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Abstract

Many commercial microprocessor architectures have
addedtranslation lookaside buffer(TLB) support forsuper-
pages. Superpages differ from segments because their size
must be a power of two multiple of the base page size and
they must be aligned in both virtual and physical address
spaces. Very large superpages (e.g., 1MB) are clearly useful
for mapping special structures, such as kernel data or frame
buffers. This paper considers the architectural and operating
system support required to exploit medium-sized superpages
(e.g., 64KB, i.e., sixteen times a 4KB base page size). First,
we show that superpages improve TLB performance only af-
ter invasive operating system modifications that introduce
considerable overhead.

We then propose two subblock TLB designs as alternate
ways to improve TLB performance. Analogous to a subblock
cache, acomplete-subblock TLB associates a tag with a
superpage-sized region but has valid bits, physical page
number, attributes, etc., for each possible base page mapping.
A partial-subblock TLB entry is much smaller than a
complete-subblock TLB entry, because it shares physical
page number and attribute fields across base page mappings.
A drawback of a partial-subblock TLB is that base page
mappings can share a TLB entry only if they map to
consecutive physical pages and have the same attributes. We
propose a physical memory allocation algorithm,page
reservation, that makes this sharing more likely. When page
reservation is used, experimental results show partial-
subblock TLBs perform better than superpage TLBs, while
requiring simpler operating system changes. If operating
system changes are inappropriate, however, complete-
subblock TLBs perform best.
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1. Introduction
Most architectures that support paged virtual memory

[Denn70] accelerate address translation with atranslation
lookaside buffer1 (TLB). A TLB is a cache whose tags are
virtual page numbers (VPN) and data are physical page
numbers (PPN), page attributes (e.g., protection,
cacheability), and optional reference and modified bits
[Mile90, Henn90, Smit82]. TLBs must be studied again,
because of current workload and processor trends.

Future workloads will demand greaterTLB reach—the
maximum size of memory mapped by a TLB—than today.
Typical physical memory sizes continue to follow their
historical exponential growth curve with 100MB+
memories likely to be common when the microprocessors
being designed today are deployed in systems. It seems
unlikely that this demand for physical memory is
occurring without a commensurate increase in memory
use (e.g., larger working sets). Furthermore, the growing
importance of nontraditional computation, such as
multimedia, is likely to increase memory usage and
change locality patterns. TLBs must be designed for larger
TLB reach to support future applications.

Furthermore, processor trends require that the
increased TLB reach be provided with a fast TLB access
time. Dramatic reductions in processor cycles-per-
instruction (CPI), from ten to less than one, have increased
the relative importance of TLBs. In addition, the
continued use of physically-tagged level-one caches
places TLB access times on the cache-access critical path.
Furthermore, the trend toward supporting multiple cache
accesses per cycle (e.g., Intel Pentium and SGI R8000
(TFP)) also means that the TLB must support multiple
translations per cycle through multi-porting or replication.
Multi-porting increases TLB complexity and access time,
while replication increases cost. Both suggest that the
brute force solution of increasing TLB reach by making
larger TLBs may be unattractive. Finally, current and
future TLBs are on microprocessor chips, so TLB design
is a part of chip design instead of system design, as in the
past. Prudent designers will seek TLBs that serve many

1.  Also known as Translation Buffer (TB), Directory LookAside
Table (DLAT) or Address Translation Cache (ATC).
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workloads to avoid condemning their chips to limited
markets.

For these and other reasons, several recent
microprocessor architectures support one or more sizes of
superpages. Superpages use the same linear address space
as conventional paging, have sizes that must be power-of-
two multiples of thebase page size, and must bealigned
in both virtual and physical memory. A superpage of size
B is aligned if it begins at an address that is a multiple of
B. Supporting superpages is easier than supporting
segments, which use a two-dimensional address space,
may be arbitrarily long, and may start at arbitrary virtual
and physical addresses [Orga72]. Architectures that
support superpages include MIPS R4x00, DEC Alpha,
SPARC, PowerPC, Intel, ARM, Motorola 68K and HP
PA-RISC. The MIPS R4000 [Kane92], for example,
supports a 4KB base page size and superpages of 16KB,
64KB, 256KB, 1MB, 4MB and 16MB.

The clear motivation for supporting superpages is that
using them appears to increase TLB reachfor free. This is
certainly true for very large superpages (e.g., 1MB) as
they are very effective in mapping large objects such as
kernel data, frame buffers and large arrays. Some
architectures specify two TLBs—one for base pages and
another for superpages (e.g., PowerPC)—and allow for
restricted use of superpages with special operating system
support. We assume that TLBs will include special support
for large superpages and operating systems will use them.

In this study, we concentrate only on the benefits and
costs of supporting medium-sized superpages (e.g.,
64KB). Thus, in the rest of this paper, when we say
superpageswe mean medium-sized superpages.

The impact of supporting (medium-sized) superpages
in TLBs is twofold. First, it appears that the TLB must be
fully-associative, because selecting a set with the least
significant bits of the virtual page number is difficult when
the page size in not known [Tall92]. The SGI R8000
(TFP), for example, implements a set-associative TLB,
but restricts a process to a single page size [MIPS93].
Second, the complexity or time needed to handle TLB
misses is likely to be larger for superpages. We expect this
to be offset easily by the reduction in the number of TLB
misses.

The impact of supporting superpages, however, is not
limited to the TLB. Effective paged virtual memory
requires considerable operating system support, and
superpages are no exception. Table1 motivates the rest of
this paper by giving an example which shows that
superpage TLBs significantly reduce the number of user
TLB misses only after substantial operating system
modifications. The SPEC benchmarkgcc [SPEC91]
requires page table changes and superpage support in the
file system for mapped files. A uniprocessor version of the
SPLASH benchmarkmp3d [Sing92] requires superpage
support for mapped files and heaps. In both cases TLB
performance is important, because the benchmarks spend
3% and 11% of user time in TLB miss handling
respectively; other benchmarks spend up to 50% (Table5
in Section5.5)!

Section2 elaborates on why operating system support
for superpages has an invasive effect on operating system
data structures and interfaces, including how increased
operating system overheads for superpages mayincrease
execution time in some cases. This causes us to ask: (1)
Can we surpass the TLB benefit of superpages while
adding less overhead to existing operating systems? and
(2) What is the best TLB design if operating system changes are
inappropriate?

Section3 answers both questions by proposing
subblock TLBs, analogous to subblock caches. Subblock
caches associate with each address tag several data
subblocks that each have their own valid bit so that they
may be loaded independently. With each tag, a subblock
TLB associates valid bits and other information for
several base pages. With 4KB base pages andsubblock
factor 16, for example, each tag identifies an aligned
64KB virtual address region (like a superpage) while the
data portion has sixteen independent PPNs, attributes, etc.
We call this designcomplete-subblocking. Alternatively,
one can make the TLB entry much smaller by having only
one copy of the PPN and attributes and allow base pages
to share a TLB entry only if they areproperly placed in a
superpage-sized region of physical memory and have
identical attributes. Base pages that do not meet these
conditions are allowed, but their translations will be
cached in different TLB entries. We call this design
partial-subblocking.

Table 1: Effect of Operating System Support on a 64-entry fully-associative TLB

Level of Operating System Support
(Each row adds substantial modifications to the OS)

TLB
# User TLB misses (thousands)

gcc mp3d

Base system 4KB single-page-size 3335 4050

Base system

4KB/64KB Superpage

3335 4050

+ TLB and Page table support 3335 4050

+ Superpage support for mapped files 994 4049

+ Superpage support for heaps 495 13

% of user time spent in TLB miss handling in base system either 3% 11%
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Section4 introduces a physical memory allocation
algorithm that makes partial-subblock TLBs effective by
often mapping consecutive base virtual pages to
consecutive aligned base physical pages. On a page fault,
it tries to map the base page into an unused superpage-
aligned region of memory and tries to place the other base
pages in the region into areserved state. A reserved
physical page isfr ee but can be reused when absolutely
necessary. The same algorithm can be used to efficiently
support superpages.

Section5 discusses our evaluation methodology. We
first describe,Foxtrot, a version of a commercial operating
system (Solaris 2.1) we modified to do these studies. Next
we describe our trap-based simulation and metrics.
Finally, we discuss the workloads we selected to pressure
TLBs.

Section6 gives our experimental results. When
operating system changes are allowed, we recommend
partial-subblock TLBs. They perform better than
superpage TLBs and require much less chip area than
complete-subblock TLBs. In particular, a partial subblock
TLB entry can map multiple base pages in situations
where the guarantees needed to use superpages are not
met (e.g., for unaligned segments, small objects, and non-
uniform attributes). When operating system changes are
inappropriate, complete-subblock TLBs perform best.

While many commercial architectures support
medium-sized superpages in their TLBs, there are few
published studies on their impact on TLBs or operating
systems. Kagimasaet al. [Kagi91] describe a system using
two page sizes in a partitioned address space. Chenet al.
[Chen92] and Talluri et al. [Tall92] present data that
supports the use of superpages. Khalidiet al. [Khal93] and
Mogul [Mogu93] raise some operating system issues
researchers should address to support superpages.

2. Operating System Support for Superpages
Effective paged virtual memory [Denn70] requires

coordinated support from a computer’s operating system
and hardware architecture. Operating system support for
virtual memory with a single fixed page size is substantial
but well-understood (e.g., UNIX, VMS, NT, MACH). It
includes a virtual memory manager that allocates virtual
addresses, enforces protection, initiates I/O and loads/
unloads mappings from a page table; file systems that
manage and maintain structure/coherence of objects on
disk/network; a physical memory manager that manages/
allocates pages for file systems; a page replacement
process; and a hardware-dependent layer that manages
TLBs and page tables.

Most facets of paged virtual memory operating system
policies and mechanisms require modifications to support
superpages effectively. We first describe a new policy—
page-size assignment—and two new mechanisms—page
promotion andpage demotion. We then briefly discuss the
impact of supporting superpages on existing operating

system policies and mechanisms.

A page-size assignment policy decides the page size to
use for each virtual address. The policy may change over
time, differ between objects and differ between processes.
A policy must balance the costs and benefits of using
superpages. Astatic page-size assignment policy will
make the decision once and fix the page size over the life
of the mapping (e.g., for frame buffers). Often the
operating system does not know, in advance, enough about
the costs and characteristics of accesses to the object to
make an informed static decision. The operating system
will then have to use adynamic page-size assignment
policy guessing a page size to use and modifying it, if the
guess was incorrect. Implementation of the policy will
span the virtual memory manager and the file systems.

Two additional operating system mechanisms support
a dynamic page-size assignment policy. Page promotion is
the mechanism by which a set of pages are coalesced to a
larger superpage.Page demotion is the reverse process.
The operating system uses these mechanisms when it
decides to switch page sizes for a virtual address range.
Page demotion involves unloading the superpage
mapping, and possibly replacing it with base page
mappings.Page promotion may involve verifying that the
base pages are compatible for promotion, unloading any
existing base page mappings from the page tables and
TLBs, allocating contiguous physical memory, copying
the base pages to contiguous memory—agather
operation—doing additional I/O and updating page tables
and TLBs. Agatheroperation is very expensive and may
more than offset any TLB performance improvement due
to use of superpages.

 The impact of adding superpage support to operating
systems is twofold. First, it adds significant overhead
(time spent in the operating system) and makes superpages
less attractive. These overheads are fundamental to the use
of superpages and independent of the operating system.
For example, using superpages increases the amount of I/
O, page initialization overhead, and page fault latency. If
the operating system is efficient and reduces the cost of
these overheads, superpages can be used more often to
improve TLB performance. For example, intelligent
physical memory allocation can remove the need for a
gather operation during page promotion. Also, TLB
misses incur a higher average miss penalty since the page
tables are expected to be more complicated when using
superpages.

Second, the changes required for efficient superpage
support are invasive and affect large portions of existing
operating systems. Physical memory management, for
example, must be overhauled to handle variable sizes and
external fragmentation [Knut68, Pete77]. Many key data
structures (e.g., page tables) and interfaces need to be
redesigned. Use of superpages often conflicts with file
system read-ahead and requires coordination on what
would otherwise have been local policy decisions. Many
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Table 2: Operating system overheads for superpage support

OS Mechanism/Policy Overhead

Page Replacement &
File System Writes

Modified/Referenced information is available at a coarse granularity. Results in
increased disk/network write traffic and may increase page fault rate.

Page Fault Handling Superpages increase pagefault latency and program execution time. Operating sys-
tems would otherwise overlap some of the I/O with execution.

Physical Memory Management
& Page promotion: Allocate

Physical memory cannot be treated as equal-sized pages. Requires an algorithm to
efficiently allocate memory in variable-sized chunks [Knut68].

Physical Memory Management During periods of high memory demand, external fragmentation prevents use of
superpages. Many of the operating system modifications for superpages continue
to add overhead, even though there is no further TLB benefit.

Data Structures Linear arrays and hash tables do not scale efficiently to include superpages.e.g.,
page tables and most hash tables. Algorithms traversing more complicated data
structures take longer, e.g., TLB miss penalty increases.

Page promotion: Populate Superpages increase internal fragmentation and memory demand. Significant time
is spent in I/O and initializing memory that the program never references.

Page promotion: Check Operating system has toguarantee that the constraints for superpages are satisfied.
Adds a check, sometimes of information not easily accessible.

Page promotion: Gather If the base pages involved in the promotion are not contiguous in physical memory,
the contents must be copied to a superpage. Adds significant overhead.

Table 3: Modifications required for OS mechanisms and policies to support superpages

OS Mechanism/Policy Modifications

Page-size assignment New policy. It is difficult to balance the costs and benefits of page promotion as
both are often not easily estimated or known in advance.

Page Replacement Replacement policies, such as CLOCK, give equal weight to all pages. Super-
pages have a higher cost. Requires re-evaluation of page replacement policies.

File System read-ahead/
Page Clustering &

Page-size assignment

File systems and device drivers read-ahead and cluster I/O into efficient large
requests. Superpages already include this benefit. File systems and the virtual
memory manager must coordinate to avoid making locally-optimal decisions.

Physical Memory Management &
Page Coloring

Superpages already include some of the benefits of page coloring—a superpage
consists of one base page from each physical equivalence class. But large physi-
cally-tagged caches will require page coloring with superpages too.

Aliases and Synonyms Aliases could use different page sizes and the page sizes for a virtual address and
corresponding physical address may differ. Complicates data structures.

Table 4: Cases where superpages are inadequate

OS Mechanism/Policy Issues

Page-size assignment:
Small objects

Objects smaller than a superpage cannot use superpages.e.g., a 60KB object has
to use 15 base pages while a 64KB object could use one superpage.

Page-size assignment:
non-uniform attributes

Applications using fine-grain protection (e.g., copy-on-write) have to forgo the
benefits of superpages if even a singe base page has different attributes.

Virtual Address
Allocation

Objects mapped into an address space may not start or end at superpage-aligned
addresses. Restricts use of superpages.

Interfaces Many interfaces assume a single page size.e.g., external pager interfaces. Super-
pages are hard to use efficiently with existing interfaces.
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of these changes also adversely affect the performance of
programs that do not use superpages.

Table2 lists a sample of the overheads that operating
systems incur when using superpages. For superpages to
be useful, the TLB benefit of using superpages must be
greater than the costs due to these overheads. Table3 lists
some modifications to important operating system policies
and mechanisms to support superpages efficiently. Table4
lists some situations where superpages are inadequate. A
detailed discussion is beyond the scope of this paper. In
the next section, we describe subblock TLBs, which
reduce the burden on the operating system, and, also
deliver better TLB performance.

3. Subblock TLBs
Subblocking2, borrowed from cache design, makes

TLBs more effective than superpages while requiring
simpler operating system support. Subblock TLBs have
the TLB reach advantages of superpages and, in addition,
can exploit these advantages more often than superpages,
(e.g., for objects smaller than superpage size). However,
subblocking requires larger TLB entries and additional
control logic.

Figure1 illustrates the structure of a single entry for
the four different types of TLBs we will consider. Entries
may be combined to build fully-associative or set-
associative TLBs. The first entry illustrates a non-
subblocked TLB entry that maps a single base page and
consists of Tag and Data fields. The Tag consists a virtual
page number (VPN), and Data contains a physical page
number (PPN), attributes (Attr., e.g., protection,
cacheability), modified (Mod) and valid (V) bits.

The next entry in Figure 1 illustrates a superpage TLB
entry. The Tag includes a Size field that masks bits during
tag compare and physical address generation.

Next, Figure 1 illustrates acomplete-subblock TLB
entry with subblock factor 4. A complete-subblock TLB
entry with a subblock factorn has an n times larger data
portion but a log2(n) bits smaller tag than a non-
subblocked TLB entry. The MIPS R4x00 has, for
example, a complete-subblock TLB with a subblock factor
of 2 [Kane92]. On a TLB miss, before attempting a
replacement, the tags and valid bits are checked to see if
an empty subblock can hold the mapping. Alternatively,
all subblocks can be loaded on a TLB miss. The IBM RS/
6000 and ARM 6x0, for example, support subblock
attributes and require all subblocks to be valid.

There are at least six advantages to using complete-
subblocking over superpages, even though subblock and
superpage TLBs have the same TLB reach (with subblock
factor n and superpage sizen times the base page size).
First, complete-subblock TLBs allow applications to get
all the benefits of using superpages with no operating
system modifications beyond the TLB management code.

2. Subblocking [Hill84] is also called sectoring [Lipt68] and
address/transfer blocks [Good83].

Second, complete-subblock entries can map multiple base
pages in situations where superpages cannot be used, such
as, for unaligned segments, small objects, nonuniform
attributes. Third, set-associative subblock TLBs are
straightforward, while superpage ones are not. Fourth,
subblocking does not increase internal fragmentation or
require additional   I/O as superpages do (subblock caches,
similarly, reduce bus bandwidth usage). Fifth, subblocking
allows all but the referenced base page to be loaded
asynchronously, thereby not incurring the larger page fault
latency of superpages (subblock instruction caches often
use a similar technique to reduce cache miss penalty).
Sixth, subblocking maintains reference and modified
information at the finer granularity of the base page size.

Complete-subblocking, however, has one major
disadvantage compared to superpages, namely, that a
complete-subblock TLB entry occupies a larger area than
a superpage TLB entry. For example, using the area model
described in AppendixA, a complete-subblock TLB with
subblock factor 16 is about 4.5 times larger than a
superpage TLB with the same number of entries. Also the
increased area can translate into increased access time, but
the tradeoffs are complex. Complete-subblock TLBs, for
example, can be set-associative and avoid slower CAM
(content addressable memory) cells required in fully-
associative designs. Rather than quantify the precise
effect, we next propose partial-subblocking which
substantially mitigates the area and speed disadvantage of
complete-subblocking.

The final entry of Figure 1 shows apartial-subblock
TLB entry (with subblock factor 4) where we coalesce the
four pairs of PPN and Attr fields into a single pair. The
good news is that the entry is now not much larger in area
than a superpage TLB entry, yet by maintaining individual
valid and modified bits we retain many advantages of
complete subblocking. The bad news is that base pages
can share a partial-subblock TLB entry only if they have
identical attributes and are properly placed in a superpage
region.

With subblock factorn, base pagesx and y are
properly placed only if they are placed in the same
superpage region(PPN(x) div n = PPN(y) div n and
VPN(x) div n = VPN(y) div n wherediv is integer
division) and are superpage aligned(VPN(x) mod n =
PPN(x) mod n andVPN(y) mod n = PPN(y) mod n,
wheremod is the modulus operator). Translations that do
not meet these conditions are allowed but are cached in
separate TLB entries. TLB entries cache unaligned base
page mappings(VPN(x) mod n ≠ PPN(x) mod n) by
disabling subblocking (SB=0) for those entries.

Figure2 shows how different fully-associative TLBs
cache mappings to four consecutive virtual pages that are
backed by noncontiguous physical pages. A single-page-
size TLB will require all four TLB entries. A superpage
TLB also will require four TLB entries3 asall the physical
pages were not contiguous. A complete-subblock TLB



Page 6

Figure 1: Single TLB entry

Figure 2: TLB entry examples

Figure 3: Partial-subblock TLB examples.

VPN PPN Mod VAttrSingle-page-size TLB entry

VPN PPN Mod VAttrSuperpage TLB entry Size

Complete-subblock TLB entry

PPN3 M3 V3Attr
PPN2 M2 V2Attr
PPN1 M1 V1Attr
PPN0 M0 V0Attr

Tag Data

VPN(-2bits)

Partial-subblock TLB entry VPN(-2bits) V0 V1 V2 V3 PPN Attr SB M0 M1 M2 M3

 (subblock factor = 4)

 (subblock factor = 4)

Page 1: VPN = 110100                 PPN = 10000   Attr =α
Page 2: VPN = 110101                 PPN = 11011   Attr =α
Page 3: VPN = 110110                 PPN = 00010   Attr =α
Page 4: VPN = 110111                 PPN = 00011   Attr =α

110100 10000 Mod ✓α4KB
110101 11011 Mod ✓α4KB
110111 00011 Mod ✓α4KB
110110 00010 Mod ✓α4KB

110100 10000 Mod ✓α
110101 11011 Mod ✓α
110111 00011 Mod ✓α
110110 00010 Mod ✓α

Single-Page-Size TLB

4K/16K Superpage TLB

00011 M3 ✓00010 M2 ✓11011 M1 ✓10000 M0 ✓1101
✕✕✕✕Unused
✕✕✕✕Unused
✕✕✕✕Unused

Complete-subblock TLB

1101 ✓ ✕ ✕ ✕ 10000 α 0 M0
1101 ✕ ✕ ✓ ✓ 00000 α 0 M2 M3
1101 ✕ ✓ ✕ ✕ 11011 α 1 M1

✕ ✕ ✕ ✕Unused

Partial-subblock TLB

(subblock factor = 4)

(subblock factor = 4)

αα α α

✓ => Valid

✕ => Invalid

Page 1: VPN = 110100               PPN = 000000   Attr =α
Page 2: VPN = 110101               PPN = 000001   Attr =α
Page 3: VPN = 110110               PPN = 111000   Attr =α
Page 4: VPN = 110111               PPN = 000011   Attr =α

Example (a) Noncontiguous Physical Memory

Page 1: VPN = 110100               PPN = 000000   Attr =α
Page 2: VPN = 110101               PPN = 000001   Attr =α
Page 3: VPN = 110110               PPN = 000010   Attr =α

Example (b) Small object

Page 1: VPN = 110101               PPN = 000001   Attr =α
Page 2: VPN = 110110               PPN = 000010   Attr =α
Page 3: VPN = 110111               PPN = 000011   Attr =α

Example (c) Unaligned start address
Page 1: VPN = 110100               PPN = 000000   Attr =α
Page 2: VPN = 110101               PPN = 000001   Attr =α
Page 3: VPN = 110110               PPN = 000010   Attr =γ
Page 4: VPN = 110111               PPN = 000011   Attr =α

Example (d) Copy-on-write/different attributes

1101 ✓ ✓ ✕ ✓ 000000 α 0 M0 M1 M3
1101 ✕ ✕ ✓ ✕ 111000 α 1 M2

1101 ✓ ✓ ✓ ✕ 000000 α 0 M0 M1 M2

1101 ✕ ✓ ✓ ✓ 000000 α 0 M1 M2 M3

1101 ✓ ✓ ✕ ✓ 000000 α 0 M0 M1 M3
1101 ✕ ✕ ✓ ✕ 000000 γ 0 M2
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will use a single TLB entry. A partial-subblock TLB will
use three TLB entries as two pages (VPNs 110110 &
110111) are aligned and share an entry.

One implementation difficulty for partial-subblock
TLBs is that the same tag value could be loaded into more
than one TLB entry, as happened in Figure 2 when the
PPNs were not aligned. Such a multiple match condition
could cause electrical problems for some implementations.
A straightforward solution is to combine the valid bits
with the tag so that, at most, one TLB entry can match on
a lookup. This change may slightly increase TLB area and
access time.

Finally, some operating system support is necessary to
make partial-subblock TLBs effective. If the operating
system succeeds in allocating aligned physical pages for
two out of four base pages, a partial-subblock TLB can
use just three TLB entries to hold the four mappings
(Figure 2). The operating system could use a best-effort
allocation algorithm and does not have to guarantee
contiguity as in superpages. If all four pages were
allocated contiguous pages, a single TLB entry could be
used or, alternately, a superpage could be used. The
operating system support for partial-subblocking has two
advantages over superpages. First, while partial-
subblocking requires superpage-like support in physical
memory management and file systems, it is more efficient
and less intrusive than superpage support. Second, partial-
subblocking can be used to exploit the TLB reach
advantages in more situations than superpages. For
example, Figure3 shows how partial-subblock TLBs can
increase their effective TLB reach when mapping small
objects, objects with unaligned starting addresses and
copy-on-write cases, situations where superpages cannot
be used.

A superpage mapping requires only one TLB miss to
be loaded into the TLB, but a subblock TLB will require
multiple TLB misses for all the subblocks to be loaded.
By paying a higher miss penalty, the TLB miss handler
could preload the mappings corresponding to all the
subblocks that will be cached in the same TLB entry or all
mappings in a superpage region even if they must be
cached in different TLB entries. In either case, TLB
hardware support can help reduce a much higher TLB
miss penalty (e.g., to check whether page attributes and
PPNs are compatible).

Superpages and partial-subblocking can be integrated
into a single TLB. Partial-subblock support is very
effective for medium-sized objects for which the operating
system finds page-size assignment hard, for example,
program text, shared libraries, and data and many heap
segments. Superpages are easily the choice for very large
objects for which the user or operating system can do
static page-size assignment, for example, kernel data,

3. A 8KB superpage could be used for pages 3 and 4, if supported.
Further, if the page promotion costs were justified, a superpage of
16KB could be used after copying the pages into a superpage.

frame buffers and large heaps.

This section explained subblock TLBs and their
advantages. Partial-subblock TLBs are most effective with
operating system support for aligned physical memory
allocation. In the next section we describe an efficient
algorithm for such physical memory allocation.

4. Physical Memory Allocation—Page reservation
The effectiveness of superpage and partial-subblock

TLBs depends on the ability of the operating system to
allocate aligned physical memory. In this section we
describe a physical memory allocation algorithm,page
reservation, which attempts to allocate memory in a way
that helps TLB performance. While superpages require the
operating system toguaranteecontiguity and require page
promotions that may include gather operations, partial-
subblocking only requires abest-effort.

Physical memory is usually divided into equal-sized
pages that are marked as eitherfr ee or busy. A busy page
has the contents of one page of an object (e.g., disk file,
heap). The operating system maintains index structures to
map physical pages to their identity (<object id, offset>)
and vice versa. When a new page is required, the physical
memory allocator searches the index structure to avoid
duplicate allocations. Then it chooses afr ee page and
updates the index structures. More than one process may
map the same physical page using different virtual
addresses. Hence, the physical memory manager uses the
unique object page identity instead of virtual addresses in
the index structures.

Most operating systems carefully select pages to
replace, but treatfr ee physical pages as interchangeable
when allocating a new page. This approach effectively
treats physical memory as a fully-associative cache of
pages and does not help the performance of either
superpage or partial-subblock TLBs.4 Page reservation,
described next, allocates physical pages in aligned
superpage-sized regions, effectively treating physical
memory as a fully-associative subblocked-cache with
superpage-sized blocks and base-page-size subblocks.

Page reservation requires a new state for pages—
reserved. A reserved page has an identity and is inserted
into the index structures. However, its contents are not
valid—similar to an “in-transit” state used during I/O. The
operating system maintains thereserved pages in a
reservedlist—analogous to the free list.

Page reservation works as follows. On an initial base
page fault (or during read-ahead by the file system), the

4. Page coloring [Tayl90, Kess92] also carefully selects physical
pages for virtual addresses but for a different purpose and in a dif-
ferent way than page reservation. Page coloring seeks to reduce
physical cache conflict misses by partitioning virtual and physical
pages into equivalence classes and reducing the probability of vir-
tual pages from different VPN equivalence classes being allocated
to the same PPN equivalence class. Page coloring, however, makes
no attempt to place consecutive virtual pages into consecutive phys-
ical pages, as page reservation does.
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physical memory manager allocates a superpage-sized
region of base pages. With superpage size 64KB, for
example, a page fault to address 0x41034 allocates sixteen
base pages: the object pages corresponding to virtual
addresses 0x40000, 0x41000, 0x42000,..., 0x4f000. The
accessed base page (0x41000) is loaded as normal and
markedbusy. Other base pages are markedreserved and
added to the end of the reserved list. If the physical
memory manager runs out offr ee pages, it frees pages by
moving them from the head of the reserved list to the end
of the free list. Subsequent page faults may find
previously reserved base physical pagesreserved or not.
If reserved, the reserved physical page will be allocated
and markedbusy; if not, a physical page from the free list
will be allocated.

Page reservation provides a natural feedback
mechanism for improving the effectiveness of partial-
subblock and superpage TLBs without unduly increasing
memory demand. In periods of low memory demand,
pages will be allocated fromreserved physical pages,
allowing multiple base pages to share a partial-subblock
TLB entry. Superpage TLBs benefit, because page
promotion can be done without the cost of gathering base
pages together. In periods of high memory demand, on the
other hand, base pages will be rapidly removed from the
reserved list and reallocated, gracefully degrading the
page allocation policy back to the standard “fully-
associative” non-superpage approach. Thus, there should
be no significant change in the page fault rate from the
non-superpage implementation.

Page reservation for both superpages and partial-
subblocking requires the physical memory manager to find
free superpages. External fragmentation, where memory
was allocated such that no free superpages are available
but there are still sufficient free base pages, will cause
page reservation to degenerate to standard page allocation.
Memory management techniques for variable-sized
objects have been studied extensively. There are well-
known techniques to minimize external fragmentation
[Knut68, Pete77]. Some file systems also use similar
techniques to reserve disk space [McKu84].

Page reservation significantly improves the
performance of partial-subblock TLBs and reduces page
promotion cost if using superpages. However, we did not
study the effect of page reservation on cache behavior.

5. TLB Simulation Methodology
In this section, we describe the operating system

support, simulation technique, metrics, and workloads
used to compare the performance of single-page-size,
superpage, and subblock TLBs.

5.1. Foxtrot: Operating System Prototype
A study of superpage and partial-subblock TLBs

requires appropriate operating system support. We are not
aware of such support in any operating system. We built
Foxtrot, based on Solaris 2.1, to serve as a test-bed for our

on-going operating system research. It includes modified
or new mechanisms for virtual address allocation, physical
memory management, page fault handling, page
reservation, and page promotion/demotion. Instead of
requiring the virtual memory system to unload base page
mappings and reload superpage mappings during page
promotion, the Foxtrot only loads base page mappings in
the page table. The page table manager coalesces
neighboring PTEs into superpage mappings if they are
compatible.

Foxtrot supports partial-subblock TLBs using page
reservation and file system prefetching. For page
reservation, Foxtrot uses a superpage-sized region that
corresponds to the TLB type,e.g., a TLB with subblock
factor 16 will use a superpage of 64KB. When objects are
smaller than a superpage-sized region, Foxtrot only
reserves base pages up to the object size. Sometimes, the
object must also be reserved (e.g., heaps require swap
space allocation). For disk files, Foxtrot also initiates
asynchronous I/O for the region. File system clustering
makes the I/O more efficient. Foxtrot does not prefetch for
nfs and heap objects as it is more expensive.

When supporting superpages, Foxtrot uses a dynamic
page-size assignment policy which does page reservation
and prefetching as in the partial-subblock TLB case, and,
in addition, makes policy decisions on when to promote
base pages to superpages as follows:

• For every superpage region, the virtual memory
manager maintains a count of the base pages within the
region that have mappings in the page table. Page promo-
tion occurs when the count exceeds the page promotion
threshold. The page promotion threshold depends on the
cost of populating the pages—heap (100%), disk files
(50%), nfs files (75%).

• During page promotion, the attributes and physical
page numbers for the base pages within the superpage re-
gion are checked to see if a superpage mapping can in-
deed be used. Foxtrot does not implement the gather
operation, so page promotion fails when it requires a
gather (if the PPNs are not contiguous).

• Foxtrot’s does not do page reservation or prefetch-
es for regions smaller than a superpage.

While this may not be the optimal policy or the most
efficient implementation, it is “a” policy. Superpage and
partial-subblock TLB simulations without operating
system support are unrealistic. WhileFoxtrot can support
many page-size assignment policies, this paper focuses on
TLB performance by fixing the operating system
mechanisms and policies.

5.2. Trap-based simulation
We use trap-based simulation to compare the

performance of superpage and subblock TLBs. Trap-based
simulation for TLBs manipulates the valid bits in the page
table to invoke a TLB simulator on page faults. The
simulator maintains a data structure corresponding to the
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TLB under study, the target TLB,and marks valid only
those page table entries that reflect the contents of the
target TLB. This technique invokes the simulator only on
target TLB misses andnever on hits [Uhli94]. The kernel
is modified to account for operating system effects (e.g.,
TLB invalidations) and superpage support.

Trap-based simulation has significant advantages over
trace-driven simulation. First, TLB simulation requires
information that is hard to encapsulate in a trace, such as
page-size assignment, physical page numbers, and
attributes. The simulator has access to such information in
the kernel. Second, trap-based simulation incurs overhead
only on very infrequent TLB misses, allowing hits to
proceed at hardware speed. Our simulator runs three to
four orders of magnitude faster than a trace-driven
simulation. Third, trap-based simulation naturally extends
to multi-program workloads.

The key disadvantage of trap-based simulation is the
inability to calculate the number of TLB hits without
hardware support such as profiling counters [Site93] or
external probes [Nagl92]. This makes it difficult to use
normalized metrics (e.g., TLB miss ratio).

Foxtrot implements trap-based simulation for SPARC
V8 processors [SPAR91]. The cost of a target TLB miss—
including trap cost, TLB simulator complexity and
wrappers, much of which is written in C—is 1500 to 4000
cycles, comparable to the overhead seen by others
[Uhli94, Rein93]. Our implementation, however, does not
account for kernel references.

5.3. Metrics
While the ultimate measure of TLB performance is the

fraction of execution time spent in servicing TLB misses,
the TLB miss ratio is often used instead. As explained
above, our simulator lacks the capability to count the
number of TLB hits and we use the unnormalized number
of TLB misses as our metric for comparing different
TLBs. We also normalize the number of TLB misses by
dividing by the number of TLB misses in an equivalent

single-page-size TLB. In Table5, we also include the
cache miss counts, obtained from profiling counters on the
machine.

5.4. TLB replacement algorithm
We use a pseudo-LRU TLB replacement algorithm for

fully-associative TLBs. The algorithm is similar to the
“Go Down Stack (GODS)” algorithm described by Deville
et al. [Devi92]. We associate anused bit with every TLB
entry that is set on hits to that entry. On a miss: (a) if there
are any unfilled (invalid) TLB entries, we choose the first
one for replacement; (b) if there are no unfilled TLB
entries, we choose the first one with the used bit clear, and
(c) if there are no unused TLB entries, we clear all the
used bits and retry the algorithm.

5.5. Workloads
Many programs have negligible TLB miss ratios and

do not justify the overhead of page promotion required to
use superpages. We concentrate on benchmarks where
TLB miss handling is a significant part of the execution
time, because we expect it to be true for future workloads.
Nasa7, compress, wave5, spice, and gcc are from the
SPEC92 suite [SPEC91]; fftpde is a NAS benchmark
[Bail91] and operates on a 64X64X64 matrix;mp3d and
pthor  are uniprocessor versions from the SPLASH
benchmark suite [Sing92]; coral [Rama93] is a deductive
database executing a nested loop join;ML  [Appe91] is
executing a program that does a stress test on the garbage
collector [Repp94].

Table5 displays benchmark data, with the benchmarks
sorted from most to least percent of user time spent on
TLB miss handling. Columns two and three give total and
user execution time, showing that these benchmarks spend
most of their time in user mode. Columns four and five
give the number of user TLB misses (for a 64-entry fully-
associative single-page-size TLB) and the percent of user
time spent servicing these misses (assuming a 40 cycle
TLB miss penalty). The data show that user TLB miss
handling time is significant. Column six also supports this

Table 5:  Workloads

benchmark
total time
(seconds)

user time
(seconds)

#User TLB misses
(thousands) 4KB
Single-page-size

% user time for
TLB misses

(40 cycle penalty)

#(User+Kernel)
cache misses
(thousands)

Peak memory
usage (MB)

coral 177 172 85974 50% 76516 20.5

nasa7 387 385 152357 40% 65356 3.8

compress 104 82 21347 26% 22963 3.4

fftpde 55 53 11280 21% 14472 14.8

wave5 110 107 14511 14% 5082 14.8

mp3d 36 36 4050 11% 5457 5.4

spice 620 617 41922 7% 81949 4.2

pthor 48 35 2580 7% 7456 15.8

ML 950 919 38423 4% 369771 33.6

gcc 159 133 3335 3% 19662 12.5
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conclusion, showing that some benchmarks have more
user TLB misses than user plus system caches misses
(with a 1MB direct-mapped cache with 32-byte blocks).
TLB misses may be even more important then cache
misses, because, in many systems, the TLB miss penalty
is larger than the cache miss penalty. Finally, column
seven displays peak memory usage, showing that none of
these benchmarks paged on our 96MB machine.

6. TLB Performance Study
In this section, we present simulation studies of

superpage and subblock TLBs using operating system
support fromFoxtrot. Both types of TLBs use Foxtrot’s
page reservation (Section4), while superpage TLBs also
require page promotion (Section5.1). Table6 shows the
number of user TLB misses for the benchmarks using 64-
entry fully-associative unified TLBs with a single page
size of 4KB, two page sizes of 4KB and 64KB, and
partial- and complete-subblocking with a subblock factor
of 16. The TLB replacement algorithm is described in
Section5.4. We also include the results for a single-page-
size 256-entry 4-way set-associative TLB using random
replacement. In parenthesis we normalize the TLB misses
with respect to the single-page-size TLB.

6.1. Comparing TLB Misses
The second column of Table6 demonstrates that using

superpages can reduce TLB misses significantly. The
SPEC benchmarksand mp3d see an order of magnitude
reduction in the number of TLB misses. Not shown in this
table is that the improvement comes from a few large
mappings since only 10%-20% of misses were to
superpages. TheML  and coral results show that
superpages are effective with very large data sets too. The
data also shows that the operating system can implement a
good page-size assignment—we did not modify the
applications. Fftpde and pthor, however, show little
improvement due to sparse access patterns.

The third column demonstrates that partial-subblock

TLBs usually perform significantly better than superpage
TLBs for reasons given in Section3. However, subblock
TLBs can have more TLB misses than superpage TLBs, as
illustrated by mp3d and wave5, since it takes multiple
TLB misses to load what a superpage can in a single miss.

The fourth column shows that the performance of
complete-subblock TLBs is not much better than that of
partial-subblock TLBs. This shows that the operating
system was very successful at allocating physical memory
to support partial-subblock TLBs. Copy-on-write
situations, which Foxtrot does not optimize, account for
most of the difference between the performance of
complete- and partial-subblock TLBs. Thus one can
choose between the large TLB size for complete-
subblocking and the operating system support for partial-
subblocking. We have not yet come up with a convincing
explanation for why fftpde  (flagged with asterisks)
performs slightly worse with complete-subblocking than
with partial-subblocking.

The brute force method of increasing TLB reach is to
build a much larger TLB that supports only a single page
size. The key advantage of this approach is that no
operating system changes are needed. The disadvantage is
that the larger TLB may have an unacceptably large access
time and/or chip area. The final column explores this
possibility with a 256-entry TLB that uses four-way set-
associativity instead of a fully-associative design. Results
show that the larger TLB suffers more misses than a 64-
entry fully-associative partial-subblock TLB. However, in
the absence of operating system support or in the presence
of excessive external fragmentation, superpage and
partial-subblock TLBs degenerate to a single-page-size
TLB. Under these conditions set-associative single-page-
size or complete-subblock TLBs should be favored.

The data, so far, assume 64-entry fully-associative
TLBs with a superpage size of 64KB or partial-
subblocking with subblock factor of 16. AppendixB
includes results of sensitivity analysis which show that

Table 6: Comparison of 64-entry fully-associative unified TLBs

benchmark

Number of user TLB misses in thousands (Normalized to single-page-size TLB)

4KB single -
page-size

4KB/64KB
Superpage

4KB/64KB
 Partial-subblock

4KB/64KB
Complete-subblock

4KB 256-entry
 4-way set-assoc

coral 85974 (100%) 54277 (64.3%) 42647 (49.6%) 41636 (48.4%) 46304 (53.9%)

nasa7 152357 (100%) 14264   (9.4%) 9    (0.0%) 3    (0.0%) 75916  (49.8%)

compress 21347 (100%) 714   (3.3%) 29    (0.1%) 27    (0.1%) 65    (0.3%)

fftpde 11280 (100%) 11201 (99.3%) 10863(96.3%)* 11130(98.7%)* 14923(132.3%)

wave5 14511 (100%) 14   (0.1%) 33   (0.2%) 31    (0.2%) 60    (0.4%)

mp3d 4050 (100%) 13   (0.3%) 46    (1.1%) 38    (0.9%) 551  (13.6%)

spice 41922 (100%) 492   (1.2%) 5    (0.0%) 4    (0.0%) 2429    (5.8%)

pthor 2580 (100%) 2466 (95.6%) 1879 (72.8%) 1737  (67.3%) 1676  (65.0%)

ML 38423 (100%) 21304 (55.4%) 10206 (26.6%) 7103 (18.5%) 15952 (41.5%)

gcc 3335 (100%) 495 (14.8%) 74    (2.2%) 59    (1.8%) 308    (9.2%)



Page 11

varying the superpage size from 16KB to 64KB
(Figure4), the subblock factor from 2 to 16 (Figure5),
and TLB size from 32 to 256 entries (Table9) does not
qualitatively alter the conclusions.

6.2. Comparing TLB chip areas
The results above assume TLBs with the same number

of entries, but require different chip area per entry. Here
we size TLBs to get comparable number of TLB misses to
see which TLB minimizes chip area [Joup94, Nagl94]. We
estimate the chip area required to implement a single-
ported TLB using the on-chip cache area model proposed
by Mulder et al. [Muld91] with the assumptions given in
AppendixA. Table7 gives the number of single-page-
size, partial- and complete-subblock TLB entries required
to get comparable number of misses to a 64-entry
superpage TLB and the corresponding area normalized
with respect to the area for the 64-entry superpage TLB.
We obtained these numbers by iteratively rerunning our
simulation varying the TLB size until the TLB miss
counts were comparable. This analysis ignores, however,
that operating system overheads and TLB miss penalties
can differ significantly.

Table7 illustrates four results. First, 4KB/64KB
superpage TLBs require much less area than 4KB single-
page-size TLBs, by ratios of 1.2 to as much as 5 and 48.
Second, 4KB/64KB partial-subblock TLBs require less
area than superpage TLBs. Further, to their advantage,
partial-subblock TLBs have a smaller TLB miss penalty,
less operating system overhead and do less I/O. Third,
fully-associative complete-subblock TLBs often required
smaller area than even the single-page-size TLBs. Since
complete-subblock TLBs have a much smaller number of
tags, access time advantages may make them an attractive
option. Fourth, partial-subblock TLBs occupy a much
smaller area than complete-subblock TLBs but require
some operating system support.

For a range of single-page-size TLB sizes (16-133
entries)fftpde has nearly identical TLB performance. The
partial-subblock TLB formp3d andwave5, while larger

than the superpage TLB, due to multiple TLB misses
required to load a superpage, is still significantly smaller
than the single-page-size TLB required. Results of
sensitivity analysis (Table10 in AppendixB) show that
complete-subblock TLBs with a small subblock factor
(e.g., two) are more attractive than a single page size TLB
with more entries.

7.  Conclusions
Many recent microprocessor architectures specify

TLBs that support superpages. Very large superpages
(e.g., 1MB) are clearly useful for mapping special
structures, such as kernel data and frame buffers. This
paper considers medium-sized superpages (e.g., 64KB),
but proposes subblock TLBs as an alternative way to
improve TLB performance. Acomplete-subblockTLB
associates a tag with a superpage-sized region but has
valid bits, physical page number, attributes, etc., for each
possible base page mapping. Apartial-subblockTLB entry
is much smaller than a complete-subblock TLB entry,
because it shares physical page number and attribute fields
across base page mappings. Our results show:

• All newer alternatives yield better TLB perfor-
mance than a conventional TLB supporting a single page
size (unless the implementation technology allows all
TLBs to be made very large).

• Complete-subblock TLBs yield better performance
than conventional TLBs without requiring any operating
system changes.

• Partial-subblock TLBs require that the operating
system make abest-effort to place together the physical
pages of most superpage-sized regions. We proposepage
reservation as an algorithm that does this by treating
physical memory as a fully-associative subblocked-cache
of pages, except in periods of high memory demand. With
page reservation, partial subblock TLBs perform compa-
rable to complete subblock TLBs for equal number of
TLB entries, but much better for equal TLB areas.

• Finally, superpage TLBs require support that has

Table 7: Fully-associative TLBs with comparable number of user misses

benchmark
4KB Single-page-size 4KB/64KB Superpage 4KB/64KB Partial-Subblock 4KB/64KB Complete-Subblock

# entries area ratio # entries area ratio # entries area ratio # entries area ratio

coral 141 2.0 64 1.0 46 0.9 45 3.2

nasa7 460 6.4 64 1.0 31 0.6 31 2.3

compress 135 1.9 64 1.0 29 0.6 21 1.7

fftpde 16-133 0.3-1.9 64 1.0 48 0.9 50 3.5

wave5 3505 48.3 64 1.0 244 4.1 227 14.7

mp3d 1128 15.6 64 1.0 86 1.5 76 5.2

spice 371 5.2 64 1.0 39 0.7 34 2.6

pthor 78 1.2 64 1.0 31 0.6 28 2.1

ML 115 1.7 64 1.0 42 0.8 33 2.5

gcc 159 2.3 64 1.0 37 0.7 22 1.8
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an invasive effect on operating system data structures and
interfaces that can add considerable overhead. With these
changes and using page reservation, superpage TLBs per-
form well, but not as good as partial subblock TLBs. The
reason is that a partial subblock TLB entry can map mul-
tiple base pages in situations where the guarantees needed
to use superpages are not met (e.g., for unaligned seg-
ments, small objects, and non-uniform attributes).

Table8 summarizes the key results of this paper. There
are three factors that determine TLB performance:
operating system support, number of TLB entries (often a
function of cycle time), and chip area used for the TLB. If
operating system changes are inappropriate, complete-
subblock TLBs give the best performance. If the physical
memory manager can be modified to support an algorithm
like page reservation, partial-subblock TLBs will reduce
TLB area or perform better than complete-subblock TLBs.
While very large superpages are useful, our results show
that supporting medium-sized superpages is not
worthwhile, because they require more operating systems
changes and perform less well than partial-subblock
TLBs.
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Appendix A: Area Model Assumptions

We made the following assumptions while using the area
model suggested for on-chip fully-associative caches by Mul-
der et. al. [Muld91]. The units areregister bit equivalents
(rbe).

Areafac = PLA + RAM + CAM = 130 + 0.6 * (#entries
+ 6) * ((#data bits + #status bits) + 6) + 0.6 * (√2 * #entries
+ 6) * (√2 * #tag bits + 6)

The tag bits include a 12-bit PID and a 52-bit VPN (64-
bit virtual address - 12-bit base page offset). In subblock
TLBs the VPN is log2(subblock factor) bits smaller.

The data bits include a 36-bit PPN (48-bit physical ad-
dress - 12-bit base page offset) and 8 bits of attributes. They
also include the modified and valid bits that are one bit each.
In partial-subblock TLBs we count the valid bits as tag bits,
though they are not true CAM cells. Partial-subblock TLBs
have one additional attribute bit (SB).

There is one status bit per TLB entry—theused bit (for
LRU replacement).

For superpage TLBs, we assume a 4-bit size field in
CAM. In implementations, the size field is neither completely
in CAM or RAM. It functions as a mask in tag compare and
controls physical address generation too.

We use the model’s assumptions “as is” about the size of
drivers (6), sense amps (6), PLA (130), RAM cells (0.6 rbe),
CAM cells (1.2 rbe) and CAM aspect ratio (1:1).

Appendix B: Sensitivity Analysis

Figure4 shows the effect of varying the superpage size
from 16KB to 64KB in a 64-entry fully-associative superpage
TLB. We use a log-log scale to accommodate the orders of
magnitude reduction in the number of TLB misses. As ex-
pected, TLB performance improves as the superpage size is
increased. Much of the improvement is due to the heap seg-
ments.Pthor andfftpde thrash all the TLBs, however, all are
slightly better than the single-page-size TLB. The large
benchmarks,coral and ML , show a steady improvement in
TLB performance with larger superpages but still incur a
large number of misses due to insufficient TLB reach in even
the superpage TLBs.

Figure 4: Effect of Increasing Superpage Size
(64-entry fully-associative superpage TLB)

For compress the number of TLB misses decreases at
first but increases as the superpage size is increased further.
The page-size assignment policy we use causes this anomaly.
Four 32KB regions that used 32KB superpages could not be
promoted as 64KB superpages because the usage was less
than the page promotion threshold for 64KB superpages. The
start and end of heap, a part oflibc andld.so used base pages
instead. The degradation is small (the log scale makes it dra-
matic) with the TLB misses increasing from 103,000 to
714,000 that still compares favorably to the 21 million misses
for a single-page-size TLB.

Figure5 shows the effect of varying the subblock factor
from 2 to 16 in a 64-entry fully-associative partial-subblock
TLB. We again use a log-log scale. As expected, TLB perfor-
mance improves with increasing subblock factor. Significant
gains occur with a subblock factor above 8. Often, a partial-
subblock TLB is better than a superpage TLB with the equiv-
alent superpage size. Fftpde shows a small improvement with
a subblock factor of 16. Pthor, coral and ML show a steady
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improvement in TLB performance with increasing subblock
factor but still incur a significant number of TLB misses.
Compress does not show any anomaly as partial-subblock
TLBs do not depend on page promotions.

Figure 5: Effect of increasing subblock factor
(64-entry fully-associative partial-subblock TLBs)

Table9 shows the effect of varying TLB size. As pointed
out in previous studies [Tall92, Chen92], TLB reach is an im-
portant factor governing TLB performance. TLB misses oc-
cur less often in larger TLBs. The TLB reach of the superpage
and partial-subblock TLBs was sufficient to hold the working
set of some benchmarks—nasa7, compress, wave5, mp3d,
spice, and gcc—while even a large 256-entry single-page-size
TLB was not (except forcompress). For our benchmarks, a
64-entry partial-subblock TLB often incurs fewer misses than
a 256-entry single-page-size TLB. Also, a partial-subblock
TLB often performs better than a superpage TLB with the
same number of entries. However, superpage and partial-sub-
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block TLBs always are better than an equivalent single-page-
size TLB.

In Table10 we compare the performance of complete-
subblock TLBs which occupy comparable chip area to a sin-
gle-page-size TLB. (as per the area model described in
AppendixA) We consider a 80-entry single-page-size TLB, a
64-entry complete-subblock TLB (subblock factor of 2), and
a 45-entry complete-subblock TLB (subblock factor of 4).
For these benchmarks, the complete-subblock TLB with sub-
block factor of 2 always performs better than the single-page-
size TLB. The complete-subblock with subblock factor of 4 is
also often better than the single-page-size TLB. Since the
complete-subblock TLBs have a smaller number of tags, ac-
cess time restrictions may make complete-subblock TLBs
even more attractive.

Table 10: Comparison of fully-associative TLBs with equal
chip areas (Single-page-size and Complete-subblock TLBs)

benchmark

Number of user TLB misses in thousands

4KB
single -

page-size
(80-entry)

4KB/8KB
Complete-
subblock
(64-entry)

4KB/16KB
 Complete-
subblock
(45-entry)

coral 77651 75251 76402

nasa7 151267 148931 122510

compress 10507 1100 812

fftpde 11278 11279 11280

wave5 14076 10012 875

mp3d 3620 3517 3669

spice 25331 14328 9813

pthor 2453 2418 2439

ML 30292 28114 30721

gcc 1921 1023 793

subblock-factor 0 2 4

Table 9:  Effect of fully-associative TLB size. Number of user TLB misses (in thousands)

bench-
mark

4KB Single-page-size 4KB/64KB Superpage 4KB/64KB Partial-subblock

32 64 128 256 32 64 128 256 32 64 128 256

coral 112763 85974 63524 36666 67787 54277 38002 23979 70067 42647 25433 3986

nasa7 179903 152357 148312 85895 24304 14264 3 2 10549 9 3 3

compress 52786 21347 818 29 4550 714 28 25 161 29 27 26

fftpde 11288 11280 11279 110 11211 11201 2157 7 11278 10863 46 4

wave5 34463 14511 8680 46 3270 14 9 8 89 33 27 6

mp3d 4943 4050 2395 159 4115 13 2 1 108 46 2 1

spice 203201 41922 7441 818 44987 492 4 3 662 5 3 3

pthor 3775 2580 2216 1862 3627 2466 2055 1245 2420 1879 811 15

ML 83843 38423 19303 11609 59352 21304 7163 1867 32979 10206 3530 951

gcc 18060 3335 663 174 7956 495 62 47 917 74 54 53


