In Computer Architecture, We Don’t Change the Questions, We Change the Answers
Mark D. Hill, University of Wisconsin-Madison

Abstract: When | was a new professor in the late 1980s, my senior colleague Jim Goodman told me, “On the
computer architecture PhD qualifying exam, we don’t change the questions, we only change the answers.” More
generally, | now augment this to say, “In computer architecture, we don’t change the questions, application and
technology innovations change the answers, and it's our job to recognize those changes.” Eternal questions this
talk will sample are how best to do the following interacting factors: compute, memory, storage,
interconnect/networking, security, power, cooling and one more. The talk will not provide the answers but leave
that as an audience exercise.

Biography: Mark D. Hill is the Gene M. Amdahl and John P. Morgridge Professor Emeritus of Computer Sciences
at the University of Wisconsin-Madison (http://www.cs.wisc.edu/~markhill), following his 1988-2020 service in
Computer Sciences and Electrical and Computer Engineering. His research interests include parallel-computer
system design, memory system design, and computer simulation. Hill's work is highly collaborative with over 170
co-authors. He received the 2019 Eckert-Mauchly Award and is a fellow of AAAS, ACM, and IEEE. He served on
the Computing Community Consortium (CCC) 2013-21 including as CCC Chair 2018-20, Computing Research
Association (CRA) Board of Directors 2018-20, and Wisconsin Computer Sciences Department Chair 2014-2017.
Hill was Partner Hardware Architect at Microsoft (2020-2024) where he led software-hardware some
pathfinding for Azure. Hill has a PhD in computer science from the University of California, Berkeley.
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Computer Architecture: Big Picture of Computer Hardware
Components - Systems
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Computer Architects: Components > Systems

2020-2024: Hardware-software pathfinding for Azure
Now industrial consultant

(C) Mark D. Hill



A View of Computing’s “Stack” P THE: i
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layer experts to work together!
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A Commercial Computing Company Helix

Pre-microprocessor Era
Medium tech progress
Users share
Comp layers nascent
Vertical companies
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New Assistant Professor [1988]

Mark Hill:

How do we update questions for
the computer architecture PhD
qualifying exam?

Jim Goodman:
We don't change the questions.
We change the answers.




My Current View

In computer architecture,

We don't change the questions

Applications & technology innovations change the answers
It's our job to recognize those changes

E.g., Single Instruction Multiple Data (SIMD): 1960s - GP-GPUs

This talk discusses these eternal questions; answers TBD by you!



Computer Architecture’s
Eternal Questions & Outline

How best to do these
interacting factors:

1. Compute (longest)

2. Memory (longer)

3. Interconnect/networking
4—Storage

5. Security

6. Power

7. Cooling

8. *Bonus new question*®

(C) Mark D. Hill




Compute: Accelerators, e.g., Deep Learning

End of Dennard scaling & rise of demanding apps =2

« Accelerator is a hardware component that executes a targeted
computation class faster & usually with (much) less energy.

« Esp. Deep Neural Network Machine Learning

Nvidia Grace-Hopper Google Tensor Processing Unit Cerebras Wafer Scale Engine

11



Compute: Accelerators, Deep Learning Co-design

Sign Exponent Mantissa

E.g. Co-Design for Deep Learning

via Number Representation o J’
Microsoft FP > Microscaling Formats (MX) wis [
 Mantissa really small — l it

 Multiple values share exponent
« MSFP-12: (8 + 16*4)/16

int8

— 45 bits/value Qoun“:;;zzim) n Il

« Requires co-design ‘f,j |
] :

2020: https://www.microsoft.com/en-us/research/blog/a-microsoft-custom-data-type-for-efficient-inference/
2023: https://www.opencompute.org/blog/amd-arm-intel-meta-microsoft-nvidia-and-qualcomme-standardize-next-generation-
“Harrow-precision-data-formats-for-ai 12
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Generative Al

Amazing opportunity: sum >> parts

Foundation models == means

Customer value provided by other apps
« Doing now: make tedious work - faster

« Expect bumps: Gartner Hype Cycle (next slide)

Massive special clusters for foundational Al training: GPUs, TPUs, ...
Growing incremental training. How & where?

How to structure Al & GP software and hardware?
In Cloud, Al clusters will consume massive power - less for GP

New use cases are paramount, & More efficiency = Enables
providing value to more people in more ways (see Jevon’s Paradox) 3



Hype Cycle for Artificial Intelligence, 2023

Expectations

Srnart Robeats
Responsible Al
Neuromarphic Computing
Premmipl Enginesring

A

< Generative Al

Foundation
Antificial General Inteligence Models
Decizion Intelligancs

Al TRISM

Operalional Al Syslems

Synthetic Data

ModelCips

Compuosite A
Data-Centric Al

(1 Ecigadl Computer
&l Enginesaring Wishon
Al Simulation / I
Causal Al
e g::_:i:’sl " Data Labaling
Meuro-Syrmbsalic Al Knowledge Graphs

and Annoctation
Multiagent Systams Intelligent Applications
First-Principlas Al Autonomous Vehicles
Automatic Systems Al Maker and Teaching Kits

Peak of
Innovation Inflated Trough of Slope of Plateau of
Trigger Expeactations Disil usionmeant Enlightanment Productivity
L]
Time
Plateau will be reachad:
{7 lees than 2 years P 2105 yaars P 5o 10 years A& more than 10 years ) obsolata baefora plataau A5 of July 2023
ga rther.com

SOLINGE: GAMNEr
2023 Gartrar Inc. andior ite s¥limss., All righte mesreed, 2073004

Gartner

14



Compute: Accelerator-Level Parallelism

I.Irlies‘lzghts

DDR logic '+~

2019 Apple A12 w/ 42 Accelerators

Deploy Many Accelerators

Use several concurrently
 (CPUs: control plane
* Accelerator: data plane

How program, schedule,
communicate, co-design?

https://cacm.acm.org/magazines/2021/12/
256949-accelerator-level-parallelism

15
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High

ata movement
/ Data verification (CRCs) \ |

Where to Accelerate?

Encryption/Dec
1st target existing accelerators % ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
* Data movers & encryption 3
e Ubiquitous SmartNICs g
 Disaggregated GPU/TPUs 2

g ,,,,,,,,,,,,,,,,,,,,,,,,

Remember G
e Amdahl’s Law E,

e Data granularity

Workload Specific Needs

Dedicated accelerators need:
* NRE & design time
* Must provision “right” Low

High-End HPC/GPUYs

O

Al Traim’n@

Hig

Low Cost
Thanks to Ram Huggahalli



New Opportunity: Compute eXpress Link (CXL)

Caching Devices/ Acceleratars Accelerators with Menmory

PROTOCOLS PROTOCOLS PROTOCOLS

+ CXL.io + CXL.io + CXL.io
» CXL.cache » CXL.cache  CXL.memory
* CXL.memory

. N

Enables accelerators “closer” than PCle (coherent) & two-level memor




Emerging Opportunity: Universal Chiplet Interconnect Express (UCle)

Due to Moore's Law Challenges Open Chiplet: Platform on a Package

« Monolithic chip - several “chiplets” 2’;32:?0‘.’2?,1?;12,‘?:;‘:‘7?:3_....\~,

« Fast Silicon interconnect T

- Currently company proprietary Wiy hint PRS- il |

Emerging UCle Standard

» Make package like a “board” V,‘ S

« Standardized protocol among chiplets /4/5 Sof Gores 0
(physical/electrical/link/transport) é;  ghe :’)‘/x Marvior

« Get closer: PCle > CXL > UCle

« Mix/match chiplets from different Qo
technologies/companies Packaging

https://doi.org/10.1038/s41928-024-01126-y
2D then 2.5D then 3D. Why 3D?
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Tech Scaling Frontier from 2D ontoslieveTisiabel

To 3D & Advanced packaging

Semiconductors, nanometres
Log scale 1,000

Node name

Why? 2D scaling slowing
100

2D then 2.5D then 3D Transistor

gate length

What does 3D look like? 10

LUNNLUN D LU D B D L R R R D D LR I R D D D D D D B )

1992 2000 05 10 15 20 24

The Economist, Technology Quarterly:
Chipmaking, 21 September 2024 Sources: Wikichips; The Economist



Three Ways for 3D Scaling (to continue “perf” Moore's Law)

3D NAND
Architecture

L,

¢
:
I
:
:
.
:

§Wm

\

SGS

-4

% NS
SH
SEE
N
:==
S
S

4((§(

Memory Holes

Source Plate
Memory Cell

Fab 2D chips; stack Fab “Decks” that A
with TSVs stack 3D Fa(bNrAe;I: EL::;C:)“S
(high BW memory) (Intel Optane)

Works; expensive Tricky; medium cost Holy Grail but difficult
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Computer Architecture’s
Eternal Questions & Outline

How best to do these
interacting factors:

1.—Compute(longest)
Memory (longer)
Interconnect/networking
Storage

Security

Power

Cooling

©® N O U A~ WN

*Bonus new question*

(C) Mark D. Hill




Memory: Vast, Fast, Synchronous DDR = Untenable

Average Real $ / GB of DRAM Source: Objective Analysis Monthly DRAM Average Selllng Price
$7.50 T ' 1
$10,000.00
$7.00 T4
‘ ]
- ' ] 1 -
$6.50 N | | | " 41% increase
$1,000.00 $6.00 +—July-18¢ 3 : i _Jan-Aug 2021
i W : : Aug-21
$5.50 : $4.77
$5.00 ol i i
3 $100.00 - i | .\. ]
> $4.50 - - i iJan-21 g /
R .. Dec-19 | 1153.37
$4.00 | & e i — £
$10.00 $3.50 - . = i, P 3;1 . $4.62
; ee e “ - L *. ‘
$3.00 G - =
$1.00 $2.50 | | |
2002 2004 2006 2008 2010 2012 2014 2016 2018 2018 2019 2020 2021

Source: WSTS, IC Insights

Advanced 1T DRAM Cells

DDR DRAM price not scaling = poor 2D scaling
=» With DDR only, future cores/socket growth slows

Force Response: Two-Tier Memory (c.f., Multicore)

Trench Cell Stacked-capacitor Cell
@ Digital Integrated Circuits™ Memories



CXL Type 3 enables two-level memory Memory Buffers

Extended Memory w/ What Tier 2 tech?
¢ MOI’G DDR5 ! Processor
 Emerging Memory Technologies

How manage? CXL
1. Auto-HW, e.g., Intel Flat Memory Mode
E.g., Managing Memory Tiers with CXL ... [OSDI 2024]
2. Hypervisor Managed with latency- 5
sensitive pages in DDRS
3. Application Aware (Explicit)

*+ Memory BW expansion

E.g. Two-level database buffer pool + Memory capacity expansion

» Storage Class Memory




After CXL extended memory: Pooling & Sharing

Many-socket HW coherence
support withering. What about
analytic databases?

Memory Buffers Memory Buffers

o
Processor Processor

CXL Opportunity

« Connect several sockets to
same CXL memory

1. Pooling: each region attached

by one socket at a time

E.g., Pond pooling [ASPLOS23]
2. Structured Sharing with L Memery sy eepanion L Memory conachy expansion
||m|'ted HW Coherence « Storage Class Memory - Storage Class Memory
E.g., Tigon: Distributed DB [OSDI'25]

PROTOCOLS PROTOCOLS

(COM

26



Memory: Processing In Memory (PIM) e 1l

Usually, move all data to CPU(s)

PIM: Move compute to vast data in memory
* A high pain, high grain opportunity

Old idea revived by

1. Conventional compute’s energy problems

2. Important apps: Deep Learning & Recommendation
3. Attention from serious memory vendors

lobst [1995]

Gokhale,Holm

Processing NEAR memory
as more likely IMHO, e.g.,

Hardware Architecture and Software Stack for PIM logic die under HBM stack

Based on Commercial DRAM Technology
«vSukhan Lee, et al., Samsung, ISCA Industrial Track, June 2021 27

Alternatives: Processing {In, Near} Memory



Whither Al (Inference) Memory Hierarchies?

Model fits in HBM; KV Cache does NOT;
With PagedAttention, fetch multi-MB blocks 16 TB/s 0.5 TB/s

Performance determined by Bandwidth!
Consider 100% bandwidth-bound extreme — computation hidden
* 16 TB/s HBM bandwidth

e 0.5TB/s LPDDR bandwidth

« What fraction of data from LPDDR yields best performance?



Answer: Have LPDDR source 3% Data

Why?
£ 12 i 29 from LBDDR Want LPDDR & HBM data
= oo = Peak Perf transfers to end together
3 LPDDR provides 3% BW
£ 10% from LPDDR = 0.5/(16.0 +0.5)
% 60% > 309% Perf Have LPDDR transfer 3% of
ks needed data
g l Is HBM size sufficient to
T L hold 97% of needed data?
g o}
z

NG
X

What if N memory levels?
0.0% 5.0% 10.0% 15.0% 20.0% 25.0%

Percent Data Sourced from LPDDR What If cachlng aIIowed?



Whither N Memory Levels?

Principle (without caching):

Memory-BW-bound workloads maximize performance when they
source data from each memory level proportional to its bandwidth

Perhaps known to HW people; good & simple for SW people

Memory hierarchies determined by BW # Classic CPU ones



Work in Progress

Impact of “"Caching” LPDDR Data in HBM

Let ALL LPDDR data transfer to HBM first
HBM provides all data to compute

Both at 97% using HBM BW only

16 TB/s 4;005 TB/s

20.0% one LPDDR transfer enables many HBM transfers

as LPDDR
data to HBM 49% = 5x

uses some | Caching Reuse

20.0%

20% Direct

120.0%
SCj / / Direct transfer peaks at 3% using HBM & LPDDR BW perfectly in parallel
o 000%
- f Both decline rapidly when moving too much data with limited LPDDR BW,
o wo Caching and it doesn’t matter if LPDDR data goes to HBM or not
T declines
&) 60.0% | .

slowing KEY: Caching moves location left on x-axis whenever

8 moving
N
©
&
| -
O
Z

0.0%

- - ™ - ™ - ™ = ¥ ™ — — —

Percent Data in LPDDR

Direct Transfers === Cachein HBM



Computer Architecture’s
Eternal Questions & Outline

How best to do these
iInteracting factors:

1.—Compute(longest)
2.—Memory-(longer)
3. Interconnect/networking < CXL & UCle

already covered
4—Storage y
Security

Power
Cooling

© N o v

*Bonus new question*

(C) Mark D. Hill




Three Data (Al) Center Networks (https://arxiv.org/abs/2508.08906)

_/

1500m, 100+us

Frontend Network

Node N-1 \

35


https://arxiv.org/abs/2508.08906

£thernet

Consor tium

Ultra Ethernet (https://ultraethernet.orgy) Ultra

Started by Alphabet, AMD, Arista, Atos, Broadcom, Cisco, HPE, Intel, Meta, Microsoft, Oracle, but many more now

Goal: Provide a high-performance low-cost Ethernet-based solution for
emerging Al and other high-bandwidth low-latency workloads

Insight: Improve Ethernet by focusing
 Workloads in a data center

» Rather than arbitrary Internet
 Most changes to transport layer (beyond TCP)

Insight: Use smarter NICs as
compute improving faster than BW

Targeted solutions: connectionless packet delivery, packet spraying,
optional relaxed ordering, phase-aware congestion control, & more

Multiple switches & network interface cards (NICs) under development .,


https://ultraethernet.org/

Security: Confidential Compute (CC)

Cloud Providers Now:
* Promise to protect your data/code from outsider/insider threats

With Confidential Compute
* Your data/code is cryptographically protected from both threats

* Hard: Root of trust, attestation, inter-package comm encrypted,
memory/storage w/ data/address/replay protected, ...
» Can expand markets, but correctness/efficiency challenges

CC: https://queue.acm.org/detail.cfm?id=3456125 [ACM Queue’21] & ACM Queue Jul/Aug’'23 issue
OpenSource Root-of-Trust: https://petri.com/microsoft-caliptra-open-source-root-of-trust/

Azure Sphere (loT): https://aka.ms/7properties

New ideas & accelerators must be compatible with CC.
E.g., accelerator or switch trusted to manage tenant crypto keys? 39
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Power: loT to Cloud Varies

Wearables/loT/Mobile: Energy (battery life)
* Save energy: Use little energy ~idle
 Add energy: E.g., harvesting

Cloud: Constant Power
 Mega-datacenters pay for fixed power

* Using less power doesn’t save money
 How to use constant power well?

* Intermittent, renewable power expanding

https://www.microsoft.com/en-us/research/uploads/prod/2020/10/Per-VM-Capping-ATC21.pdf
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Cooling

Sicover "

Si substrate

Air w/ heat sink Cold plate Microfluidics Immersion (1 or 2 phase)???

. . . |
Data Centers are becoming gigantic supercomputers! Sllalf o

How might these interact with access to vast
computer architecture’s other eternal questions? compute,
memory, &

https://news.microsoft.com/innovation-stories/datacenter-liquid-cooling/

storage?
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. e How to reduce provisioned power
(Bonus) SUStamabII'tY' (scope 2) & Si area (scope)? 3)?

| said comp arch’s questions don’t change but
George Box: All models are wrong, but some are useful.

New: Make Computing
More Sustainable?

Green House Gas SCOPE1 SCOPE2 SCOPE3
E m i SS io n SC O p es Direct emissions from Indirect emissions from All other emissions

operations purchased energy associated with a
company's activities

US EPA: https://www.epa.gov/ghgemissions
Microsoft seeks carbon negative by 2030, https://www.microsoft.com/en-us/corporate-responsibility/sustainability

See also Harvard & Facebook/Meta HPCA 2021 (https://ieeexplore.ieee.org/document/9407 142/)
& ISCA 2022 ( https://dl.acm.org/doi/epdf/10.1145/3470496.3527408 )
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Computer Architecture’s Eternal Questions & Outline

How best to do these interacting factors:

CONOULANWN®=

Compute: accelerators, deep learning, & many
Memory: 2D scaling dead & processing near memory
Interconnect/network: protocols/optics

Storage: mind the gaps

Security: confidential compute

Power: |oT to cloud varies

Cooling: consider cold plate & its impact

New: Sustainability: whither emission scopes 1, 2, & 37
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