Computer Sciences Dept.

CS/ECE 552 Introduction to Computer Architecture Fall 2006 Section 2
Instructor Mark D. Hill and T. A. Derek Hower
URL: http://www.cs.wisc.edu/~markhill/cs552/Fall2006/

CS/ECE 552 Final Project Description

WISC-FL06 Instruction Set Architecture


1. Instruction Summary

 

Instruction Format Syntax Semantics
00000 xxxxxxxxxxx HALT Cease instruction issue, dump memory state to file
00001 xxxxxxxxxxx NOP None
     
01000 sss ddd iiiii ADDI  Rd, Rs, immediate Rd <- Rs + I(sign ext.) 
01001 sss ddd iiiii SUBI  Rd, Rs, immediate Rd <- I(sign ext.) - Rs 
01010 sss ddd iiiii XORI  Rd, Rs, immediate Rd <- Rs XOR I(zero ext.)
01011 sss ddd iiiii ANDNI Rd, Rs, immediate Rd <- Rs AND ~I(zero ext.)
10100 sss ddd iiiii ROLI  Rd, Rs, immediate Rd <- Rs <<(rotate) I(lowest 4 bits)
10101 sss ddd iiiii SLLI  Rd, Rs, immediate Rd <- Rs << I(lowest 4 bits)
10110 sss ddd iiiii RORI  Rd, Rs, immediate Rd <- Rs >>(rotate) I(lowest 4 bits)
10111 sss ddd iiiii SRLI  Rd, Rs, immediate Rd <- Rs >> I(lowest 4 bits)
10000 sss ddd iiiii ST    Rd, Rs, immediate Mem[Rs + I(sign ext.)] <- Rd
10001 sss ddd iiiii LD    Rd, Rs, immediate Rd <- Mem[Rs + I(sign ext.)]
10011 sss ddd iiiii STU   Rd, Rs, immediate Mem[Rs + I(sign ext.)] <- Rd
  Rs <- Rs + I(sign ext.)
     
11001 sss xxx ddd xx BTR   Rd, Rs Rd[bit i] <- Rs[bit 15-i] for i=0..15
11011 sss ttt ddd 00 ADD   Rd, Rs, Rt Rd <- Rs + Rt   
11011 sss ttt ddd 01 SUB   Rd, Rs, Rt Rd <- Rt - Rs 
11011 sss ttt ddd 10 XOR   Rd, Rs, Rt Rd <- Rs XOR Rt
11011 sss ttt ddd 11 ANDN  Rd, Rs, Rt Rd <- Rs AND ~Rt
11010 sss ttt ddd 00 ROL   Rd, Rs, Rt Rd <- Rs << (rotate) Rt (lowest 4 bits)
11010 sss ttt ddd 01 SLL   Rd, Rs, Rt Rd <- Rs << Rt (lowest 4 bits)
11010 sss ttt ddd 10 ROR   Rd, Rs, Rt Rd <- Rs >> (rotate) Rt (lowest 4 bits)
11010 sss ttt ddd 11 SRL   Rd, Rs, Rt Rd <- Rs >> Rt (lowest 4 bits)
11100 sss ttt ddd xx SEQ   Rd, Rs, Rt if (Rs == Rt) then Rd <- 1 else Rd <- 0
11101 sss ttt ddd xx SLT   Rd, Rs, Rt if (Rs < Rt) then Rd <- 1 else Rd <- 0
11110 sss ttt ddd xx SLE   Rd, Rs, Rt if (Rs <= Rt) then Rd <- 1 else Rd <- 0
11111 sss ttt ddd xx SCO   Rd, Rs, Rt if (Rs + Rt) generates carry out
  then Rd <- 1 else Rd <- 0
     
01100 sss iiiiiiii BEQZ  Rs, immediate if (Rs == 0) then
  PC <- PC + 2 + I(sign ext.)
01101 sss iiiiiiii BNEZ  Rs, immediate if (Rs != 0) then
  PC <- PC + 2 + I(sign ext.)
01110 sss iiiiiiii BLTZ  Rs, immediate if (Rs < 0) then
  PC <- PC + 2 + I(sign ext.)
01111 sss iiiiiiii BGEZ  Rs, immediate if (Rs >= 0) then
  PC <- PC + 2 + I(sign ext.)
11000 sss iiiiiiii LBI   Rs, immediate Rs <- I(sign ext.)
10010 sss iiiiiiii SLBI  Rs, immediate Rs <- (Rs << 8) | I(zero ext.)
     
00100 ddddddddddd J     displacement PC <- PC + 2 + D(sign ext.)
00101 sss iiiiiiii JR    Rs, immediate PC <- Rs + I(sign ext.)
00110 ddddddddddd JAL   displacement R7 <- PC + 2
PC <- PC + 2 + D(sign ext.)
00111 sss iiiiiiii JALR  Rs, immediate R7 <- PC + 2
PC <- Rs + I(sign ext.)
     
00010 Undefined produce IllegalOp exception
00011 xxxxxxxxxxx NOP / RTI PC <- EPC

Formats

WISC-SP06 supports instructions in four different formats: J-format, 2 I-formats, and the R-format. These are described below.

1. J-format

The J-format is used for jump instructions that need a large displacement.


 
 

J-Format

5 bits 11 bits 
Op Code Displacement

Jump Instructions

The Jump instruction loads the PC with the value found by adding the PC of the next instruction (PC+2, not PC+4 as in MIPS) to the sign-extended displacement.

The Jump-And-Link instruction loads the PC with the same value and also saves the address of the next sequential instruction (i.e., PC+2) in the link register R7.

The syntax of the jump instructions is:

  • J    displacement
  • JAL  displacement
2. I-format

I-format instructions use either a destination register, a source register, and a 5-bit immediate value; or a destination register and an 8-bit immediate value.  The two types of I-format instructions are described below.

I-format 1 Instructions

 

I-format 1

5 bits  3 bits 3 bits 5 bits 
Op Code Rs Rd Immediate

The I-format 1 instructions include XOR-Immediate, ANDN-Immediate, Add-Immediate, Subtract-Immediate, Rotate-Left-Immediate, Shift-Left-Logical-Immediate, Shift-Right-Arithmetic-Immediate, Shift-Right-Logical-Immediate, Load, Store, and Store with Update.

The ANDNI instruction loads register Rd with the value of the register Rs AND-ed with the one's complement of the zero-extended immediate value. (It may be thought of as a bit-clear instruction.)  ADDI loads register Rd with the sum of the value of the register Rs plus the sign-extended immediate value.  SUBI loads register Rd with the result of subtracting register Rs from the sign-extended immediate value.  (That is, immed - Rs, not Rs - immed.)  Similar instructions have similar semantics, i.e. the logical instructions have zero-extended values and the arithmetic instructions have sign-extended values.

For Load and Store instructions, the effective address of the operand to be read or written is calculated by adding the value in register Rs with the sign-extended immediate value.  The value is loaded to or stored from register Rd. The STU instruction, Store with Update, acts like Store but also writes Rs with the effective address.

The syntax of the I-format 1 instructions is:

  • ADDI  Rd, Rs, immediate
  • SUBI  Rd, Rs, immediate
  • XORI  Rd, Rs, immediate
  • ANDNI Rd, Rs, immediate
  • ROLI  Rd, Rs, immediate
  • SLLI  Rd, Rs, immediate
  • RORI  Rd, Rs, immediate
  • SRLI  Rd, Rs, immediate
  • ST    Rd, Rs, immediate
  • LD    Rd, Rs, immediate
  • STU   Rd, Rs, immediate

I-format 2 Instructions

 

I-format 2

5 bits  3 bits 8 bits 
Op Code Rs Immediate

The Load Byte Immediate instruction loads Rs with a sign-extended 8 bit immediate value.

The Shift-and-Load-Byte-Immediate instruction shifts Rs 8 bits to the left, and replaces the lower 8 bits with the immediate value.

The format of these instructions is:

  • LBI  Rs, signed immediate
  • SLBI Rs, unsigned immediate

The Jump-Register instruction loads the PC with the value of register Rs + signed immediate.  The Jump-And-Link-Register instruction does the same and also saves the return address (i.e., the address of the JALR  instruction plus one) in the link register R7. The format of these instructions is

  • JR    Rs, immediate
  • JALR  Rs, immediate

The branch instructions test a general purpose register for some condition. The available conditions are: equal to zero, not equal to zero, less than zero, and greater than or equal to zero. If the condition holds, the signed immediate is added to the address of the next sequential instruction and loaded into the PC. The format of the branch instructions is

  • BEQZ Rs, signed immediate
  • BNEZ Rs, signed immediate
  • BLTZ Rs, signed immediate
  • BGEZ Rs, signed immediate

 

3. R-format

R-format instructions use only registers for operands.
 


R-format

5 bits  3 bits  3 bits  3 bits  2 bits
Op Code Rs Rt Rd Op Code Extension

ALU and Shift Instructions

The ALU and shift R-format instrucions are similiar to I-format 1 instructions, but do not require an immediate value.  In each case, the value of Rt is used in place of the immediate.  No extension of its value is required.  In the case of shift instructions, all but the 4 least-significant bits of Rt are ignored.

The ADD instruction performs signed addition. The SUB instruction subtracts Rs from Rt. (Not Rs - Rt.) The set instructions SEQ, SLT, SLE instructions compare the values in Rs and Rt and set the destination register Rd to 0x1 if the comparison is true, and 0x0 if the comparison is false. SLT checks for Rs less than Rt, and SLE checks for Rs less than or equal to Rt.   (Rs and Rt are two's complement numbers.) The set instruction SCO will set Rd to 0x1 if Rs plus Rt would generate a carry-out from the most significant bit; otherwise it sets Rd to 0x0. The Bit-Reverse instruction, BTR, takes a single operand Rs and copies it to Rd, but with a left-right reversal of each bit; i.e. bit 0 goes to bit 15, bit 1 goes to bit 14, etc.

The syntax of the R-format ALU and shift instructions is:

  • ADD  Rd, Rs, Rt
  • SUB  Rd, Rs, Rt
  • ANDN Rd, Rs, Rt
  • ROL  Rd, Rs, Rt
  • SLL  Rd, Rs, Rt
  • ROR  Rd, Rs, Rt
  • SRL  Rd, Rs, Rt
  • SEQ  Rd, Rs, Rt
  • SLT  Rd, Rs, Rt
  • SLE  Rd, Rs, Rt
  • SCO  Rd, Rs, Rt
  • BTR  Rd, Rs
4. Special Instructions

Special instructions use the R-format. The HALT instruction halts the processor.  The HALT instruction and all older instructions execute normally, but the instruction after the halt will never execute. The PC is left pointing to the instruction directly after the halt.

The No-operation instruction occupies a position in the pipeline, but does nothing.

The syntax of these instructions is:

  • HALT
  • NOP

The RTI instruction should remain equivalent to NOP until the rest of the design has been completed and thoroughly tested.

RTI returns from an exception by loading the PC from the value in the EPC register.

The syntax of this instruction is:

  • RTI

 
Computer Sciences | UW Home