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CS/ECE 757: ADVANCED COMPUTER ARCHITECTURE II 
COMPUTER SCIENCES DEPARTMENT 

UNIVERSITY OF WISCONSIN—MADISON 
 
 

Prof. Mark D. Hill 
 

Midterm Examination I 
In-Class 

Wednesday, February 24, 2016 
Weight: 25% 

 1:15 minutes. 

CLOSED BOOK, etc., but one cheat sheet allowed (two-sided 8.5x11 page). 

The exam is two-sided and has EIGHT pages, including two blank pages at the end. 

Plan your time carefully, since some problems make take longer than others. 

 

NAME: ____________________ KEY ________________________ 

 

ID# ______________________________________________________________ 

Problem 
Number 
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Points 
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Points 

1 12  

2 12  

3 12  

4 12  

5 12  

Total 60  
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Problem 1: Message Passing (12 points)  

(a)  Message passing libraries, such as MPI, allow parallel programs to be written for parallel execution 
even on clusters. For best performance, programmers are often advised to avoid small messages. 
Why? 

 
Message libraries, OSes, and networks have many overheads that are fixed per 
message, e.g., making a library call, system call, and network interface send. Sending 
fewer, larger messages incurs the overheads less often, effectively amortizing them 
better.  
  
 
 
 
  

(b)  What other techniques would you recommend for better message-passing performance? Why? 

 
1. Partition work to reduce the communication needed. 
2. Replicate rarely updated data to reduce communication needed 
3. Tolerate message latency by moving sends earlier and receives later. 
4. Consider using asynchronous sends (see below). 
 
 
 
 
 

(c) Message passing libraries, such as MPI, often include alternative SEND routines. MPI_SEND, for 
example, always sends the value of its buffer argument at the time is was invoked even if the sending 
thread subsequently writes the buffer. On the other hand, MPI_ISEND permits the sending thread's 
subsequent buffer modifications to affect the contents to be sent. What are the advantages and 
disadvantages of these two types of SEND? 

MPI_SEND cannot return until data is copied out of a user buffer. This can hurt 
performance by delaying the sending thread and/or adding an extra copy to the 
message send. This send is easier to use because, when it returns, the programmer can 
consider the data sent and immediately re-use the message buffer. 
 
MPI_ISEND returns without copying data, potentially offering higher performance. 
Programmers must either not re-use the buffer for a while (e.g., via double buffer) or 
have to reason about message sends whose content may non-deterministically change. 
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Problem 2: Synchronization (12 points) 

(a)  Provide pseudo-code for a test-and-test-and-set() implementation of Lock(L) and 
Unlock(L) assuming only a test-and-set() hardware primitive. Assume that 
test-and-set(L) sets L to 1 and returns the previous value of L. 

Lock(L) { 

   while(test-and-set(L)==1) { 

          while (L==1)} {} //spin 

    } 

} 

 

Unlock(L) { 

      L = 0 

} 

 

(b)  What is a sense-reversed Barrier(B)? Why might it be better than a barrier implementation that 
does not use sense reversing? 

 

When a barrier is reached by all necessary threads, a FLAG is often set to 1 to signal to all threads that 
they may proceed. If this simple barrier is to be reused again in a program, the FLAG must first be 
reset to 0. This requires some coordination so that the reset happens after all threads have observed the 
FLAG to be 1. 

A sense-reversing barrier avoids this coordination have the first barrier completion set the FLAG to 
one, the second completion reset FLAG to 0, and alternating thereafter. 

 

(c) Discuss at least one good option for implementing a barrier on a very large cache-coherence 
shared-memory machine. 

 

On a very large shared memory machine, an implementation of a barrier with a single COUNT of the 
number of threads that have arrived can be a sequential bottleneck, as each thread has to update 
COUNT sequentially, often after obtaining a lock.  

An option for very large shared memory machine is a tournament barrier that uses a tree of 
“sub-barriers”. Each processors belongs to a group that accesses a leaf node of the tree. When the last 
of a group reaches the leaf, it proceeds up the tree and repeats. When all representatives have reached 
the tree root, all processors can be informed that the barrier is reached. For example, a two-level tree 
with fan-in 32 allows 1024 (32*32) processors to reach a barrier with at most 32processors trying to 
access a COUNT field at the same time. 

Answers for other scalable barriers are also accepted if explained. 
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Problem 3: Consistency (12 points) 

Consider the following example. Assume memory variables data1,  da ta2, flag1, and flag2 are initially 
0 and r i j  means processor Pi’s register j . Assume also that all implementations ensure write atomicity, 
i.e., when a processor’s write is seen by any other processor, it is seen by all other processors. 

(a)  Will this example behave the same with total store order (TSO) (or x86) as with sequential 
consistency? Why or why not? If not, what exactly should a programmer add to ensure a sequentially 
consistent execution even on TSO hardware. Why? 

Processor P1 Processor P2 Processor P3 
   

data1 = 3; L2: r21 = flag1; L3: r31 = flag2; 

data2 = 4; if (r21==0)goto L2; if (r31==0)goto L3; 

flag1 = 1; flag2 = 2; r32 = data1; 

  r33 = data2; 

Yes, this example will behave the same with TSO as with SC. TSO only relaxes the order of Stores 
 Loads. This example never depends on Stores  Loads so TSO behaves identically with SC. (P1 
depends on Store  Store ordering, P2 depends on Load  Store ordering, and P3 depends on 
Load  Load ordering.) 

 

(b)  Will this example (same as above) behave the same with example relaxed consistency (XC) (or 
similar model) as with sequential consistency? Why or why not? If not, what are the minimum 
changes a programmer should make to ensure a sequentially consistent execution even on weaker 
hardware? Why? 

Processor P1 Processor P2 Processor P3 
   

data1 = 3; L2: r21 = flag1; L3: r31 = flag2; 

data2 = 4; if (r21==0)goto L2; if (r31==0)goto L3; 

flag1 = 1; flag2 = 2; r32 = data1; 

  r33 = data2; 

No, this example will not behave the same under XC and SC, because XC does not enforce any of 
the four orders (LL, LS, SL, and SS) while that example depends on some of these. A 
programmer could make programs behave like SC by inserting a FENCE before: 

• P1’s flag1 = 1  (ensures data stored before flag1 stored),  

• P2’s flag2 = 2  (ensures final flag1 load before flag2 store), and 

• P3’s r32 = data1  (ensures final flag2 load before data loads).  
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Problem 4: Snooping Coherence (12 points) 

Consider implementing snooping coherence in a system with a single-level of write-back caches. This 
problem asks you to rank the MOESI states (modified, owned, exclusive, shared, and invalid) in order of 
their importance and to justify your answer. Assume that your protocol must have the invalid state (I). 

(a)  If you could only implement two states, which state would you choose to implement along with I. 
Why? 

 

M (modified): required for correct operation, allows the processor to have exclusive copy of the 
cache block with both read and write permissions. 

 

 

(b)  If you could only implement three states, which state would you add to your answer to (a)? Why? 

 

S (shared): allows to optimize the common case in which several processors cache the block with 
read-only permissions; in that case the cache block can be replicated across several caches without 
compromising coherence; reduces the number of invalidates compared to MI and saves bandwidth. 

 

 

(c)  If you could implement only four states which state would you add to your answer to (b)? Why?  

 

E (exclusive): allows to optimize the common case in which a private cache block is first read and 
then written to; with E state, the processor who has the block in E state can transition to M state on 
a write without informing the other caches, therefore reduces bus traffic. E is chosen before O 
because most blocks are never shared and always private, and the scenario in which a private block 
is first read and then written is very common. 

 

Okay to add O before E if justified. 

 

(d)  What factors would affect whether you would want to add the fifth MOESI state to your answer to 
(c)?  

 

O (owned): Factors: (1) latency of cache-to-cache transfers relative to cache-to-memory transfers, 
(2) reduction of pressure on memory bandwidth due to reduce the number of write-backs, (3) 
power/energy saved on reduced memory accesses, (4) added complexity of O state, (5) 
application-dependent memory access patterns. 
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Problem 5: Miscellaneous (12 points) 

(a)  Zhang et al. [MICRO 2015] present COUP with a new update coherence state (U)? What is the goal 
of the U state? What operations can a core perform on a block B in state U? What happens when a 
core block B in state U seeks to read a word in block B? 

COUP’s goal is to efficiently support concurrent, “reduction” operations from multiple cores 
without ping-ponging an M block among the cores, provided no core read or writes the value 
being reduced. 
 
COUP supports reductions with communicative, associative operations, such as add, multiply, 
maximum, minimum, AND, OR and XOR). 
 
On a read, COUP gathers values from each U copy and merges them together with the value of 
memory (really LLC) using the appropriate reduction operations (e.g., at LLC). 

 
(b)  What is the data parallel programming model advocated by Hillis and Steele [CACM 1986]? How 

does it differ from the PRAM model? 

 
Data parallel allows sequential reasoning about operations on data aggregates, which is 
simple to reason about than multiple threads using shared memory or message passing. 
 
Data parallel allows sequential reasoning of operations on data aggregate in shared 
memory, as if there was one PC (SI) and lots of data (MD) and thus a programming 
model for SIMD.  
 
PRAM is a theoretical MIMD shared-memory model where an infinite number of 
processors operate in lock-step, reducing/eliminated the need for synchronization and 
not charging for communication. If all PRAM processors do the same sequence of 
instruction (SI), it can operate similar to the data parallel model, but PRAM is more 
general, as processors can do any instructions (MI). 

  
 In summary, they both operate in lock-step, accesses shared memory, but the data 
parallel model follow SIMD while PRAM allows MIMD operations as well. 
 

(c) In Hydra’s thread-level speculation (Hammond et al.), say a write X=20 in iteration 2 of a loop is 
issued before a write X=10 in iteration 1. What is the final value in memory? How it this ensured? 

 
The final version of memory should be X=20, because the second iteration 
logically occurs after the first. Hydra ensures by having iterations put writes in a 
writebuffer, which commits writes in iteration order, even if X-20 arrived first. 
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Scratch Sheet 1 of 2 (in case you need additional space for some of your answers) 



 

  8 

Scratch Sheet 2 of 2 (in case you need additional space for some of your answers) 


