
-- --

To appear in the Nineteenth International Symposium on Computer Architecture, June 1992.

Tradeoffs in Supporting Two Page Sizes∗∗

Madhusudhan Talluri,† Shing Kong,‡ Mark D. Hill,† David A. Patterson††

†Computer Sciences Dept. ‡Sun Microsystems Laboratories, Inc. ††CS Division, UC Berkeley
University of Wisconsin Mail Stop: 29-225 571 Evans Hall

Madison, Wisconsin 53706 2550 Garcia Ave. Berkeley, CA 94720
talluri@cs.wisc.edu Mountain View, CA 94043-1100

ABSTRACT

As computer system main memories get larger and proces-
sor cycles-per-instruction (CPIs) get smaller, the time spent
in handling translation lookaside buffer (TLB) misses
could become a performance bottleneck. We explore
relieving this bottleneck by (a) increasing the page size and
(b) supporting two page sizes.

We discuss how to build a TLB to support two page sizes
and examine both alternatives experimentally with a dozen
uniprogrammed, user-mode traces for the SPARC architec-
ture. Our results show that increasing the page size to
32KB causes both a significant increase in average working
set size (e.g., 60%) and a significant reduction in the TLB’s
contribution to CPI, CPITLB, (namely a factor of eight)
compared to using 4KB pages. Results for using two page
sizes, 4KB and 32KB pages, on the other hand, show a
small increase in working set size (about 10%) and variable
decrease in CPITLB, (from negligible to as good as found
with the 32KB page size). CPITLB when using two page
sizes is consistently better for fully associative TLBs than
for set-associative ones.

Our results are preliminary, however, since (a) our traces
do not include multiprogramming or operating system
behavior, and (b) our page-size assignment policy may not
reflect a real operating system’s policy.

Keywords: Address translation, page size, translation loo-
kaside buffer, virtual memory, working set size

�����������������������������������
∗ Talluri is supported in part by a summer internship at Sun Mi-
crosystems Laboratories, Inc. and by National Science Foundation
Award (MIPS-8957278); Kong is supported by Sun Microsystems
Laboratories, Inc.; Hill is supported in part by a National Science
Foundation Presidential Young Investigator Award (MIPS-
8957278) with matching funds from A.T.& T. Bell Laboratories,
Cray Research Foundation and Digital Equipment Corporation;
Patterson is supported in part by DARPA/NASA Ames Research
Center, Grant Number: NAG2-591.

1. Introduction

A translation lookaside buffer (TLB) is a fast buffer
containing recently used virtual-to-physical address transla-
tions [ClE85, HeP90, SaB81, Smi82]. Most computers that
support paged virtual memory [Den70] use TLBs to reduce
average address translation time.

Ten years ago, TLB miss handling was responsible
for only a small fraction of a machine’s cycles-per-
instruction (CPI). A TLB could map a substantial fraction
of main memory (e.g., 0.5MB), machines had large CPIs
(e.g., 10 cycles), and programs had small working sets. For
example, Clark and Emer [ClE85] report that the VAX-
11/780 loses only 5% of its performance to TLB misses.
Wood et al. [WEG86] report TLB miss rates to be around
0.03 - 3% for some machines built in the early 1980s.

However, technological and architectural trends have
led to increasing main memory sizes, decreasing CPIs, and
programs with larger working sets. Today’s workstations
can have memories larger than 32MB and an average CPI
of two cycles or less. In a few years, we expect main
memories of 256MB and CPIs of 0.5 cycles to be common.
The larger memories are needed to support programs with
larger working sets or to keep resident the working sets of
multiple programs. Thus, TLB miss handling may become
a performance bottleneck unless TLBs miss less often
despite having to map larger working sets.

One way of improving TLB performance is to make
the TLB hold more entries. The extent to which the TLB
size can be increased depends on whether the level-one
cache uses physical tags. If it uses physical tags, then TLB
access must complete before the cache access does (even if
the cache uses virtual index as in the MIPS R4000). Furth-
ermore, for superscalar machines that may do multiple
memory references per cycle, the TLB may need to be
multi-ported. Therefore, if the TLB gets too large, it will
adversely affect the latency of every memory reference.

If the level-one cache uses virtual tags, it is much
more straightforward to build a large TLB, since it is
accessed only on level-one cache misses. To date, few
computer designers have used virtually-tagged caches due
to concerns about the complexity of handling synonyms
(i.e., multiple virtual addresses that map to the same physi-
cal address), cache flushes on context switches and mul-
tiprocessor issues.

- 1 -

-- --

A second method for improving TLB performance is
to make the page size larger. The advantages are that the
TLB maps more memory "for free", the size of operating
system data structures decreases, and disk paging is more
efficient (since the delay of disk head movement is amor-
tized over more data transferred). There are, however,
several reasons why typical page sizes have not increased.
First, page sizes are much harder to change than cache
block sizes. Page size is an architectural parameter, not
just an implementation issue, as it affects memory manage-
ment by the operating system. Thus, established architec-
tures like the IBM 370 and DEC VAX-11 still use their ori-
ginal page size. Second, as we will show, larger pages
result in larger working sets due to internal fragmentation
[Den70], i.e., memory wasted due to the page size being
larger than what the program needs. Third, the protection
granularity becomes coarser. Appel and Li [ApL91]
describe some applications that would benefit from smaller
pages.

A third method for improving TLB performance is to
use two page sizes and to require page sizes to be powers
of two and pages to be aligned (i.e., a page of size B must
be placed in virtual and physical memory at an address that
is a multiple of B). If the large page size can be judiciously
used, this method can make the TLB map more memory
without a significant impact on working set size and no
effect on minimum protection granularity.

However, supporting multiple page sizes has several
disadvantages. First, like a larger page size, this change
impacts a computer’s architecture. Second, new TLB
implementations must be built to handle multiple page
sizes, which is not straightforward (Section 2). Third,
software must select a proper page-size assignment policy
to take advantage of the larger pages. Fourth, memory
management and page replacement policies must accom-
modate multiple page sizes. Fifth, external fragmentation
is now possible, which does not exist with a single page
size. External fragmentation is waste due to the page size
being larger than a contiguous region of available memory.

Nevertheless, supporting two page sizes is much
simpler than supporting Multics-style segments [Org72] or
many page sizes. Supporting segments that can be of arbi-
trary length starting at arbitrary addresses, requires TLBs to
form physical addresses by addition than by concatenation,
and software for mitigating external fragmentation is
harder. Supporting multiple page sizes that are aligned and
all powers of two, allows physical addresses to be formed
by concatenation, but still requires software to handle
external fragmentation and makes the use of set-associative
TLBs difficult.

We are aware of two supercomputers and four recent
microprocessor architectures that support multiple page
sizes. However, there has been little software support for
general use of the larger pages. The CDC CYBER 200
[CDC81] supported two page sizes (64KB and a selectable
smaller page size) using a fully associative page table. The
ETA10 [ETA86] supercomputer supports two page sizes
— a large page size of 64KW or 256KW and a small page

size of 1KW, 2KW or 8KW (word is 64 bits). The R4000
[Sla91] supports thirteen page sizes (4KB to 16MB) and
has a 48-entry fully associative TLB. SuperSPARC
[BlK92] supports four pages sizes (4KB, 256KB, 16MB
and 4GB) using a 64-entry fully-associative TLB. Hewlett
Packard’s PA-RISC 1.1 Architecture [HP90] has a 4-entry
fully associative Block TLB for large pages (256KB to
16MB), and a separate fully-associative TLB for 4KB
pages. The Intel i860 XP microprocessor [INT91] supports
one very large page size with a 16-entry TLB for 4MB
pages and a separate 64-entry TLB for 4KB pages (both
TLBs are four-way set-associative). All require pages to
be aligned.

In this study we compare use of two page sizes
versus a single page size. We explore the utility of a
medium-sized page (e.g. 32KB) instead of megabyte-sized
pages that will be used in specific applications only. We
consider examining multiple page sizes beyond our scope
for two reasons. First, we think it prudent to initially
examine the simpler extension. Second, we do not know of
a good operating system policy for selecting among many
page sizes.

In this paper we show that increasing page size
dramatically improves TLB performance at the cost of a
large increase in working set size. By using a combination
of small and large pages, i.e., 4KB and 32KB, preliminary
studies show that it is possible to improve TLB perfor-
mance with little increase in working set size. For some
programs, we show that using two page sizes can result in a
better performance than using a single page size of 8KB.
We also explore ways to build set-associative TLBs to sup-
port two page sizes.

This paper leaves open research issues related to
efficient TLB miss handling, page-size assignment policies,
memory management and page replacement policies for
multiple page size systems.

The remainder of this paper consists of five sections.
Section 2 explores some ways to build set-associative
TLBs to support two page sizes. Section 3 describes our
experimental methodology, metrics and page-size assign-
ment policy. Section 4 discusses the variation of working
set size with page size. Section 5 presents results of TLB
performance for different page sizes. Finally, we conclude
mentioning some open problems that need to be solved
before multiple page sizes can be used.

2. Implementing TLBs that Support Two Page Sizes

2.1. Fully Associative TLBs

The most straightforward way to support more than
one page size is to use a fully associative TLB. The tag in
each TLB entry contains the page size, in addition to
enough bits to store the virtual page number for the smal-
lest page size. Hit/miss detection logic uses the page size
to select the actual page number for virtual address tag
comparison. The page size is also used when forming the
physical address.

- 2 -

-- --

However, while the fully associative TLB solution is
conceptually simple, it can be very expensive to imple-
ment. Each TLB entry must (logically) have its own com-
parator for the virtual address tag comparison logic.
Although this may be the only feasible solution if one
wants to support more than two page sizes, it may be over-
kill if one wants to support only two page sizes.

2.2. Set-Associative TLBs

If we restrict ourselves to two page sizes, which are
powers of two and aligned, it is possible to build a set-
associative TLB. Given that we have two page sizes,
which bits do we use to index the set-associative TLB? We
could use (a) the page number of the small page, (b) the
page number of the large page or (c) the exact page
number.

We discuss the three options next, where we assume
the small page size to be 4KB and the large page size to be
32KB. For purposes of illustration, we use a 16-bit virtual
address, byte addressing and assume bit<0> is the least
significant bit of the address.
���

Large Page 0 Large Page 0

Large Page 1

Small Page 0

Small Page 7
Small Page 8 Small Page 8

Small Page 15 Small Page 15
0xFFFF

0x0000

(a) (b) (c)

Figure 2.1. Virtual Address Space.
The 32KB page must be aligned on a 32KB boundary. The 16-bit address
space can consist of: (a) two 32KB pages, or (b) 16 4KB pages, or (c) a
combination of one 32KB and eight 4KB pages.���
Indexing the TLB by the Page Number of the Small Page.
Consider a direct-mapped TLB with two entries. The TLB
is indexed with the least significant bit of the small page
number, bit<12>, of the virtual address. This works fine in
the case shown in Figure 2.1(b), where the entire address
space consists of small pages. On the other hand, if the
address space has large pages as in Figures 2.1(a) or 2.1(c),
each large page can be mapped to both entry 0 and entry 1,
depending on the value of bit<12>, which is part of its page
offset. This negates the very reason to support both large
and small pages. We conclude that using the least
significant bits of the small page number to index a set-
associative TLB supporting two page sizes does not work.

Indexing the TLB by the Page Number of the Large Page.
Again, consider a direct-mapped TLB with two entries.
The TLB is indexed with the large page number, bit<15>
of the virtual address. This works fine when the entire
address space consists of large pages only, as in Figure
2.1(a). On the other hand, if small pages are used, as in
Figures 2.1(b) or 2.1(c), eight consecutive small pages
compete for the same TLB entry. For example in Figure
2.1(b), Small pages 0-7 all compete for TLB entry 0. This
causes many conflict misses due to collisions within a TLB
set. We expect this collision cost is not as large as it

sounds, because:

a) If the consecutive small pages are indeed being used
together, the operating system should allocate them
together as a large page, as shown in Figure 2.1(c).

b) If all the small pages are accessed sequentially (but not
in a loop), then only entry 0 is used instead of overwriting
the rest of the TLB. Hence, it is a good idea to index the
TLB with the large page number if one is using small pages
for a sequential scan.

c) We can reduce the collision cost by increasing the
degree of associativity. In this example, if we increase the
degree of associativity to eight, then each of small pages
can have their own TLB entry, though they all map to set 0.

If only 32KB pages are used, this scheme degen-
erates to using a TLB supporting 32KB pages only. If only
4KB pages are used (i.e., no large pages are used, though
the hardware supports them), then the collision cost of a
set-associative TLB becomes significant and this TLB per-
forms worse than TLBs supporting only 4KB pages (Sec-
tion 5.2.1).

Indexing the TLB by the Exact Page Number. Again, con-
sider a direct-mapped TLB with two entries. The TLB is
indexed by the large page number (bit<15>) when we have
a large page and by the least significant bit of the small
page number (bit<12>) when we have a small page. How-
ever, we do not know the page size, when we access the
TLB. We can follow any of three strategies to index the
TLB :

(a) Parallel access: Build a dual-ported or replicated TLB
that can be indexed by both the small and large page
numbers simultaneously.

(b) Sequential access: First assume the incoming address
belongs to a small page and index the TLB with the small
page number. If we have a miss, reprobe [KJL89] the TLB
with the large page number.

(c) Split TLBs: Have a separate TLB for each page size.
This is similar to supporting split instruction and data
TLBs. Access both TLBs in parallel using different page
numbers (small and large).

Option (a) can be expensive and it is not clear
whether it is much easier to build than a fully associative
TLB. Option (b) results in the TLB hit cost of one page
being higher than the other. It is not clear this gives any
performance advantage for using the larger page size.
Option (c) will result in unused hardware if pages are not
appropriately distributed between the two page sizes.

2.3. How to Handle Misses in a TLB that Supports Two
Page Sizes

The time taken to handle a miss, the miss penalty, is
an important parameter in determining TLB performance
[HeP90]. Supporting two page sizes makes miss handling
more difficult as we do not know the page size for the
memory reference that caused the miss. We can expect the
miss penalty for a TLB supporting two page sizes to be
larger than for a TLB supporting a single page size.

- 3 -

-- --

The precise impact of two page sizes on the miss
penalty can be determined only by knowing the data struc-
tures used by the operating system. We assume that a TLB
miss causes a software exception, which invokes a TLB
miss-handling routine to scan the software data structures
and supply the required translation entry. We estimate that
miss-handling routines that support two page sizes take
about 25% longer to execute than similar routines for a sin-
gle page size. This estimate is based on routines written in
assembly code for the SPARC architecture [SPA91].

Typical miss handlers use the least significant bits of
the page number to index into a data structure, and this is
more complicated with two page sizes. A multi-level table
or split tables accessed by trying all page sizes in some
order may be candidates for page-table data structures.
Use of a software cache of translation entries indexed using
techniques similar to those discussed above might be
advantageous. Precise miss-handling techniques and
software data structures that can be used in page tables for
two page sizes are beyond the scope of this paper.

3. Methodology

We conducted extensive trace-driven simulations to
study the working set sizes and TLB performance when
using a single page size and two page sizes. This section
details the workloads, metrics, simulation techniques and
policy for page-size assignment used in the experiments.

3.1. Workloads

Table 3.1 lists the details of the workloads used to
generate the traces for the simulations. All the workloads
are uniprogrammed, user-only traces for the SPARC archi-
tecture. The programs represent different application
categories, reference a large amount of memory and are
relatively long. Trace lengths are number of memory refer-
ences made by the programs. "WS Size" is the average
working set size for the program when using 4KB pages,
with the working set parameter T equal to ten million refer-
ences. We simulated the SPEC benchmarks [SPE89] by
executing the programs and dynamically generating traces
of their memory references, using the tracing tools shade
[Cme91] and shadow [Hsu89].

We would prefer traces with multiprogrammed and
operating-system behavior to exercise large TLBs. Since
our tracing tools did not allow us to generate such traces,
we could not consider them in this study. The only public-
domain traces with operating system behavior that we are
aware of are the ATUM traces [ASH86]. We do not use
these traces as they are too short to exercise the TLBs and
the page-size assignment policy.

3.2. Metrics

In choosing a new page size scheme — a single
larger page size or a two page size scheme — we tradeoff
increased memory demands against better TLB perfor-
mance. We quantify increased memory demands with the
metric normalized working set size, WSNormalized , which
represents the increase in average working set size with

� ���
Trace Average Average

Program Application Length WS Size refs. per
(million) (KB) instruction� ���

li int SPEC 6512 146 1.313
espresso int SPEC 632 168 1.280
fpppp FP SPEC 2166 221 1.497
doduc SPEC 1698 246 1.291
x11perf graphics 83 433 1.207
eqntott int SPEC 1662 753 1.151
worm graphics 104 1115 1.207
nasa7 FP SPEC 9247 1124 1.395
xnews X server 644 1259 1.187
matrix300 FP SPEC 2347 1484 1.385
tomcatv FP SPEC 2297 2948 1.413
verilog logic sim. 729 15059 1.264� ��
��
��
��
��
��
��
��
��
�

���
��
��
��
��
��
��
��
��
�

���
��
��
��
��
��
��
��
��
�

���
��
��
��
��
��
��
��
��
�

���
��
��
��
��
��
��
��
��
�

���
��
��
��
��
��
��
��
��
�

Table 3.1. Workloads.

respect to using 4KB pages. We measure TLB perfor-
mance using contribution to CPI due to TLB miss handling,
CPITLB.

We derive WSNormalized as follows. W (t, T, ps) is the
set of distinct pages referenced in the interval [t −T +1,t],
where T is a parameter of the working set algorithm
[Den68] and ps specifies either a single page size or multi-
ple page sizes and how to select between them. The work-
ing set size, w (t, T, ps), is the sum of the sizes of pages in
W (t, T, ps). The average working set size is

s (T, ps) =
k
1	
	

t =0
Σ
k

w (t, T, ps), where k is the number of

memory references in the program. Finally, normalized
working set size, WSNormalized(ps), is:

WSNormalized(ps) =
s (T, 4KB)
s (T, ps)� ����������������� .

WSNormalized represents the increase in average work-
ing set size when using a new page size combination, ps,
with respect to the average working set size for 4KB pages.
For example, a WSNormalized(32KB) of 1.5 means that the
average working set size increased by 50% by changing the
page size from 4KB to 32KB. It is difficult to relate
WSNormalized directly to a change in program execution time
without considering many system-specific parameters such
as physical memory size, page replacement policy, mul-
tiprogrammed workload, etc. However, unless memory is
underutilized, increased working set size would either
require more physical memory to run the same program or
would increase the page fault rate.

We measure TLB performance as the contribution to
CPI due to TLB miss handling, CPITLB. This metric can be
directly related to program execution time [HeP90].
CPITLB is calculated as follows :

CPITLB = (TLB misses per instruction) × (TLB miss penalty).

From trace-driven simulations, we calculate the TLB
misses per instruction (MPI) factor. The TLB miss penalty
depends on both hardware and software and is more
difficult to estimate (see Section 2.3). In this paper we

- 4 -

-- --

assume the miss penalty to be twenty cycles, which is a
reasonable estimate for TLB misses handled in software.
Other metrics used to measure TLB performance can easily
be calculated from CPITLB and RPI (References per
instruction from table 3.1),

TLB misses per instruction (MPI) =
20

CPITLB

�
�
�
�
�
 ,

TLB miss ratio =
RPI
MPI� ������� .

Our studies assume a 25% increase in miss penalty
for a TLB supporting two page sizes.(Section 2.3). The
increase also will account for the costs of page promotion
(Section 3.4). Further, the results do not change
significantly with moderate changes in the miss penalty.

Another metric that is of interest is the increase in
miss penalty that can be tolerated when using two page
sizes to give the same CPITLB as using a single page size of
4KB, called the critical miss penalty increase, ∆mp̂(ps) =

(
MPI (ps)

MPI (4KB)������������������� − 1) × 100% = (1.25 ×
CPITLB(ps)

CPITLB(4KB)� ��������������������� − 1) × 100%

For the two page sizes, we use 4KB and 32KB
pages. We also have similar data for combinations of
4KB/16KB and 4KB/64KB, but space constraints prevent
us from presenting them here.

3.3. Simulation Technique

Due to the large number of different TLB
configurations that needed to be simulated and the long
running time of the trace-driven simulations, it was not
feasible to perform simulations one at a time.

We performed TLB simulations with the cache simu-
lator tycho. Tycho implements all-associativity simulation
[HiS89], a variation of stack simulation [MGS70]. We
modified tycho to handle using index bits other than the
least significant bits of the page number and to support two
page sizes. Using tycho it was possible to simulate many
TLB configurations (84 in our case) in one simulation in
about double the simulation time for a comparable single
TLB simulation.

We also used stack simulation techniques to calcu-
late average working set sizes. Slutz and Traiger1 [SlT74]
show that working set size calculation for different page
sizes and different values of T can be done using stack
simulation. We modified the algorithm, which requires T
counters, to use very few counters, making it feasible to
run simulations for large values of T (namely 100 million).

For each trace, we simulated more than one thousand
TLB configurations and calculated average working set
sizes for sixty-three page size/T combinations. We con-
sumed 5.5 months of CPU time to collect the data, a subset
of which we present in this paper.

�����������������������������������
1. We do not use Slutz’s algorithm for multiple page sizes

[Slu75] because it does not allow page sizes to change dynamically,
which we assume in our page-size assignment policy (Section 3.4).

3.4. Policy for Page-Size Assignment

To test the performance of TLBs supporting two
page sizes, we need a policy to assign page sizes to regions
of the address space. We need a complete implementation
of the operating system to do an accurate page-size assign-
ment. In the absence of any real operating system policy,
we use the following method to arrive at a page-size
assignment. We do the assignment dynamically during the
simulation, looking at the last T references.

We treat the virtual address space as chunks of 32KB
each. Each chunk consists of eight blocks of 4KB. During
the simulation we maintain a list of all the blocks accessed
in the last T references. We map each chunk as either one
large page of 32KB or eight small pages of 4KB each. The
decision on whether or not to promote a chunk to a large
page depends on the number of blocks accessed within the
window of the last T references. If all the blocks in a
chunk have been accessed, then the chunk should certainly
be mapped as a large page. If only one block has been
accessed then the chunk should remain mapped as small
pages. The threshold we use to promote is whether half or
more of the blocks in a chunk have been accessed. In this
way, at worst we only double the working set size (in real-
ity the increase is much less).

This policy uses the inherent spatial locality in the
programs without the compiler or operating system taking
care to align data structures on page boundaries. With
software support for proper packing of data and code, more
large pages would be used, which would lead to better TLB
performance and smaller working set size increases.

There are some costs associated with promoting a
chunk from small pages to a large page : (a) cost of updat-
ing the mapping data structures and invalidating TLB
entries for the small pages, (b) copying the small pages
already in memory to one large page and (c) paging
in/zeroing the small pages not resident in memory. This
will increase the CPITLB for the two-page-size schemes.
We expect these costs to be low as page promotions are not
frequent. Further, these costs can be folded into the extra
miss penalty we assume for the two-page-size schemes.

�

��� �

�

��� �
�

��� ��� ����� ����� �����

� ��
� !" #$
%& ��
'" (
)* $
+*" #$

,.-�/1032�4 560

798;:=<>4 ?�/@2A0;BC2A4 560ED34 BGFH2A4 ?I/1J 03,C-�/1032�4 5603KMLON ��P�QSR
J 40UT=VW:X0;TYT=8Z 8 Z\[�]D38;:X^?I-�TY-�_` ?I0UDET^H-�Ba:X4 ` ��P�PBG8;^] -\BGb

Figure 4.1.

- 5 -

-- --

4K/32K32K16K8K

e
z
i
S
t
e
S
g
n
i
k
r
o
W
d
e
z
i
l
a
m
r
o
N

Programs

2.60

2.40

2.20

2.00

1.80

1.60

1.40

1.20

1.00

0.80

0.60

0.40

0.20

0.00
verilogtomcatvmatrix300xnewsnasa7wormeqntottx11perfdoducfppppespressoli

Figure 4.2. Normalized Working Set Sizes (T = 10M).

4. Results of Working Set Size Calculations

In this section we study the variation of working set
sizes when using page sizes larger than 4KB. The working
set size of a program is a measure of the memory cost of
using larger pages. Though current operating systems do
not use the working set policy for page replacement, we
consider the working set size a good estimate of programs’
memory demands.

Figure 4.1 shows the variation of WSNormalized with
page size for T = 10 million references. The X-axis shows
the page size and the Y-axis shows WSNormalized (both axes
are logarithmic). The graph shows that the working set
size increases quite significantly by using larger page sizes.

Doubling the page size increases working set size by
only 1% to 30%. Doubling the page size does not double
the working set size because programs exhibit spatial local-
ity [Den70]. Programs like matrix300 and tomcatv, that
traverse all their address space in a linear looping fashion,
already have most of their address space in the working set
and increasing page size does not affect their working set
sizes much. Programs that have a sparse address space
(e.g., li) or have good temporal locality in a small region of
the address space (e.g., espresso) show large increases in
working set sizes.

WSNormalized is approximately proportional to the
page size. Though the exact values may change, the quali-
tative trend is not sensitive to varying T through 10, 25 and
50 million references. Averaging across all the traces,
WSNormalized(32KB) is 1.67 and WSNormalized(64KB) is 2.03,
for T = 10 million references.

Figure 4.2 shows WSNormalized for the various pro-
grams for single page sizes from 8KB to 32KB and the

two-page-size scheme using a combination of 4KB and
32KB pages. Recall that WSNormalized is 1.0 for 4KB pages.

The working set size increase resulting from two
page sizes is less than for any single page size larger than
4KB. Across all the programs, WSNormalized(4KB/32KB) is
only 1.01 to 1.22 (average 1.1). Further, this increase is
insensitive to the value of T, varying by only a few percent.

Our results show that there is a significant increase in
working set size by using a larger single page size. We
conclude that the memory cost of using two page sizes is
small and might be a better option than using a single
larger page size, even if that single page size is 8KB.

5. Results of TLB Simulations

The main motivation for using large pages is to
improve the effectiveness of TLBs. In this section we
present results of preliminary studies comparing single-
page-size TLBs with those that can support two page sizes.
Space constraints allow us to present data for only three
sample TLB organizations, one fully associative and two
set-associative.

We divide the traced programs into two categories
based on their working set sizes. The small programs have
a working set size of less than 1MB and the large programs
have working sets larger than 1MB (Table 3.1). The traces
are displayed in ascending order of working set size, so that
effects due to working set size, if any, may be observed.

We do not use large TLBs (≥ 64 entries) in our study.
Large TLBs in combination with large pages have negligi-
ble miss rates for our workloads, making it impossible to
make comparisons. Nevertheless, our current results are
our best estimate of the relative behavior of future TLBs,

- 6 -

-- --

B

L

T

I

P

C

Programs

0.20

0.10

0.00
eqntottx11perfdoducfppppespressoli

B

L

T

I

P

C

Programs

1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00
verilogtomcatvmatrix300xnewsnasa7worm

1.5

32KB8KB4KB/32KB4KB

Figure 5.1. CPI contribution for 16-entry fully associative TLB.

which will be larger, but exercised by user programs with
larger working set sizes in multiprogrammed workloads
that include operating system behavior.

5.1. Fully Associative TLBs

Figure 5.1 shows CPITLB for a 16-entry fully associa-
tive TLB. Using a single large page size (32KB) gives the
best CPITLB. The TLB now maps eight times more
memory than when using a single page size of 4KB and the
CPITLB reduces by approximately a factor of eight. Using a
single page size of 8KB doubles the mapped area and
nearly halves the CPITLB.

CPITLB when using two page sizes are only slightly
worse than that obtained when using a single large page
size of 32KB. The difference in CPITLB is mostly due to
the increase in miss penalty when using two page sizes.
The results show that there is a significant benefit in using a
combination of large and small pages. Further the improve-
ment does not require a large increase in working set size
(Section 4).

For many programs the two-page-sizes scheme has
lower CPITLB than using a single page size of 8KB. The
use of large pages (32KB) in the two-page-sizes scheme
has the potential to map a much larger area than a single
page size of 8KB. Further, using two page sizes has a
penalty comparable in working set size to using a single
page size of 8KB. It should be noted, however, that the
choice of page sizes is an architectural issue and the deci-
sion should not be based on any particular implementation.

5.2. Two-Way Set-Associative TLBs

Figure 5.2 shows the CPITLB for 16-entry and 32-
entry, two-way set-associative TLBs. The histograms com-
pare CPITLB when using the exact index for the two-page-
sizes scheme with CPITLB for a single page size TLB. We
use exact indexing for the two-page-sizes TLBs as we
expect this to do the best. Section 5.2.1 compares the dif-
ferent indexing schemes. The results for two-way set-
associative TLBs are, however, not as regular as in the
fully associative case.

Using large pages lowers the CPITLB quite
significantly because the same TLB now maps a larger
region of memory. Matrix300 is an extreme example:
CPITLB reduces from 1.56 for 4KB pages to 0.11 for 32KB
pages (for a 32-entry TLB). Using a single page size of
32KB has the lowest CPITLB. A single page size of 8KB,
also produces a significant improvement in CPITLB.

For eight of the twelve programs, using two page
sizes delivers lower CPITLB than using a single page size of
4KB, even with the increased miss penalty for the two-
page-sizes scheme. The improvement in CPITLB varies
from very large (e.g., matrix300, nasa7) to moderate (e.g.,
verilog, xnews). This shows that it is possible to support
two page sizes using set-associative TLBs while improving
TLB effectiveness. However, for a couple of programs
(e.g., espresso, worm) there is a degradation in CPITLB by
using two page sizes. This is due to insufficient use of
large pages during page-size assignment and the larger
miss penalty for the two-page-sizes scheme.

WSNormalized for the two-page-sizes scheme and for a
single page size of 8KB are comparable. Comparing
CPITLB in the two cases, however, there are no clear trends.
For a 16-entry TLB, the small programs seem to benefit
more from using two page sizes. On the other hand, for a
32-entry TLB, the small programs seem to benefit more
from a single 8KB page size. For large matrix-
manipulation programs (e.g., nasa7 and matrix300) using
two page sizes is a better option as they use mostly large
pages and get CPITLB comparable to using 32KB pages.
The results might suggest that increasing the page size to
8KB is better than using two page sizes. However, as pro-
grams continue to get larger, there may be more benefit in
moving to a combination of small and large pages than to a
single page size of 8KB.

- 7 -

-- --

B

L

T

I

P

C

Programs

0.60

0.50

0.40

0.30

0.20

0.10

0.00
eqntottx11perfdoducfppppespressoli

B

L

T

I

P

C

Programs

0.20

0.10

0.00
eqntottx11perfdoducfppppespressoli

B

L

T

I

P

C

Programs

1.20

1.10

1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00
verilogtomcatvmatrix300xnewsnasa7worm

1.6 1.7 1.7

B

L

T

I

P

C

Programs

1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00
verilogtomcatvmatrix300xnewsnasa7worm

1.56 1.4 1.5

32KB8KB4KB/32KB4KB

Figure 5.2. CPI contribution for set-associative TLB.
(16 entry, two-way) (32 entry, two-way)

To consider the effect of increase in miss penalty for
TLBs supporting two page sizes, we look at the critical
miss penalty increase. ∆mp̂(4KB/32KB) varies from 30%
to 1200% for programs that show an improvement in
CPITLB when using two page sizes. This shows that even
with a 30% increase in miss penalty for two page sizes, the
same trends/results will hold. We conclude that a moderate
increase in miss penalty when using two page sizes can be
tolerated to give better performance than when using a sin-
gle page size of 4KB.

Though there is a general trend of decreasing CPITLB
when using larger pages, there are some exceptions. For
example, Tomcatv has a quickly degrading CPITLB for
increasing page sizes for two-way set-associative TLBs.
The program’s access pattern causes the TLB to thrash
even with larger pages. Alexander et al. [AKB85] report
similar behavior for different traces. We do not see any
such anomalies for higher associativities, which indicates

that they are due to interaction between the access pattern
and the bits used to index the TLB.

The results show that there is potential for improving
CPITLB by using a combination of small and large page
sizes. We have also shown that a moderate increase in
miss penalties for the more complicated TLBs does not
affect the trends. Since the policy for allocation of pages
(Section 3.4) is not realistic however, these results are only
preliminary. Furthermore, with a real operating system
using two page sizes, we expect the allocation pattern to
change and result in different TLB behavior — set conflicts
are sensitive to allocation of data structures in the virtual
address space. Exact performance gains for using two page
sizes can only be estimated with realistic policies for page-
size assignment, more accurate estimates for miss penalty,
estimates of the impact of increased working set size on the
system page fault rate, and studies of larger and multipro-
grammed workloads.

- 8 -

-- --

c�c�c�c�c�c�c�c1c�c�c�c�c�c�c�c�c�c�c1c�c�c�c�c�c�c�c�c�c�c1c�c�c�c�c�c�c�c�c�c1c�c�c�c�c�c�c�c�c�c�c1c�c�c
Program 4KB 4KB 4KB/32KB 4KB/32KBdd

d
dd
d

large index ee
e

large index ff
f

exact indexg�g�g�g�g�g�g�g1g�g�g�g�g�g�g�g�g�g�g1g�g�g�g�g�g�g�g�g�g�g1g�g�g�g�g�g�g�g�g�g1g�g�g�g�g�g�g�g�g�g�g1g�g�g
16-entry, two-wayh�h�h�h�h�h�h�h1h�h�h�h�h�h�h�h�h�h�h1h�h�h�h�h�h�h�h�h�h�h1h�h�h�h�h�h�h�h�h�h1h�h�h�h�h�h�h�h�h�h�h1h�h�h

li 0.320 0.452 0.026 0.095
espresso 0.095 0.310 0.170 0.166
fpppp 0.201 0.174 0.082 0.086
doduc 0.248 0.488 0.058 0.216
x11perf 0.536 0.360 0.039 0.045
eqntott 0.170 0.207 0.178 0.118
worm 0.352 0.468 0.489 0.389
nasa7 1.029 1.149 0.635 0.537
xnews 0.247 0.297 0.178 0.205
matrix300 1.624 1.604 0.322 0.339
tomcatv 0.461 2.608 2.246 1.752
verilog iii

ii
ii
ii
ii
ii
ii
i

0.604 jjj
jj
jj
jj
jj
jj
jj
j

0.821 kkk
kk
kk
kk
kk
kk
kk
k

0.357 lll
ll
ll
ll
ll
ll
ll
l

0.357m�m�m�m�m�m�m�m1m�m�m�m�m�m�m�m�m�m�m1m�m�m�m�m�m�m�m�m�m�m1m�m�m�m�m�m�m�m�m�m1m�m�m�m�m�m�m�m�m�m�m1m�m�m
32-entry, two-wayn�n�n�n�n�n�n�n1n�n�n�n�n�n�n�n�n�n�n1n�n�n�n�n�n�n�n�n�n�n1n�n�n�n�n�n�n�n�n�n1n�n�n�n�n�n�n�n�n�n�n1n�n�n

li 0.058 0.273 0.013 0.003
espresso 0.026 0.113 0.032 0.080
fpppp 0.156 0.141 0.041 0.037
doduc 0.072 0.294 0.016 0.109
x11perf 0.043 0.352 0.033 0.021
eqntott 0.074 0.094 0.052 0.063
worm 0.077 0.376 0.353 0.100
nasa7 0.907 0.815 0.296 0.199
xnews 0.126 0.211 0.086 0.080
matrix300 1.568 1.557 0.152 0.156
tomcatv 0.232 2.464 2.020 1.437
verilog 0.288 0.619 0.180 0.145o�o�o�o�o�o�o�o1o�o�o�o�o�o�o�o�o�o�o1o�o�o�o�o�o�o�o�o�o�o1o�o�o�o�o�o�o�o�o�o1o�o�o�o�o�o�o�o�o�o�o1o�o�oppp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp

ppp
pp
pp
pp
pp
pp
pp
p

ppp
pp
pp
pp
pp
pp
pp
p

ppp
pp
pp
pp
pp
pp
pp
p

ppp
pp
pp
pp
pp
pp
pp
p

ppp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp

Table 5.1. Comparison of indexing schemes.

5.2.1. Comparison of Indexing Schemes for Set-
Associative TLBs

Table 5.1 compares CPITLB using different indexing
schemes for 16- and 32-entry two-way set-associative
TLBs supporting two page sizes.

Exact indexing is intuitively the better indexing
scheme. Although there are more cases where the exact
index does better than the large page index, in more than
50% of the programs the CPITLB are roughly comparable.
The two indexing schemes differ only in how they handle
small pages. This comparable behavior might be due to the
following (a) There may be few small pages (e.g., for
matrix300). Hence, the CPITLB is similar to using all large
pages and the indexing scheme for the small pages has lit-
tle effect. (b) In our page-size assignment, small pages are
used only if 1, 2 or 3 of the blocks in a large-page region
are accessed. Associativity covers the cases of one or two
blocks. So the large page index does worse only if three
blocks in a large page region are accessed. We expect this
to be infrequent.

Use of large page index is based on assumptions of
allocation of enough large pages (Section 2.2). Suppose
that a system supports two page sizes and uses the large
page index, but the software does not allocate any large
pages. The simulations show that this results in a severe
degradation in CPITLB (compare the first two columns in
Table 5.1). The degradation occurs because the bits used
as the large page index are a poor choice if one is using

only small pages. Thus, the effectiveness of hardware to
support two page sizes depends on the operating system to
do a good page-size assignment. Without software support,
hardware supporting two page sizes may do worse than
when supporting a single page size of 4KB. This is an
important issue if the new hardware has to work with older
versions of the operating system.

6. Summary and Conclusions

As main memories get larger and processor cycles-
per-instruction (CPI) get smaller, the time spent in handling
TLB misses is becoming more significant. It may not be
possible to increase the number of TLB entries to map the
gigantic memories of the future when using a physically
tagged level-one cache without adversely affecting the
latency of all memory references. Two alternatives for
making a TLB more effective are (a) increasing the page
size and (b) supporting two page sizes.

We experimentally examined both alternatives with a
dozen uniprogrammed, user-mode traces for the SPARC
architecture. Our results show that increasing the page size
to 32KB reduces the TLB’s contribution to CPI, CPITLB, by
factors of about three to eight (sometimes more) compared
to using 4KB pages. However, this CPI decrease is accom-
panied by a significant increase in average working set size
(e.g., 60%). Without making many additional assumptions
it is not possible to translate the increased working set size
to a CPI penalty. Nevertheless, unless main memory is
underutilized, larger working sets either demand a larger
main memory, cause a higher page fault rate, or both.

Our results show that the use of two page sizes —
4KB and 32KB — keeps the increase in average working
set size modest (about 10%), and makes CPITLB reductions
that depend on whether the TLB is fully associative or set-
associative. Results for a 16-entry fully associative TLB
show that performance of two page sizes is mostly compar-
able to using the large page size. With two-way set-
associative TLBs, due to the complexity of indexing with
two page sizes, the results range from no improvement to
CPITLB comparable to using 32KB pages. In a few cases,
there is even a degradation in CPITLB resulting from using
two page sizes. Furthermore, CPITLB is adversely affected
by using the large page index if the operating system does
not allocate any large pages.

We also compared using two page sizes with increas-
ing the single page size to 8KB. Results show that (a) both
cause a similar, modest increase in average working set
size, (b) using two page sizes leads to a lower CPITLB with
a fully associative TLB, but (c) results are mixed for set-
associative TLBs due to indexing issues.

Even if all our assumptions are accurate, our results
neither conclusively reject nor conclusively support the use
of two page sizes. Furthermore, there are three important
reasons not to infer too much from our results. First, the
two-page-size results critically depend on the operating
system’s policy and mechanism for selecting between the
two page sizes. Instead of modifying the operating system,
we used traces generated with current software and dynam-

- 9 -

-- --

ically remapped page sizes in response to usage patterns.
A real page-mapping policy may perform much better
(e.g., by reorganizing code and data for the new page sizes)
or much worse (e.g., mapping policies might use less
dynamic information). Second, despite consuming nearly
5.5 months of CPU simulation time, our traces are inade-
quate to exercise large TLBs, in part, because they do not
include the effect of multiprogramming and operating sys-
tems behavior. Third, the selection of page size or sizes is
determined by more factors than we have examined,
including disk performance, paging performance and pro-
tection granularity. Furthermore, the selection of page size
is typically an architectural, not an implementation, deci-
sion. Thus, one should not be satisfied that a page size is
good for a particular machine, but ask whether it is likely
to be good for most implementation technologies and
workloads the architecture is likely to encounter in the
future. One should not, for example, select page sizes that
require the use of a fully associative TLB unless one
expects that most future technologies will support fully
associative TLBs well.

We hope that this paper motivates more research,
particularly operating system research, to solve the prob-
lems associated with supporting multiple page sizes and to
see whether they should be the preferred alternative.

7. Acknowledgements

We would like to thank R. Cmelik, D. Ditzel, Ed
Kelly, Y. Khalidi, S. Kleiman, S. Richardson, G. Taylor, D.
Williams and M. Wing among others at Sun Microsystems,
Inc. and Sun Microsystems Laboratories, Inc. for their
help with this research; D. Chenevert, M. Choudhary, S.
Jain, R. Lee, V. Matena, G. Maturana, R. Subrahmaniam
and R. Yung for helping with the traces; S. Adve, S. Ches-
sin, S. Muchnick, A. Pai, S. Vajapeyam and D. Wood for
their comments and help in writing this paper.

References

[ASH86] A. AGARWAL, R. L. SITES and M. HOROWITZ,
ATUM: A New Technique for Capturing Address
Traces Using Microcode, Proc. Thirteenth Intl. Symp.
on Computer Architecture , June 1986, 119-129.

[AKB85] C. A. ALEXANDER, W. M. KESHLEAR and F. BRIGGS,
Translation Buffer Performance in a UNIX
Environment, Computer Architecture News,
December 1985, 2-14.

[ApL91] A. W. APPEL and K. LI, Virtual Memory Primitives
for User Programs, Proc. 4th Intl. Conf. on
Architectural Support for Programming Languages
and Operating Systems, April 1991, 96-107.

[BlK92] G. BLANCK and S. KRUEGER, The SuperSPARC
Microprocessor, COMPCON, San Francisco,
February, 1992, 136-141.

[ClE85] D. W. CLARK and J. S. EMER, Performance of the
VAX-11/780 Translation Buffer: Simulation and
Measurement, ACM Transactions on Computer
Systems 3, 1 (February 1985), 31-62.

[Cme91] R. F. CMELIK, Introduction to SpixTools, Sun
Microsystems Technical Memorandum, June 1991.

[CDC81] CDC CYBER 200 Model 205 Computer System,
Hardware Reference Manual, Control Data

Corporation, 1981.
[Den68] P. J. DENNING, The Working Set Model for Program

Behavior, Communications of the ACM 11, 5 (May
1968), 323-333.

[Den70] P. J. DENNING, Virtual Memory, Computing Surveys
2, 3 (September 1970), 153-189.

[ETA86] Mainframe Subsystem Instruction Specification for
the ETA10, Rev: B, ETA Systems, Inc., March 1986.

[HeP90] J. L. HENNESSY and D. A. PATTERSON, Computer
Architecture A Quantitative Approach, Morgan
Kaufmann Publishers Inc., 1990.

[HP90] PA RISC 1.1 Architecture and Instruction Set
Reference Manual, Hewlett Packard, November
1990.

[HiS89] M. D. HILL and A. J. SMITH, Evaluating Associativity
in CPU Caches, IEEE Trans. on Computers C-38, 12
(December 1989), 1612-1630.

[Hsu89] P. Y. HSU, Introduction to SHADOW, Sun
Microsystems Technical Memorandum, July 1989.

[INT91] Overview of the i860 XP Supercomputing
Microprocessor, Intel Corporation, 1991.

[KJL89] R. E. KESSLER, R. JOOSS, A. LEBECK and M. D. HILL,
Inexpensive Implementations of Set-Associativity,
Proc. 16th Symp. on Computer Architecture , June
1989, 131-139.

[MGS70] R. L. MATTSON, J. GECSEI, D. R. SLUTZ and I. L.
TRAIGER, Evaluation Techniques for Storage
Hierarchies, IBM Systems Journal 9, 2 (1970), 78-
117.

[Org72] E. J. ORGANICK, The Multics System: An Examination
of Its Structure, MIT Press, Cambridge, MA, 1972.

[SPA91] The SPARC Architecture Manual, Version 8, SPARC
International Inc., Menlo Park, CA., 1991.

[SPE89] SPEC, Newsletter, Vol. 1, 1989.
[SaB81] M. SATYANARAYANAN and D. BHANDARKAR, Design

Trade-offs in VAX-11 Translation Buffer
Organization, IEEE Computer 14, 12 (December
1981), 103-111.

[Sla91] M. SLATER, MIPS Previews 64-Bit R4000
Architecture, Microprocessor Report 5, 2 (February
6, 1991), 1,6-9,18.

[SlT74] D. R. SLUTZ and I. L. TRAIGER, A Note on the
Calculation of the Average Working Set Size,
Communications of the ACM 17, 10 (October 1974),
563-565.

[Slu75] D. R. SLUTZ, A Relation Between Working Set and
Optimal Algorithms for Segment Reference Strings,
IBM Research Report RJ 1623, July 1975.

[Smi82] A. J. SMITH, Cache Memories, Computing Surveys
14, 3 (September, 1982), 473 - 530.

[WEG86] D. A. WOOD, S. J. EGGERS, G. GIBSON, M. D. HILL, J.
PENDLETON, S. A. RITCHIE, R. H. KATZ and D. A.
PATTERSON, An In-Cache Address Translation
Mechanism, Proc. 13th Intl. Symp. on Computer
Architecture, Tokyo, Japan, June 1986.

- 10 -

-- --

