Exclude Selection
button. The Arb.vhd file will
appear in the Current Exclusions
pane as shown here.

To cancel an exclusion from the
graphic interface, right click any item
or items (except pragma exclusions) in
the Current Exclusions pane and select Cancel Selected Exclusions from the context
menu.
Sim SE Tutorial

Exclude lines and files from coverage statistics T-91
Using the coverage exclude command

The coverage exclude command loads an exclusion filter file. Exclusion filter files specify
files and line numbers that you wish to exclude from Code Coverage statistics. The proper
syntax for using the coverage exclude command is:

coverage exclude <filename>

where <filename> is the name of the exclusion filter you wish to load. Excluded files will
appear in the Current Exclusions pane.

Setting pragmas in the source code

ModelSim supports the use of source code pragmas to turn coverage off and on. In Verilog
the pragmas are:

// coverage off
// coverage on

In VHDL, the pragmas are:

-- coverage off
-- coverage on

For this example we’ll arbitrarily exclude lines 709 through 791 from the Pre.v Verilog file.
Before we exclude these lines, make note of the statement and branch counts, hits and
percent coverage for the Pre.v file in the Files tab of the Main window Workspace. (Our
run produced the following: Stmt Count = 779, Stmt Hits = 615, Stmt % = 78.947, Branch
Count = 578, Branch Hits = 422, Branch % = 73.010)

1 Double-click the Pre.v file in the Main window workspace to open it in the Source
window.

2 Make the file writable by selecting Edit > read only (Source window).

3 We’ll arbitrarily exclude the first test of the octet counter from coverage statistics.
Scroll to line 709 and select it. Then type the coverage off pragma:

// coverage off

4 Scroll to line 791 and type in the coverage on pragma:

// coverage on

Save the changes by selecting File > Save or by clicking the Save Source File icon.

(Menu: File > Save)

5 In the Main window, click the Compile All icon.

(Menu: Compile > Compile All)

p

ModelSim SE Tutorial

T-92 Lesson 9 - Simulating with Code Coverage

Model
6 Use the restart -f command at the command line of the Main window transcript to
clear the coverage information and restart the simulation.

restart -f

The pragma exclusion in
Pre.v will appear in the
Current Exclusions
window, as shown here.
(Lines 712-788 include all
executable lines between
the coverage off and
coverage on commands at
lines 709 and 791,
respectively.)

7 Rerun the simulation for
1ms to see the difference in
code coverage statistics.

run 1 ms

(Our run produced the
following: Stmt Count =
740, Stmt Hits = 598, Stmt % = 80.811, Branch Count = 542, Branch Hits = 407,
Branch % = 75.092)
Sim SE Tutorial

Merge coverage results from two simulations T-93
Merge coverage results from two simulations

You can merge code coverage results from multiple simulations making it possible to run
multiple tests on a design, then assess coverage across all tests. In this exercise, we’ll
change the stimulus of the testbench, resimulate, and then append the coverage statistics
from our previous analysis to the new analysis.

We’ve already created a summary report of the coverage data by source file in the cover.dat
file shown here.

1 We’ll begin by quitting the previous simulation.

quit -sim

2 Now, change the stimulus by editing the testbench, testdel.vhd. (This file should
already be open in the Source window.)

3 Open the Source window’s Edit menu and uncheck the read only selection. This
allows the testdel.vhd file to be edited and saved.

4 Scroll to line 190. It should read:

file F:TEXT is in "delta_setup";

5 Change the stimulus from "delta_setup" to "delta_setup2" and save the file.

(Menu: File > Save)
ModelSim SE Tutorial

T-94 Lesson 9 - Simulating with Code Coverage

Model
6 In the Main window, select the Compile All button.

(Menu: Compile > Compile All)

7 Load the simulation with coverage invoked.

vsim -coverage work.test_delta

8 Run the simulator for 1milliseconds as before.

run 1 ms

9 Create a summary report of source file coverage.

coverage report -file cover2.dat

10 View the summary report and notice the difference in the Hits and % columns between
this run and the previous. For example, the number of statement Hits for the Arb.vhd
file is 55. In the previous simulation it was 211.

notepad cover2.dat

11 Save the coverage data of this second run using the Tools > Coverage > Save selection
in the Main window menu. Name the file second.cov.

coverage save second.cov

12 Now quit the simulation.

quit -sim
Sim SE Tutorial

Merge coverage results from two simulations T-95
13 Go back to line 190 of the testdel.vhd file in the Source window and change
"delta_setup2" back to "delta_setup" and save the file.

(Menu: File > Save)

14 In the Main window, select the Compile All button.

(Menu: Compile > Compile All)

15 Load the design with code coverage invoked.

vsim -coverage work.test_delta

16 Before running the simulation, reload the coverage data in the second.cov file. Use the
Tools > Coverage > Merge selection from the Main menu or the following command.

coverage reload second.cov

17 Run the simulation for 1 ms.

run 1 ms

18 Now create a new report that will show the merged coverage.

coverage report -file coverage_merged.rpt

19 Finally, view the new report.

notepad coverage_merged.rpt

Notice that coverage percentages have increased for Pre.v, Tx.vhd and testdel.vhd
when compared to the previous simulation runs.
ModelSim SE Tutorial

T-96

Model
Sim SE Tutorial

 T-97
Lesson 10 - Comparing waveforms

The goals for this lesson are:
• Compare two simulations using the Comparison Wizard

• View comparison results and timing difference markers in the Wave window

• Use compare icons to jump to "previous" and "next" difference markers

• View comparison results in the List window

• Set an edge tolerance

Waveform Comparison computes timing differences between test signals and reference
signals. In this exercise we’re going to run and save the mixedHDL simulation, edit one of
the source files, run the simulation again, and finally compare the two runs.

The general procedure for comparing waveforms has four main steps:

1 Selecting the simulations or datasets to compare

2 Specifying the signals or regions to compare

3 Running the comparison

4 Viewing the comparison results
ModelSim SE Tutorial

T-98 Lesson 10 - Comparing waveforms

Model
Creating the reference dataset

We’ll start by running a simulation and saving it to a dataset. This dataset will become the
reference dataset when we set up the comparison.

1 Start by creating a new directory for this exercise. Create the directory and copy all of
the files from \<install_dir>\modeltech\examples\mixedHDL to the new directory.

Make sure the new directory is the current directory. Do this by invoking ModelSim
from the new directory or by selecting the File > Change Directory command from
the ModelSim Main window.

2 At the ModelSim prompt in the Transcript pane, run the compare.do DO file.

do compare.do

This DO file does the following:

• Creates and maps the work library

• Compiles the Verilog and VHDL files

• Runs the simulation and saves the results to a dataset named "gold.wlf"

Feel free to open the DO file and take a look at its contents.
Sim SE Tutorial

Editing a source file and re-running the simulation T-99
Editing a source file and re-running the simulation

In the last step, we ran the default mixed HDL simulation and saved it to the gold.wlf
dataset. Now we’ll edit one of the source files and re-run the simulation.

1 Edit the proc.v file by opening it in the Source window. Make sure the Edit > read
only flag isn’t selected.

2 Scroll down and un-comment the read cycle on line 78. Your source file should look
like the following:

3 Save the file in the Source window.

(MENU: File > Save)

4 Re-compile the proc.v file.

(PROMPT: vlog proc.v)

(Main MENU: Compile > Compile)
ModelSim SE Tutorial

T-100 Lesson 10 - Comparing waveforms

Model
5 Load the top design unit.

(PROMPT: vsim work.top)

(MENU: Simulate > Simulate)

6 Add the waves to the Wave window and run the simulation.

add wave *
run -all
Sim SE Tutorial

Comparing the simulation runs T-101
Comparing the simulation runs

ModelSim includes a Comparison Wizard that walks you through the steps of setting up a
waveform comparison. You can also do it manually with menu or command line
commands.

1 Select Tools > Waveform Compare > Comparison Wizard from the Wave or Main
window.

2 Click the browse button and select gold.wlf as the Reference Dataset. Recall that this
dataset is from the first simulation run prior to adding the 10 time unit delay.

Leave the Test Dataset set to Use Current Simulation, and then click Next.
ModelSim SE Tutorial

T-102 Lesson 10 - Comparing waveforms

Model
3 Select Compare All Signals in the second dialog, and then click Next.

4 In the next three dialogs, click Next, Compute Differences Now, and Finish,
respectively.
Sim SE Tutorial

Viewing and saving the comparison data T-103
Viewing and saving the comparison data

ModelSim performs the comparison and displays the compared signals in the Wave
window.
ModelSim SE Tutorial

T-104 Lesson 10 - Comparing waveforms

Model
The Compare tab in the Main window shows the region that was compared, and the
transcript area shows the number of differences found between the timing of the Reference
and Test datasets.

In the Wave window, a signal that contains timing differences between the two simulations
is denoted by a red X over its yellow triangle. Red difference markers in the waveform
display area show the location of the timing differences on the waveforms, as do the red
lines in the horizontal scrollbar at the bottom of the window.

Hover your mouse pointer over a difference marker to display a popup containing data
about that timing difference. Also note that when you place a waveform cursor over a
difference, the values column displays the text "diff."

compare data

difference markers
Sim SE Tutorial

Viewing and saving the comparison data T-105
Compare icons

The Wave window includes six waveform
comparison icons that let you quickly jump between
differences. From left to right, the icons do the
following: find first difference, find previous
annotated difference, find previous difference, find
next difference, find next annotated difference, find
last difference. Use these icons to move the selected
cursor.

The next and previous buttons cycle through differences on all signals. To view differences
for just the selected signal, use <tab> and <shift> - <tab>.

Saving the comparison

You can save the comparison for later viewing, either in a text file or in files that can be
reloaded into ModelSim.

To save the difference information to a text file, select Tools > Waveform Compare >
Differences > Write Report.

To save the comparison so it can be reloaded into ModelSim, you must save two files.
Select Tools > Waveform Compare > Differences > Save to save the computed
differences. Next, select Tools > Waveform Compare > Rules > Save to save the
comparison configuration rules. To reload the comparison later, you would start a
comparison and then use the Tools > Waveform Compare > Reload command.
ModelSim SE Tutorial

T-106 Lesson 10 - Comparing waveforms

Model
Viewing comparison results in the List window

You can also view the results of your waveform comparison in the List window.

1 Select View > List to open the List window.

2 Drag the region from the Compare tab in the Main window to the List window. This
will load the compared signals into the List window. Scroll down the window, and
you’ll see differences shown in yellow.

difference markers
Sim SE Tutorial

Specifying tolerances T-107
Specifying tolerances

There may be times you want to allow for leading or trailing tolerances in the test dataset
signals. You can do this easily by modifying the signal properties of a comparison object
in the Wave window.

1 Click the Find Next Difference icon until you can see the differences at 2025 ns.

(KEYBOARD: Tab)

2 Select "compare:/top/\prw<>prw\" in the signals list and then right-click to open the
Signal Properties dialog. Select the Compare tab.

(MENU: View > Signal Properties)

Recall that we delayed the read cycle in proc.v by 10 time units. Therefore, if we
specify a trailing tolerance of 10 ns, the differences on the comparison object should
disappear.

3 Specify 10 ns for the Trailing Tolerance and then click OK.

4 Rerun the comparison.

(MENU: Tools > Waveform Compare > Run Comparison)
ModelSim SE Tutorial

T-108 Lesson 10 - Comparing waveforms

Model
5 Notice that the difference markers have disappeared for the /top/prw comparison
object.

6 Quit the simulator.

quit -f
Sim SE Tutorial

 T-109
Lesson 11 - Debugging with the Dataflow window

The goals for this lesson are:
• Log signals so you have information necessary for debugging

• Explore the connectivity of your design

• Trace an event

• Trace an X (unknown) value

• Jump to the source of an unknown

• View hierarchy in the Dataflow window

• Zoom and pan the Dataflow window

The Dataflow window allows you trace VHDL signals or Verilog nets and registers
through your design.
ModelSim SE Tutorial

T-110 Lesson 11 - Debugging with the Dataflow window

Model
Compiling and loading the design

We’ll start by compiling and loading a mixed design that we’ll use for subsequent
examples.

1 Create a new working directory, make it the current directory, and then copy the files
from \modeltech\examples\mixedHDL into it.

2 Use the vlib command to create a work library in the current directory.

vlib work

(MENU: File > New > Library)

3 Use the vmap command to map the work library to a physical directory. Your
modelsim.ini file will be updated with this mapping.

vmap work work

4 Compile the Verilog files.

vlog cache.v memory.v proc.v

(MENU: Compile > Compile)

5 Compile the VHDL files.

vcom util.vhd set.vhd top.vhd

(MENU: Compile > Compile)

6 Load the top level of the design.

vsim top

(MENU: Simulate > Simulate)

7 Log all signals in the design so we have all information for debugging.

log -r /*

8 Run the design for 500 ns.

run 500 ns
Sim SE Tutorial

Exploring connectivity T-111
Exploring connectivity

A primary use of the Dataflow window is exploring the "physical" connectivity of your
design. You do this by expanding the view from process to process. This allows you to see
the drivers/receivers of a particular signal, net, or register.

1 Select p proc in the sim tab of the Main window.

2 Open the Signals and Dataflow windows.

view si d

(MENU: View > Signals, View > Dataflow)

3 Drag signal strb from the Signals window to the Dataflow window.
ModelSim SE Tutorial

T-112 Lesson 11 - Debugging with the Dataflow window

Model
4 Double click the net that is highlighted in red. The view expands to display the
processes that are connected to strb.

5 Select signal test on process #NAND#24 and expand the view to show its drivers.

(MENU: Navigate > Expand net to drivers)

Notice that after the display expands, the signal line for strb is highlighted in green.
This highlighting lets you know the path you have traversed in the design.

6 Select signal oen on process #ALWAYS#144, and expand the view to show its readers.

(MENU: Navigate > Expand net to readers)

7 Continue exploring if you wish. When you are done, clear the Dataflow window before
moving on to the next exercise.

(MENU: Edit > Erase all)
Sim SE Tutorial

Tracing events T-113
Tracing events

Another useful debugging feature is tracing events that contribute to an unexpected output
value. Using the Dataflow window’s embedded wave viewer, you can trace backward from
a transition to see which process or signal is causing the unexpected output.

1 If you didn’t do so in the last exercise, clear the Dataflow window.

2 Select p proc in the sim tab of the Main window, and then drag signal t_out from the
Signals window into the Dataflow window.

3 Open the embedded wave viewer and increase the size of the window.

(MENU: View > Show Wave)
ModelSim SE Tutorial

T-114 Lesson 11 - Debugging with the Dataflow window

Model
4 Select process #NAND#24 in the dataflow pane. Notice that all input and output signals
of the process are displayed automatically in the wave viewer.

5 Set a time cursor in the wave viewer at the last transition of signal t_out (465 ns). See
"Making cursor measurements" (T-59) for more information on setting cursors.
Sim SE Tutorial

Tracing events T-115
6 To trace to the first contributing event, select Trace > Trace next event.

A new cursor is added to the wave viewer marking the last event, the transition of the
strobe to 0, which caused the output of 0 on t_out.

7 Trace the next event two more times and then select Trace > Trace event set.
ModelSim SE Tutorial

T-116 Lesson 11 - Debugging with the Dataflow window

Model
The dataflow pane sprouts to the preceding process and shows the input driver of
signal strb. Notice too that the wave viewer now shows the input and output signals of
the newly selected process.

You can continue tracing events through the design in this manner: select Trace next
event until you get to a transition of interest in the wave viewer, and then select Trace
event set to update the dataflow pane.

8 Clear the Dataflow window before moving on to the next exercise. Also, close the
wave viewer pane.

(MENU: View > Show Wave)
Sim SE Tutorial

Tracing an ’X’ (unknown) T-117
Tracing an ’X’ (unknown)

The Dataflow window lets you easily track an unknown value (X) as it propagates through
the design. The Dataflow window is linked to the stand-alone Wave window, so you can
view signals in the Wave window and then use the Dataflow window to track the source of
a problem. As you traverse your design in the Dataflow window, appropriate signals will
be added automatically to the Wave window.

1 Open the Wave window and add a signal.

view wave
add wave /top/p/t_out

(MENU: View > Wave)

(GUI: Open Signals window and drag signal to Wave window)

Note that t_out goes to an unknown state (StX) at time 0 and continues transitioning to
StX throughout the run. The red color of the waveform indicates an unknown value.
ModelSim SE Tutorial

T-118 Lesson 11 - Debugging with the Dataflow window

Model
2 Drag t_out from the Wave window to the Dataflow window.

As previously mentioned the Wave and Dataflow windows are designed to work
together. Try moving the cursor in the Wave window (see "Making cursor
measurements" (T-59) for details), and you’ll see that the value of t_out changes in the
Dataflow window. We’ll look at other links between the windows as we work through
the tutorial.

3 Move the Wave window cursor back to a time when t_out is unknown. Then, with
t_out selected in the Dataflow window, trace the unknown.

(MENU: Trace > TraceX)
Sim SE Tutorial

Tracing an ’X’ (unknown) T-119
The input signal test is selected in the Dataflow window, and it is also added
automatically to the Wave window.

4 Continue tracing back to the source of the unknown. Select Trace > TraceX again.
This time signal test2 is highlighted in the Dataflow window, and it is also added to the
Wave window.
ModelSim SE Tutorial

T-120 Lesson 11 - Debugging with the Dataflow window

Model
5 Select Trace > TraceX once more, and you’ll discover the source of the unknown. In
this case there is a HiZ on input signal test_in and a 1 on input signal _rw, so output
signal test2 resolves to an ’X’.

6 Clear the Dataflow window.

(MENU: Edit > Erase All)
Sim SE Tutorial

Jumping to the source of an X T-121
Jumping to the source of an X

In the last exercise you traced an unknown, from process to process, until you identified the
source. You can speed this up by jumping directly to the source in one step.

1 Drag t_out from the Wave window to the Dataflow window as you did in the last
exercise.

2 Select Trace > ChaseX.

3 The design expands to show the source of the unknown.

4 Clear the Dataflow window.

(MENU: Edit > Erase All)
ModelSim SE Tutorial

T-122 Lesson 11 - Debugging with the Dataflow window

Model
Displaying hierarchy in the Dataflow window

You can display connectivity in the Dataflow window using hierarchical instances. You
enable this by modifying the options prior to adding items to the window.

1 Select Tools > Options from the Dataflow window menu bar.

2 Check Show Hierarchy and then select OK.
Sim SE Tutorial

Displaying hierarchy in the Dataflow window T-123
3 Add signal t_out to the Dataflow window.

add dataflow /top/p/t_out
ModelSim SE Tutorial

T-124 Lesson 11 - Debugging with the Dataflow window

Model
Zooming and panning

The Dataflow window offers several tools for zooming and panning the display. After
reviewing the options below, try them out on the cache module design.

Zooming with toolbar buttons

These zoom buttons are available on the toolbar:

Zooming with the mouse

To zoom with the mouse, you can either use the middle mouse button or enter Zoom Mode
by selecting View > Zoom and then use the left mouse button.

4 zoom options are possible by clicking and dragging in different directions:

• Down-Right: Zoom Area (In)

• Up-Right: Zoom Out (zoom amount is displayed at the mouse cursor)

• Down-Left: Zoom Selected

• Up-Left: Zoom Full

The zoom amount is displayed at the mouse cursor. A zoom operation must be more than
10 pixels to activate.

Panning with the mouse

To pan with the mouse you must enter Pan Mode by selecting View > Pan.

Now click and drag with the left mouse button to pan the design.

Zoom in 2x
zoom in by a factor
of two from the
current view

Zoom out 2x
zoom out by a
factor of two from
current view

Zoom Full
zoom out to view
the entire
schematic
Sim SE Tutorial

 T-125
Lesson 12 - Running a batch-mode simulation

The goals for this lesson are:
• Run a batch-mode VHDL simulation

• Execute a macro (DO) file

• View a saved simulation

Batch-mode allows you to execute several commands that are written in a text file. You
create a text file with the list of commands you wish to run, and then specify that file when
you start ModelSim. This is particularly useful when you need to run a simulation or a set
of commands repeatedly.

Important: Batch-mode simulations must be run from a DOS or UNIX prompt. Unless
directed otherwise, enter all commands in this lesson at a DOS or UNIX prompt.
Additionally, this lesson assumes you have added ModelSim to your PATH. If you did
not, you’ll need to specify full paths to the tools (i.e., vlib, vmap, vcom, and vsim) that
are used in the lesson.
ModelSim SE Tutorial

T-126 Lesson 12 - Running a batch-mode simulation

Model
1 To set up for this lesson, create a new directory and copy this file into it:

\<install_dir>\modeltech\examples\counter.vhd

2 Create a new design library (again, enter these commands at a DOS or UNIX prompt
in the new directory you created in step 1.):

vlib work

3 Map the library:

vmap work work

4 Then compile the source file:

<install_dir>/modeltech/<platform>/vcom counter.vhd

5 You will use a macro file that provides stimulus for the counter. For your convenience,
a macro file has been provided with ModelSim. You need to copy this macro file from
the installation directory to the current directory:

<install_dir>\modeltech\examples\stim.do

6 Create a batch file using an editor; name it yourfile. With the editor, put the following
on separate lines in the file:

add list -decimal *
do stim.do
write list counter.lst
quit -f

and save to the current directory.

7 To run the batch-mode simulation, enter the following at the command prompt:

vsim -do yourfile -wlf saved.wlf counter -c

This is what you just did in Step 7:

• invoked the VSIM simulator on a design unit called "counter"

• instructed the simulator to save the simulation results in a log file named saved.wlf
by using the -wlf switch

• used the contents of yourfile to specify that values are to be listed in decimal, to
execute a stimulus file called stim.do, and to write the results to a file named
counter.lst

8 Since you saved the simulation results in saved.wlf, you can view the simulation results
by starting up VSIM with its -view switch:

vsim -view saved.wlf
Sim SE Tutorial

 T-127
9 Open these windows with the View menu in the Main window, or the equivalent
command at the ModelSim prompt:

view signals list wave

10 Now that you have the windows open, put the signals in them:

add wave *
add list *

11 Use the available windows to experiment with the saved simulation results and quit
when you are ready:

quit -f

For additional information on the batch and command line modes, please refer to the
ModelSim User’s Manual.

Note: If you open the Dataflow, Process, Source, Structure , or Variables windows, they
will be empty. You are looking at a saved simulation, not examining one interactively.
The logfile saved in saved.wlf was used to reconstruct the current windows.
ModelSim SE Tutorial

T-128

Model
Sim SE Tutorial

 T-129
Lesson 13 - Executing commands at load time

The goals for this lesson are:
• Specify the design unit to be simulated on the command line

• Edit the modelsim.ini file

• Execute commands at load time with a DO file
ModelSim SE Tutorial

T-130 Lesson 13 - Executing commands at load time

Model
1 For this lesson, you will use a macro (DO) file that executes whenever you load a
design. For convenience, a startup file has been provided with the ModelSim program.
You need to copy this DO file from the installation directory to your current directory:

\<install_dir>\modeltech\examples\startup.do

2 Next, you will edit the modelsim.ini file in the \modeltech directory (or the
modelsim.ini file in your current directory if one exists) to point at this file. To do this,
open <install_dir>\modeltech\modelsim.ini using a text editor and uncomment the
following line (by deleting the leading ;) in the [vsim] section of the file:

Startup = do startup.do

Then save modelsim.ini.

3 Take a look at the DO file. It uses the predefined variable $entity to do different things
when loading different designs.

4 Start the simulator and specify the top-level design unit to be simulated by entering the
following command at the UNIX/DOS prompt:

vsim counter

Notice that the simulator loads the design unit without displaying the Load Design
dialog box. This is handy if you are simulating the same design unit over and over.
Also notice that all the windows are open. This is because the view * command is
included in the startup macro.

5 If you plan to continue with the following practice sessions, keep ModelSim running.
If you would like to quit the simulator, enter the following command at the VSIM
prompt:

 quit -f

6 You won’t need the startup.do file for any other examples, so use your text editor to
comment out the "Startup" line in modelsim.ini.

Important: Start this lesson from either the UNIX or DOS prompt in the same directory
in which you completed Lesson 12 - Running a batch-mode simulation.

Note: The modelsim.ini file must be write-enabled for this change to take place. Using
MS Explorer, right-click on \<install_dir>\modeltech\modelsim.ini, then click
Properties. In the dialog box, uncheck the Read-only box and click OK. (You can also
copy the file to your current directory.)
Sim SE Tutorial

 T-131
Lesson 14 - Tcl/Tk and ModelSim

The goals for this lesson are:
• Create a "hello world" button widget

• Execute a procedure using a push button

• Simulate an intersection with traffic lights

• Draw a state machine that represents the simulation

This lesson is divided into several Tcl examples intended to give you a sense of Tcl/Tk’s
function within ModelSim. The examples include a custom simulation interface created
with Tcl/Tk (the code is already written).

Note: You must be using ModelSim SE-VHDL or ModelSim SE/MIXED to complete
these exercises.
ModelSim SE Tutorial

T-132 Lesson 14 - Tcl/Tk and ModelSim

Model
More information on Tcl/Tk

Sources of information about Tcl include Tcl and the Tk Toolkit by John K. Ousterhout,
published by Addison-Wesley Publishing Company, Inc., and Practical Programming in
Tcl and Tk by Brent Welch published by Prentice Hall.

Or, consult one of the following online Tcl references:

• Select Help > Tcl Man Pages (Main window) within ModelSim.

• http://dev.scriptics.com has many useful references

• The Model Technology web site lists a variety of Tcl resources:
www.model.com/resources/tcltk.asp

How Tcl/Tk works with ModelSim

ModelSim incorporates Tcl as an embedded library package. The Tcl library consists of a
parser for the Tcl language, routines to implement the Tcl built-in commands, and
procedures that allow Tcl to be extended with additional commands specific to ModelSim.

ModelSim generates Tcl commands and passes them to the Tcl parser for execution.
Commands may be generated by reading characters from an input source, or by associating
command strings with ModelSim’s user interface features, such as menu entries, buttons,
or keystrokes.

When the Tcl interpreter receives commands it parses them into component fields and
executes built-in commands directly. For commands implemented by ModelSim, Tcl calls
back to the application to execute the commands. In many cases commands will invoke
recursive invocations of the Tcl interpreter by passing in additional strings to execute
(procedures, looping commands, and conditional commands all work in this way).

ModelSim gains a programming advantage by using Tcl for its command language.
ModelSim can focus on simulation-specific commands, while Tcl provides many utility
commands, graphic interface features, and a general programming interface for building up
complex command procedures.

By using Tcl, ModelSim need not re-implement these features, a benefit that allows its
graphic interface to remain consistent on all platforms. (The only vestige of the host
platform’s graphic interface is the window frame manager.)
Sim SE Tutorial

http://www.model.com/resources/tcltk.asp
http://dev.scriptics.com

The custom traffic-light interface T-133
The custom traffic-light interface

The subject of our main Tcl/Tk lesson is a simple traffic-light controller. The system is
comprised of three primary components: a state machine, a pair of traffic lights, and a pair
of traffic sensors. The components are described in three VHDL files: traffic.vhd (the state
machine), queue.vhd (the traffic arrival queue) and tb_traffic.vhd (the testbench).

You could, of course, simulate this system with ModelSim’s familiar interface, but Tcl/Tk
provides us the option to try something different. Since we’re simulating something most
of us have seen and experienced before, we can create an intuitive interface unique to the
simulation.

Overview

The table below summarizes the source files, procedures, and commands used to simulate
the traffic-light controller.

VHDL source files
describe the system

Tcl procedures create and
connect the interface, plus the
source files, to ModelSim

ModelSim commands are run via
the new interface using the Tcl
procedures

draw_intersection

traffic.vhd
queue.vhd
tb_traffic.vhd

connect_lights vsim -lib vhdl/work tb_traffic
examine -value <light_timing>

draw_queues

draw_controls force -freeze $var $val ns
ModelSim SE Tutorial

T-134 Lesson 14 - Tcl/Tk and ModelSim

Model
The result is a traffic intersection interface similar to this illustration:

frame and
scale widget

A scale widget
within a frame
widget creates
an analog entry
device for a
minimum to a
maximum value
and invokes the
force command

wm widget

Calls to the
operating
system window
manager to
create the
"traffic"
window.

label widget

A static label is added to the end of the
connect_lights procedure to indicate
connection to the simulator.

canvas widget

The background, lines
and traffic lights are
created with the canvas
widget.

button widgets

Each button invokes the
indicated run or break
command.
Sim SE Tutorial

The custom traffic-light interface T-135
Tk widgets

The intersection illustration points out several Tcl/Tk "widgets." A widget is simply a user
interface element, like a menu or scrolled list. Tk widgets are referenced within Tcl
procedures to create graphic interface objects. The Tk tool box comes with several widgets,
additional widgets can be created using these as a base.

Controlling the simulation

The components of the intersection interface have the following effect within ModelSim:

Saving time

Since several intersection controls invoke a command and arguments with a single action
(such as the movement of a slider), this custom interface saves time compared to invoking
the commands from the command line or ModelSim menus.

Copies of the original example files

Copies of the Tcl example files from these exercises are located in the
\<install_dir>\modeltech\examples\tcl_tutorial\originals directory.

Solutions to the examples

Throughout the traffic intersection examples you will be modifying Tcl files to complete
the final intersection. You will find a completed set of intersection examples ready-to-run
in the tcl_tutorial\solutions directory. Invoke these commands from the ModelSim prompt
to run the intersection:

cd solutions
do traffic.do

Intersection control
used

Effect in ModelSim

Run 1000 button invokes the run command for 1000 ns

Run Forever button invokes the run -all command

Break button invokes the break command

light timing control invokes the force command with the arguments for the
indicated signal and time

arrival time control invokes the force command with the arguments for the
indicated direction and time

waiting queue any time you change a control the examine command is
invoked to display the value of the waiting queue
ModelSim SE Tutorial

T-136 Lesson 14 - Tcl/Tk and ModelSim

Model
Viewing files

If you would like to view the source for any of the Tcl files in our examples, use the
notepad command at either the ModelSim or VSIM prompt.

 notepad <filename>

Most files are opened in read-only mode by default; you can edit the file by deselecting
read only from the notepad Edit menu.

The Tcl source command

The Tcl source command reads the Tcl file into the Tcl interpreter, which parses the
procedures for use within the current environment. Once sourced, a Tcl procedure can be
called from the ModelSim prompt as shown in the syntax below. ModelSim executes the
instructions within the procedure.

Syntax

source <tcl filename>
<tcl procedure name>

Arguments

<tcl filename>

The Tcl file read into the ModelSim Tcl interpreter with the source command.

<tcl procedure name>

The Tcl procedure defined within <tcl filename>, called from the ModelSim prompt,
and executed by ModelSim.

The traffic.do file is a good example of the source command syntax (the file is a macro that
runs the traffic light simulation). View it with Notepad:

notepad traffic.do

Shortcuts

To save some typing, copy the commands from the PDF version of these instructions and
paste them at the ModelSim prompt. Paste with the right (2 button mouse), or middle (3
button mouse). You can also select a ModelSim or VSIM prompt from the Main transcript
to paste a previous command to the current command line.

Make a transcript DO file

You can rerun the commands executed during the current session with a DO file created
from the Main transcript. Make the DO file by saving the transcript with the File >
Transcript > Save Transcript As menu selection at any time during the exercises. Run
the DO file to repeat the commands (do <do filename>).
Sim SE Tutorial

Initial setup T-137
Initial setup

1 Create, and change to a new working directory for the Tcl/Tk exercises. Copy the
lesson files in the following directory (include all subdirectories and files) to your new
directory:

<install_dir>\modeltech\examples\tcl_tutorial

2 Make the new directory the current directory, then invoke ModelSim:

for UNIX

vsim

for Windows (from a shortcut or Start > Run, etc.)

modelsim.exe

3 At the ModelSim prompt, create a work library in the /vhdl directory:

vlib vhdl/work

4 Map the work library.

vmap work vhdl/work

5 Compile the VHDL example files with these commands (or the Compile dialog box):

vcom vhdl/traffic.vhd
vcom vhdl/queue.vhd
vcom vhdl/tb_traffic.vhd

Important: These steps must be completed before running the Tcl examples.
ModelSim SE Tutorial

T-138 Lesson 14 - Tcl/Tk and ModelSim

Model
Example 1 - Create a "Hello World" button widget

Before you begin the examples make sure you have completed "Initial setup" (T-137).

In this example you will study a "hello world" button that prints a message when pressed.

1 Source the Tcl file from the ModelSim prompt:

source hello.tcl

then run the procedure defined within hello.tcl:

hello_example

The file hello.tcl was read into the ModelSim Tcl interpreter. The instructions in the
hello_example procedure were then executed by ModelSim, and "Hello World" was
printed to the Main transcript (or invoking shell on UNIX). Selecting the button will
print the message again.

You’ve just created your first top-level widget!

2 Invoke the hello_example procedure again and notice how the new button replaces the
original button. The procedure destroyed the first button and created the new one. Get
a closer look at the source Tcl file with the notepad:

notepad hello.tcl

Close the hello_example window when you’re done.
Sim SE Tutorial

Example 2 - Execute a procedure using a push button T-139
Example 2 - Execute a procedure using a push button

Before you begin this example make sure you have completed "Initial setup" (T-137).

This example will display all of the gif images in the images directory. Each button has a
binding attached to it for "enter" events, and a binding for a mouse button press. When the
mouse enters the button graphic, the image file name is printed to the Main window (or
invoking shell on UNIX). When the mouse button is pushed, its "widget" name will be
printed to the Main window (or invoking shell on UNIX).

1 Build an image viewer by invoking this command, and calling this procedure:

source images.tcl
image_example

2 Drag the mouse across the buttons and notice what happens in the Main transcript (or
invoking shell on UNIX).

Push one of the buttons; you will see an error dialog box. You can solve this problem
by modifying the images.tcl file.

3 To view the source file press the See Source Code button at the bottom of the image
display or invoke notepad at the ModelSim prompt:

notepad images.tcl

You’ll find that the pushme procedure is missing; it’s commented out in images.tcl.

4 Search for "proc push" using the Edit > Find menu selection in the notepad.

Remove the comments (the "#" symbols) to return the function to your source, use File
> Save to save the changes, then close the image window with the Destroy button.

5 Once the pushme procedure is in place it will print its one parameter, the object name,
to the transcript.

After you have added the pushme procedure to your source, you need to re-source and
re-run the Tcl procedure with these commands (use the up arrow to scroll through the
commands or do !source):

source images.tcl
image_example

Press all the buttons and notice the object names in the Main transcript. Close the
image example window when you’re done.
ModelSim SE Tutorial

T-140 Lesson 14 - Tcl/Tk and ModelSim

Model
Example 3 - Simulate an intersection with traffic lights

In this example you’ll simulate an intersection with traffic lights. The simulation interface
you create allows you to run "what if" scenarios efficiently.

Introduction of the traffic intersection widget

This portion of our example introduces the traffic intersection widget. You’ll add other
widgets to the intersection to create a custom traffic simulation environment.

Once again, make sure you have completed "Initial setup" (T-137) before working this
example.

1 Draw the intersection by invoking this command and procedure at the ModelSim
prompt:

source intersection.tcl
draw_intersection

2 From the ModelSim prompt, use the procedure set_light_state to change the color of
the lights:

set_light_state green .traffic.i.ns_light

set_light_state green .traffic.i.ew_light

You can use the Copy and Paste buttons on the Main toolbar to help build instructions
from previous commands.

3 View the source code with this command at the ModelSim prompt:

notepad intersection.tcl

You can locate the set_light_state procedure with Edit > Find from the Notepad menu
(the procedure is located toward the middle of the file).

Connect traffic lights to the simulation

Using the intersection widget, you will add when statements to connect the lights to the real
simulation. Once the connection is made, you will simulate the traffic light controller and
watch the lights change.

We'll use ModelSim when statements to condition the simulation to call our Tcl program
when a desired simulation condition happens.

For our example, the desired condition is the state of the lights. Whenever the lights in the
simulation change states, we want to change the color of the lights on the screen.

4 Load the VHDL libraries you compiled in preparation for these examples using this
command at the ModelSim prompt:

vsim tb_traffic

Be sure you invoke this command before the start of the connect_lights procedure, if
you don't load the libraries, you won't have a design to simulate.
Sim SE Tutorial

Example 3 - Simulate an intersection with traffic lights T-141
5 Connect the lights to the simulation with this command and procedure:

source lights.tcl
connect_lights

Try running the simulation now; select either run button on the intersection. Select
Break if you used the Run Forever button. Notice how the Source window opens and
indicates the next line to be executed. (If the simulator is not evaluating an executable
process when the break occurs, the Source window will not open.) Only the East/West
lights are working. You can make both lights work by editing the lights.tcl file.

6 Edit lights.tcl with the notepad to add a when statement for the North/South light.

notepad lights.tcl

You need to add this because the current statement is for the East/West light only.
You’ll find the solution commented. (Remember to change the read-only status of the
file so you can edit it.)

You’ll find the code commented-out toward the end of the file (use Edit >Find and
look for "light_ns").

7 After you have made the changes, reload and run the simulation again.

source lights.tcl
connect_lights

Both lights are now working.

Add widgets to display simulation information

Running the lights may be interesting, but not very useful - let’s add some displays that will
tell us what’s happening to the cars at the intersection.

Now you will add queue widgets to display the sum of the length of each pair of queues as
we simulate.

1 The East/West widget for displaying the total East/West queue length is already
provided. Let's edit the source to add a display for the North/South direction. Use the
notepad:

notepad queues.tcl

The solution is commented out in queues.tcl.

The Queue Display widget consists of an enclosing frame with two label widgets. The
first label is a simple text string. The second label is the value of the queue length. The
text in the second label will be updated whenever the queue lengths change.

Note: Remember, if you need to return to the original Tcl files (maybe you’ve edited the
file and it doesn’t work right) you’ll find the files in the tcl_tutorial\originals directory.
ModelSim SE Tutorial

T-142 Lesson 14 - Tcl/Tk and ModelSim

Model
2 After you have added your North/South widget, run your program by invoking this
command:

source queues.tcl
draw_queues

According to the traffic indicators, the cars are leaving the intersection at the same rate.
That seems fair, but if you are designing an intersection that responds to the traffic flow
into the intersection you might want to change the light cycles. Perhaps one of the
directions has more incoming traffic than the other.

Adding controls, in the form of scale widgets, allows you to quickly change the
assumptions about traffic flow into the intersection.

Add "scale" widgets to control the simulation

Next you will add Tk "scale" widgets that will control the arrival rates and the lengths of
the lights.

1 The East/West widget for controlling the East/West queue inter-arrival time is
provided. You’ll edit the source code to add controls for the North/South direction. Use
this command:

notepad controls.tcl

You can remove the comments in the code to make this change.

Similarly, add the North/South widget for controlling the length of the lights. The East/
West widget for light control is provided. (You can remove the comments in the code
to make this change as well.)

These control widgets are implemented using the Tk "scale" widgets, enclosed in a
frame.

When the value of a scale widget changes, it calls the command specified with the
-command option for that scale.

2 After you have added your North/South widgets, run your program with this
command:

source controls.tcl
draw_controls

Now you have a complete intersection interface. Try the run buttons and the slider
scales.

You can view the simulation with ModelSim’s GUI. Check the Source window to view
the VHDL files, and add signals to a Wave window (add wave *).

You can also change the run length in the Main window. Try using the Run buttons in
the Main window and the intersection window.

Keep the intersection simulation running to complete the next example. If you want to
recreate the final intersection environment quickly, invoke these commands from the
ModelSim prompt (after "Initial setup" (T-137)):

cd solutions
vmap work work
do traffic.do
Sim SE Tutorial

Example 4 - Draw a state machine that represents the simulation T-143
Example 4 - Draw a state machine that represents the simu-
lation

In this final example you will draw a state machine representing the simulation, and
connect it to the state signal inside the traffic light controller. Each transition that the
controller makes is displayed as it happens.

The intersection environment from the previous example needs to be running for this
example. To get it running quickly, invoke these commands from the ModelSim prompt
(after "Initial setup" (T-137)).

cd solutions
do traffic.do

1 Run the state machine with these commands:

source state-machine.tcl
draw_state_machine

Click on one of the Run buttons.

2 Now we’ll make some changes to the light colors and transition arrows. Open the
source file with this command:

notepad state-machine.tcl

Note the "ModelSim EXAMPLE part 1" comments in the file. You can change
"both_red" state coordinates from x = 125 and y = 50 to any coordinates. (You may
need to uncheck the read only selection in the Edit menu before making changes.)

3 Note the "ModelSim EXAMPLE part 2" comments in the file. You can change the
transition arrow coordinates to correspond with the new "both_red" state coordinates.

4 Note the "ModelSim EXAMPLE part 3" comments in the file. Change the active color
from "black" to "purple".

5 Reuse the original commands when you're ready to run the state machine (remember,
to copy a previous command to the current command line, select the previous
ModelSim prompt):

source state-machine.tcl
draw_state_machine

Click on one of the Run buttons.

Notice the changes. Try some additional changes if you wish.

This is the end of the Tcl/Tk examples. Continue to modify and test the examples if
you wish; you can recover the original files at any time in the
tcl_tutorial\originals directory.
ModelSim SE Tutorial

T-144

Model
Sim SE Tutorial

 T-145
License Agreement

IMPORTANT - USE OF THIS SOFTWARE IS SUBJECT TO LICENSE
RESTRICTIONS.

CAREFULLY READ THIS LICENSE AGREEMENT BEFORE USING THE
SOFTWARE.

END-USER LICENSE AGREEMENT

1. GRANT OF LICENSE. The software programs you are installing, downloading, or have
acquired with this Agreement, including any updates, modifications, revisions, copies,
documentation and design data (“Software”) are copyrighted, trade secret and confidential
information of Mentor Graphics or its licensors who maintain exclusive title to all
Software and retain all rights not expressly granted by this Agreement. Mentor Graphics
grants to you, subject to payment of appropriate license fees, a nontransferable,
nonexclusive license to use Software solely: (a) in machine-readable, object-code form;
(b) for your internal business purposes; and (c) on the computer hardware or at the site for
which an applicable license fee is paid, or as authorized by Mentor Graphics. A site is
restricted to a one-half mile (800 meter) radius. Mentor Graphics' standard policies and
programs, which vary depending on Software, license fees paid or service plan purchased,
apply to the following and are subject to change: (a) relocation of Software; (b) use of
Software, which may be limited, for example, to execution of a single session by a single
user on the authorized hardware or for a restricted period of time (such limitations may be
communicated and technically implemented through the use of authorization codes or
similar devices); (c) support services provided, including eligibility to receive telephone
support, updates, modifications and revisions. Current standard policies and programs are
available upon request.

2. ESD SOFTWARE. If you purchased a license to use embedded software development
(“ESD”) Software, Mentor Graphics grants to you a nontransferable, nonexclusive license
to reproduce and distribute executable files created using ESD compilers, including the
ESD run-time libraries distributed with ESD C and C++ compiler Software that are linked
into a composite program as an integral part of your compiled computer program,
provided that you distribute these files only in conjunction with your compiled computer
program. Mentor Graphics does NOT grant you any right to duplicate or incorporate
copies of Mentor Graphics' real-time operating systems or other ESD Software, except
those explicitly granted in this section, into your products without first signing a separate
agreement with Mentor Graphics for such purpose.

3. BETA CODE. Portions or all of certain Software may contain code for experimental
testing and evaluation (“Beta Code”), which may not be used without Mentor Graphics'
explicit authorization. Upon Mentor Graphics' authorization, Mentor Graphics grants to
you a temporary, nontransferable, nonexclusive license for experimental use to test and

This license is a legal “Agreement” concerning the use of Software between you,
the end user, either individually or as an authorized representative of the company
acquiring the license, and Mentor Graphics Corporation and Mentor Graphics
(Ireland) Limited, acting directly or through their subsidiaries or authorized
distributors (collectively “Mentor Graphics”). USE OF SOFTWARE INDICATES
YOUR COMPLETE AND UNCONDITIONAL ACCEPTANCE OF THE TERMS
AND CONDITIONS SET FORTH IN THIS AGREEMENT. If you do not agree to
these terms and conditions, promptly return, or, if received electronically, certify
destruction of, Software and all accompanying items within five days after receipt
of Software and receive a full refund of any license fee paid.
ModelSim SE Tutorial

T-146 License Agreement

Model
evaluate the Beta Code without charge for a limited period of time specified by Mentor
Graphics. This grant and your use of the Beta Code shall not be construed as marketing or
offering to sell a license to the Beta Code, which Mentor Graphics may choose not to
release commercially in any form. If Mentor Graphics authorizes you to use the Beta
Code, you agree to evaluate and test the Beta Code under normal conditions as directed by
Mentor Graphics. You will contact Mentor Graphics periodically during your use of the
Beta Code to discuss any malfunctions or suggested improvements. Upon completion of
your evaluation and testing, you will send to Mentor Graphics a written evaluation of the
Beta Code, including its strengths, weaknesses and recommended improvements. You
agree that any written evaluations and all inventions, product improvements,
modifications or developments that Mentor Graphics conceives or made during or
subsequent to this Agreement, including those based partly or wholly on your feedback,
will be the exclusive property of Mentor Graphics. Mentor Graphics will have exclusive
rights, title and interest in all such property. The provisions of this subsection shall survive
termination or expiration of this Agreement.

4. RESTRICTIONS ON USE. You may copy Software only as reasonably necessary to
support the authorized use. Each copy must include all notices and legends embedded in
Software and affixed to its medium and container as received from Mentor Graphics. All
copies shall remain the property of Mentor Graphics or its licensors. You shall maintain a
record of the number and primary location of all copies of Software, including copies
merged with other software, and shall make those records available to Mentor Graphics
upon request. You shall not make Software available in any form to any person other than
employees and contractors, excluding Mentor Graphics’ competitors, whose job
performance requires access. You shall take appropriate action to protect the
confidentiality of Software and ensure that any person permitted access to Software does
not disclose it or use it except as permitted by this Agreement. Except as otherwise
permitted for purposes of interoperability as specified by applicable and mandatory local
law, you shall not reverse-assemble, reverse-compile, reverse-engineer or in any way
derive from Software any source code. You may not sublicense, assign or otherwise
transfer Software, this Agreement or the rights under it, whether by operation of law or
otherwise (“attempted transfer”) without Mentor Graphics' prior written consent and
payment of Mentor Graphics then-current applicable transfer charges. Any attempted
transfer without Mentor Graphics’ prior written consent shall be a material breach of this
Agreement and may. at Mentor graphics’ option, result in the immediate termination of
the Agreement and licenses granted under this Agreement. The provisions of this section 4
shall survive the termination or expiration of this Agreement.

5. LIMITED WARRANTY.

5.1. Mentor Graphics warrants that during the warranty period, Software, when properly
installed, will substantially conform to the functional specifications set forth in the
applicable user manual. Mentor Graphics does not warrant that Software will meet
your requirements or that operation of Software will be uninterrupted or error free.
The warranty period is 90 days starting on the 15th day after delivery or upon
installation, whichever first occurs. You must notify Mentor Graphics in writing of
any nonconformity within the warranty period. This warranty shall not be valid if
Software has been subject to misuse, unauthorized modification or installation.
MENTOR GRAPHICS' ENTIRE LIABILITY AND YOUR EXCLUSIVE REMEDY
SHALL BE, AT MENTOR GRAPHICS' OPTION, EITHER (A) REFUND OF THE
PRICE PAID UPON RETURN OF SOFTWARE TO MENTOR GRAPHICS OR (B)
MODIFICATION OR REPLACEMENT OF SOFTWARE THAT DOES NOT
MEET THIS LIMITED WARRANTY, PROVIDED YOU HAVE OTHERWISE
COMPLIED WITH THIS AGREEMENT. MENTOR GRAPHICS MAKES NO
WARRANTIES WITH RESPECT TO: (A) SERVICES; (B) SOFTWARE WHICH
Sim SE Tutorial

 T-147
IS LICENSED TO YOU FOR A LIMITED TERM OR LICENSED AT NO COST;
OR (C) EXPERIMENTAL BETA CODE; ALL OF WHICH ARE PROVIDED “AS
IS.”

5.2. THE WARRANTIES SET FORTH IN THIS SECTION 5 ARE EXCLUSIVE.
NEITHER MENTOR GRAPHICS NOR ITS LICENSORS MAKE ANY OTHER
WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, WITH RESPECT TO
SOFTWARE OR OTHER MATERIAL PROVIDED UNDER THIS AGREEMENT.
MENTOR GRAPHICS AND ITS LICENSORS SPECIFICALLY DISCLAIM ALL
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE AND NON-INFRINGEMENT OF INTELLECTUAL
PROPERTY.

6. LIMITATION OF LIABILITY. EXCEPT WHERE THIS EXCLUSION OR
RESTRICTION OF LIABILITY WOULD BE VOID OR INEFFECTIVE UNDER
APPLICABLE LAW, IN NO EVENT SHALL MENTOR GRAPHICS OR ITS
LICENSORS BE LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES (INCLUDING LOST PROFITS OR SAVINGS)
WHETHER BASED ON CONTRACT, TORT OR ANY OTHER LEGAL THEORY,
EVEN IF MENTOR GRAPHICS OR ITS LICENSORS HAVE BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES. IN NO EVENT SHALL MENTOR
GRAPHICS' OR ITS LICENSORS' LIABILITY UNDER THIS AGREEMENT
EXCEED THE AMOUNT PAID BY YOU FOR THE SOFTWARE OR SERVICE
GIVING RISE TO THE CLAIM. IN THE CASE WHERE NO AMOUNT WAS PAID,
MENTOR GRAPHICS AND ITS LICENSORS SHALL HAVE NO LIABILITY FOR
ANY DAMAGES WHATSOEVER.

7. LIFE ENDANGERING ACTIVITIES. NEITHER MENTOR GRAPHICS NOR ITS
LICENSORS SHALL BE LIABLE FOR ANY DAMAGES RESULTING FROM OR IN
CONNECTION WITH THE USE OF SOFTWARE IN ANY APPLICATION WHERE
THE FAILURE OR INACCURACY OF THE SOFTWARE MIGHT RESULT IN
DEATH OR PERSONAL INJURY.

8. INDEMNIFICATION. YOU AGREE TO INDEMNIFY AND HOLD HARMLESS
MENTOR GRAPHICS AND ITS LICENSORS FROM ANY CLAIMS, LOSS, COST,
DAMAGE, EXPENSE, OR LIABILITY, INCLUDING ATTORNEYS' FEES, ARISING
OUT OF OR IN CONNECTION WITH YOUR USEOF SOFTWARE AS DESCRIBED
IN SECTION 7.

9. INFRINGEMENT.

9.1. Mentor Graphics will defend or settle, at its option and expense, any action brought
against you alleging that Software infringes a patent or copyright or misappropriates a
trade secret in the United States, Canada, Japan, or member state of the European
Patent Office. Mentor Graphics will pay any costs and damages finally awarded
against you that are attributable to the infringement action. You understand and agree
that as conditions to Mentor Graphics’ obligations under this section you must: (a)
notify Mentor Graphics promptly in writing of the action; (b) provide Mentor
Graphics all reasonable information and assistance to defend or settle the action; and
(c) grant Mentor Graphics sole authority and control of the defense or settlement of
the action.

9.2. If an infringement claim is made, Mentor Graphics may, at its option and expense: (a)
replace or modify Software so that it becomes noninfringing; (b) procure for you the
right to continue using Software; or (c) require the return of Software and refund to
you any license fee paid, less a reasonable allowance for use.
ModelSim SE Tutorial

T-148 License Agreement

Model
9.3. Mentor Graphics has no liability to you if infringement is based upon: (a) the
combination of Software with any product not furnished by Mentor Graphics; (b) the
modification of Software other than by Mentor Graphics; (c) the use of other than a
current unaltered release of Software; (d) the use of Software as part of an infringing
process; (e) a product that you make, use or sell; (f) any Beta Code contained in
Software; (g) any Software provided by Mentor Graphics’ licensors who do not
provide such indemnification to Mentor Graphics’ customers; or (h) infringement by
you that is deemed willful. In the case of (h) you shall reimburse Mentor Graphics for
its attorney fees and other costs related to the action upon a final judgment.

9.4. THIS SECTION 9 STATES THE ENTIRE LIABILITY OF MENTOR GRAPHICS
AND ITS LICENSORS AND YOUR SOLE AND EXCLUSIVE REMEDY WITH
RESPECT TO ANY ALLEGED PATENT OR COPYRIGHT INFRINGEMENT OR
TRADE SECRET MISAPPROPRIATION BY ANY SOFTWARE LICENSED
UNDER THIS AGREEMENT.

10. TERM. This Agreement remains effective until expiration or termination. This
Agreement will automatically terminate if you fail to comply with any term or condition
of this Agreement or if you fail to pay for the license when due and such failure to pay
continues for a period of 30 days after written notice from Mentor Graphics. If Software
was provided for limited term use, this Agreement will automatically expire at the end of
the authorized term. Upon any termination or expiration, you agree to cease all use of
Software and return it to Mentor Graphics or certify deletion and destruction of Software,
including all copies, to Mentor Graphics’ reasonable satisfaction.

11. EXPORT. Software is subject to regulation by local laws and United States government
agencies, which prohibit export or diversion of certain products, information about the
products, and direct products of the products to certain countries and certain persons. You
agree that you will not export any Software or direct product of Software in any manner
without first obtaining all necessary approval from appropriate local and United States
government agencies.

12. RESTRICTED RIGHTS NOTICE. Software was developed entirely at private expense
and is commercial computer software provided with RESTRICTED RIGHTS. Use,
duplication or disclosure by the U.S. Government or a U.S. Government subcontractor is
subject to the restrictions set forth in the license agreement under which Software was
obtained pursuant to DFARS 227.7202-3(a) or as set forth in subparagraphs (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clause at FAR 52.227-19, as
applicable. Contractor/manufacturer is Mentor Graphics Corporation, 8005 SW
Boeckman Road, Wilsonville, Oregon 97070-7777 USA.

13. THIRD PARTY BENEFICIARY. For any Software under this Agreement licensed by
Mentor Graphics from Microsoft or other licensors, Microsoft or the applicable licensor is
a third party beneficiary of this Agreement with the right to enforce the obligations set
forth in this Agreement.

14. AUDIT RIGHTS. With reasonable prior notice, Mentor Graphics shall have the right to
audit during your normal business hours all records and accounts as may contain
information regarding your compliance with the terms of this Agreement. Mentor
Graphics shall keep in confidence all information gained as a result of any audit. Mentor
Graphics shall only use or disclose such information as necessary to enforce its rights
under this Agreement.

15. CONTROLLING LAW AND JURISDICTION. THIS AGREEMENT SHALL BE
GOVERNED BY AND CONSTRUED UNDER THE LAWS OF OREGON, USA, IF
Sim SE Tutorial

 T-149
YOU ARE LOCATED IN NORTH OR SOUTH AMERICA, AND THE LAWS OF
IRELAND IF YOU ARE LOCATED OUTSIDE OF NORTH AND SOUTH AMERICA.
All disputes arising out of or in relation to this Agreement shall be submitted to the
exclusive jurisdiction of Dublin, Ireland when the laws of Ireland apply, or Wilsonville,
Oregon when the laws of Oregon apply. This section shall not restrict Mentor Graphics’
right to bring an action against you in the jurisdiction where your place of business is
located.

16. SEVERABILITY. If any provision of this Agreement is held by a court of competent
jurisdiction to be void, invalid, unenforceable or illegal, such provision shall be severed
from this Agreement and the remaining provisions will remain in full force and effect.

17. MISCELLANEOUS. This Agreement contains the parties’ entire understanding relating
to its subject matter and supersedes all prior or contemporaneous agreements, including
but not limited to any purchase order terms and conditions, except valid license
agreements related to the subject matter of this Agreement (which are physically signed
by you and an authorized agent of Mentor Graphics) either referenced in the purchase
order or otherwise governing this subject matter. This Agreement may only be modified in
writing by authorized representatives of the parties. Waiver of terms or excuse of breach
must be in writing and shall not constitute subsequent consent, waiver or excuse. The
prevailing party in any legal action regarding the subject matter of this Agreement shall be
entitled to recover, in addition to other relief, reasonable attorneys' fees and expenses.

Rev. 020826, Part Number 214231
ModelSim SE Tutorial

T-150

Model
Sim SE Tutorial

 T-151
Index
Numerics

1076, IEEE Std T-6
1364, IEEE Std T-6

A

application notes T-8
Assertion errors T-48

B

Batch-mode simulation T-125
Breakpoints T-23

continuing simulation after T-23

C

Code Coverage T-75
by instance T-75
coverage exclude load command T-91
report T-89, T-94

Command history T-10
commands

coverage exclude load T-91
compare

icons T-105
Compile

compile order T-39
compile order of Verilog modules T-28
mixed HDL design T-39

coverage exclude load command T-91
cursors

finding T-59
measuring time T-59
naming T-58
using in the Wave window T-58

D

Dataflow window
pan T-124
zoom T-124

Debugging a VHDL design T-45
Design library

creating T-18, T-26, T-38
do command T-10
DO files

executing a DO file in batch-mode T-126
using a DO file at startup T-130
using the transcript as a DO file T-10

documentation T-8
drag and drop T-9

E

Errors
breaking on assertion T-49
finding in VHDL designs T-49
viewing in Source window T-50

examine command T-35
examples

Tcl example solutions T-135

F

Find dialog box T-54
Finding

cursors in the Wave window T-59
Finding names, and searching for values T-53
force command T-22
frequently asked questions T-8

H

Hierarchical Profile T-68
update icon T-74

Hierarchy
of a mixed VHDL/Verilog design T-42
of a Verilog design T-31

I

IEEE Std 1076 T-6
IEEE Std 1364 T-6
instance

code coverage T-75
ModelSim SE Tutorial

T-152 Index

Model
K

Keyboard shortcuts, Wave window T-61

L

Libraries
creation and mapping T-46

LSF
app note on using with ModelSim T-8

M

Macros T-10

O

Operating systems supported T-6

P

Pan
Dataflow window T-124

Performance Analyzer T-65
hierarchical profile T-68
report command T-74

Q

quit VSIM command T-24, T-36

R

reference signals T-97
report command T-74
restart T-35
Reusing commands T-10
run VSIM command T-22

S

Searching
for values and finding names in windows T-53
in tree windows T-54

Shortcuts
command history T-10

Wave window T-61
Signal transitions

searching for T-60
Signals

applying stimulus to T-22
display values with examine command T-35

Simulating
code coverage T-75
with Performance Analyzer T-65

Simulation
batch-mode T-125
executing commands at startup T-129
mixed VHDL/Verilog T-37
saving results in log file T-126
Simulate dialog box T-41
single-stepping T-24
Verilog T-25
-view switch T-126
-wlf switch T-126

solutions to the examples T-135
Standard Developer’s Kit User Manual T-8
standards supported T-6
Support T-9
System initialization file T-130

T

Tcl/Tk
how it works with ModelSim T-132
Tcl source command T-136
Tk widgets T-135

Tech notes T-8
Technical support and updates T-9
test signals T-97
Transcript

save T-10
transcript DO file T-136

V

Vera, see Vera documentation
Verilog

interface checking between design units T-28
standards T-6
viewing design in Structure and Source windows

T-42
Verilog 2001, current implementation T-6
Verilog simulation T-25
VHDL

standards T-6
Sim SE Tutorial

 T-153
view_profile command T-68

W

Waveform Comparison
icons T-105
reference signals T-97
test signals T-97

Windows
finding HDL item names T-53
searching for HDL item values T-53
Dataflow window

zooming T-124
List window

locating time markers T-53
opening T-48
Wave window

changing display range (zoom) T-60
cursor measurements T-59
locating time cursors T-53
using time cursors T-58
zoom options T-60
zooming T-60

Work library mapping T-46

Z

Zoom
Dataflow window T-124
from Wave toolbar buttons T-60
from Zoom menu T-60
options T-60
with the mouse T-61
ModelSim SE Tutorial

T-154

Model
Sim SE Tutorial

	Bookcase
	Tutorial
	Table of Contents
	Introduction
	Software versions
	ModelSim’s graphic interface
	Standards supported
	Assumptions
	Where to find our documentation
	Technical support and updates
	Before you begin
	Command, button, and menu equivalents
	Drag and drop
	Command history
	Reusing commands from the Main transcript

	Lesson 1 - Creating a Project
	Creating a project

	Lesson 2 - Basic VHDL simulation
	Compiling the design
	Loading the design
	Running the simulation

	Lesson 3 - Basic Verilog simulation
	Compiling the design
	Loading the design
	Running the simulation
	Debugging

	Lesson 4 - Mixed VHDL/Verilog simulation
	Compiling the design
	Loading the design

	Lesson 5 - Debugging a VHDL design
	Compiling and loading the design
	Running the simulation
	Debugging the simulation

	Lesson 6 - Finding names and values
	Finding items by name in tree windows
	Searching for item values in the List and Wave windows

	Lesson 7 - Using the Wave window
	Using time cursors in the Wave window
	Naming cursors
	Locking cursors
	Finding cursors
	Making cursor measurements

	Zooming - changing the waveform display range
	Zooming with toolbar buttons
	Zooming with the mouse
	Keyboard shortcuts for zooming

	Combining items in the Wave window
	Creating and viewing datasets
	Simulating the structural version
	Simulating the RTL version
	Comparing the two designs

	Lesson 8 - Simulating with the Performance Analyzer
	Compiling and loading the design
	Running the simulation
	Speeding up the simulation

	Lesson 9 - Simulating with Code Coverage
	The goals for this lesson are:
	Create a new project for code coverage
	Compile the project
	Load and run the project with code coverage
	View code coverage statistics
	Main window statistics
	Source window statistics

	Create code coverage reports
	Coverage reporting with the graphic interface
	Coverage reporting at the command line

	Exclude lines and files from coverage statistics
	Using the graphic interface
	Using the coverage exclude command
	Setting pragmas in the source code

	Merge coverage results from two simulations

	Lesson 10 - Comparing waveforms
	Creating the reference dataset
	Editing a source file and re-running the simulation
	Comparing the simulation runs
	Viewing and saving the comparison data
	Compare icons
	Saving the comparison
	Viewing comparison results in the List window

	Specifying tolerances

	Lesson 11 - Debugging with the Dataflow window
	Compiling and loading the design
	Exploring connectivity
	Tracing events
	Tracing an ’X’ (unknown)
	Jumping to the source of an X
	Displaying hierarchy in the Dataflow window
	Zooming and panning

	Lesson 12 - Running a batch-mode simulation
	Lesson 13 - Executing commands at load time
	Lesson 14 - Tcl/Tk and ModelSim
	More information on Tcl/Tk
	How Tcl/Tk works with ModelSim
	The custom traffic-light interface
	Overview
	Tk widgets
	Controlling the simulation
	Saving time
	Copies of the original example files
	Solutions to the examples
	Viewing files
	The Tcl source command
	Shortcuts

	Initial setup
	Example 1 - Create a "Hello World" button widget
	Example 2 - Execute a procedure using a push button
	Example 3 - Simulate an intersection with traffic lights
	Connect traffic lights to the simulation
	Add widgets to display simulation information
	Add "scale" widgets to control the simulation

	Example 4 - Draw a state machine that represents the simulation

	License Agreement
	Index
	Numerics
	A
	B
	C
	D
	E
	F
	H
	I
	K
	L
	M
	O
	P
	Q
	R
	S
	T
	V
	W
	Z

