
COMMUNICATIONS OF THE ACM October 2004/Vol. 47, No. 10 71

Table 1 identifies four to six performance mile-
stones over the last 20 to 25 years for microprocessors,
memory, networks, and disks. The microprocessor
milestones are six generations of IA-32 processors,
going from a 16-bit bus, microcoded 80286 to a 64-
bit bus, superscalar, out-of-order execution, super-
pipelined Pentium 4. Memory module milestones go
from 16-bit wide, plain DRAM to 64-bit wide dou-
ble data rate synchronous DRAM. Ethernet advanced
from 10Mbps to 10Gbps. Disk milestones are based
on rotation speed, improving from 3600RPM to
15000RPM. In each case we record best-case band-
width and record latency as the time for a simple
operation assuming there is no contention.

Figure 1 plots the relative improvement in band-

width and latency for each of those milestones. Per-
formance is the primary differentiator for micro-
processors and networks, so they have seen the
greatest gains: 1000–2000X in bandwidth and
20–40X in latency. Capacity is generally more impor-
tant than performance for memory and disks, so
capacity has improved most, yet their bandwidth
advances are still much greater than their gains in
latency. Clearly, bandwidth has outpaced latency
across these technologies.

To find a rule of thumb to quantify the trends,
Table 2 summarizes the average improvement for each
of these technologies. The first three rows give the
annual rate of improvement in latency, capacity, and
bandwidth. The next row shows how many years it

LATENCY LAGS
BANDWITH
Recognizing the chronic imbalance between
bandwidth and latency, and how to cope with it.

B y D a v i d A . P a t t e r s o n

As I review performance trends, I am struck by a consistent
theme across many technologies: bandwidth improves much
more quickly than latency. Here, I list a half-dozen perfor-
mance milestones to document this observation, many rea-

sons why it happens, a few ways to cope with it, a rule of thumb to
quantify it, plus an example of how to design systems differently based
on this observation.

72 October 2004/Vol. 47, No. 10 COMMUNICATIONS OF THE ACM

takes bandwidth to double at that
annual rate of improvement. The
last two rows show the advance in
capacity and latency in that
bandwidth doubling time.

To see if the results hold when
performance improves rapidly,
Table 3 illustrates a more recent
version of same information, this
time limited to the three latest
milestones. The time for band-
width to double in the last decade
has indeed shrunk, especially for
networks. However, the relative
improvements in latency over
that shorter time are still similar
to the latency improvements over
the longer time of Table 2.

Thus, using either the last two
decades, or just the more recent
period, performance advances of
these four disparate technologies
is captured by the following rule
of thumb:

In the time that bandwidth dou-
bles, latency improves by no more
than a factor of 1.2 to 1.4.

A more dramatic statement is
that bandwidth improves by at
least the square of the improvement
in latency. Note that even in these
performance-oriented versions of
memory and storage, capacity
improves more rapidly than
bandwidth.

Reasons for Bountiful
Bandwidth but Lagging
Latency
“There is an old network saying:
Bandwidth problems can be cured
with money. Latency problems are
harder because the speed of light is
fixed—you can’t bribe God.”

—Anonymous

Table 1. Performance milestones in
bandwidth and latency for processors,
memory modules, local area networks,
and disks [3, 5].

Given the record of
advances in bandwidth ver-
sus latency, the logical
question is why? Here are
five technical reasons and
one marketing reason.

1. Moore’s Law helps
bandwidth more than
latency. The scaling of
semiconductor processes
provides both faster transis-
tors and many more on a
chip. Moore’s Law predicts
a periodic doubling in the
number of transistors per
chip, due to scaling and in
part to larger chips;
recently, that rate has been
22–24 months [6]. Band-
width is helped by faster
transistors, more transis-
tors, and more pins operat-
ing in parallel. The faster
transistors help latency, but
the larger number of tran-
sistors and the relatively
longer distances on the
actually larger chips limit
the benefits of scaling to
latency. For example,
processors in Table 1 grew by more than a factor of
300 in transistors, and by more than a factor of 6 in
pins, but area increased by almost a factor of 5. Since
distance grows by the square root of the area, distance
in Table 1 doubled.

2. Distance limits latency. Distance sets a lower
bound to latency. The delay on the long word lines
and bit lines are the largest part of the row access time
of a DRAM. The speed of light tells us that if the
other computer on the network is 300 meters away, its
latency can never be less than one microsecond.

3. Bandwidth is generally easier to sell. The non-
technical reason that latency
lags bandwidth is the marketing
of performance: it is easier to
sell higher bandwidth than to
sell lower latency. For example,
the benefits of a 10Gbps band-
width Ethernet are likely easier
to explain to customers today
than a 10-microsecond latency

Ethernet, no matter which
actually provides better
value. One can argue that
greater advances in band-
width led to marketing
techniques to sell band-
width that in turn trained
customers to desire it. No
matter what the real chain
of events, unquestionably
higher bandwidth for
processors, memories, or
the networks is easier to
sell today than latency.
Since bandwidth sells,
engineering resources tend
to be thrown at band-
width, which further tips
the balance.

4. Latency helps band-
width. Technology im-
provements that help
latency usually also help
bandwidth, but not vice
versa. For example,

DRAM latency determines the number of accesses per
second, so lower latency means more accesses per sec-
ond and hence higher bandwidth. Also, spinning
disks faster reduces the rotational latency, but the read
head must read data at the new faster rate as well.
Thus, spinning the disk faster improves both band-
width and rotational latency. However, increasing the
linear density of bits per inch on a track helps band-
width but offers no help to latency.

5. Bandwidth hurts latency. It is often easy to
improve bandwidth at the expense of latency. Queuing
theory quantifies how buffers help bandwidth but
hurt latency. As a second example, adding chips to
widen a memory module increases bandwidth but the
higher fan-out on address lines may increase latency.

6. Operating system overhead hurts latency. A
user program that wants to send a message invokes the

COMMUNICATIONS OF THE ACM October 2004/Vol. 47, No. 10 73

Figure 1. Log-log plot of
bandwidth and latency

milestones from Table 1
relative to the first milestone.

Table 2. Summary of annual
improvements in latency, capacity,
and bandwidth in Table 1.

operating system, which then invokes a network dri-
ver before hardware is accessed. This overhead is
amortized over large messages, and thus plays a
smaller role in bandwidth, but it can be a large part of
the latency for short messages.

These six reasons help explain why bandwidth has
outstripped latency since 1980, and why I expect it to
continue. Although there may well be innovations
that make a one-time reduction in latency in a given
technology, I believe they will occur within the con-
text of unrelenting improvement in bandwidth.

Coping with Bountiful Bandwidth but
Lagging Latency
“If a problem has no solution, it may not be a problem,
but a fact not to be solved, but to be coped with over
time.”

—Shimon Peres (“Peres’s Law”)

Despite this imbalance, latency
remains important for the inter-
active applications either on the
desktop or across a network: a
quick and predictable user inter-
action time is critical to produc-
tivity [3].

The bandwidth-latency imbalance may not be a
problem that can be solved in each technology; it may
instead be a fact with which we must cope in bring-
ing about more balanced systems. Here are three tech-
niques developed over the years to cope with this
imbalance. In fact, yet another reason for this trend
may be the relative difficulty of hiding bandwidth
shortages versus the plausibility of hiding some
latency using techniques like caching.

• Caching: Leveraging capacity to help latency.
Processors first added caches to overcome the
long latency to memory, relying on locality of ref-
erence to allow a small fast memory to capture
most accesses. About half of the area of existing
large microprocessor chips is for caches. File sys-
tems routinely use a large fraction of current large
main memory to act as a file cache to try to avoid
going to disk, and disks today include caches of
many megabytes to try to avoid accessing the disk
surface.

• Replication: Leveraging capacity to again help
latency. The increase in capacity of memory and
storage makes affordable copies of data to reduce
latency. Thus, ISPs often use multiple sites spread
across the country in part to reduce the network
latency to users. Storage systems that duplicate
data for dependability may also read the copy

that is closest to the disk read head to reduce
latency. Processors replicate registers in clusters of
functional units to reduce their latency.

• Prediction: Leveraging bandwidth to again help
latency. Rather than wait until the computer
knows what it wants, designers are increasingly
using techniques that guess in advance and con-
tinue with high performance when they guess
correctly. Thus, processors predict early whether a
branch is taken, and processors, caches, memory,
and disk controllers prefetch data.

Note that these three approaches are not panaceas,
as they all have their drawbacks. Caches can have high
miss rates, keeping replicas coherent is complicated
and may need a great deal of communication, and

predictions require recovery mechanisms and can
interfere with performance when predictions are
wrong. Nevertheless, they often work.

Optimistically speaking, these three techniques
should increase in popularity to cope with perfor-
mance advances that emphasize bandwidth over
latency. Pessimistically speaking, such techniques are
now fully deployed and it may be more difficult to
find the next set of tricks to help cope. By this line of
argument, the bandwidth-latency imbalance may be
even more evident in the future.

Thus, in addition to coping with relatively higher
latency, we should consider new ways to engineer sys-
tems with lower latency. The imbalance in these four
technologies is a result in part of design decisions and
engineering investments. For each of these technolo-
gies, it may be possible to improve latency at either
higher costs or by lowering bandwidth a little, which
we have in excess. For example, DRAM blocks and
interfaces could be redesigned to emphasize latency at
higher cost per Mb, and SCSI disks already demon-
strate lower latency than ATA disks at higher cost per
GB. The difficulty of marketing latency innovations
is one of the reasons latency has received less attention

74 October 2004/Vol. 47, No. 10 COMMUNICATIONS OF THE ACM

Table 3. Summary of annual improvement in latency, capacity,
and bandwidth for the three most recent milestones in Table 1.

thus far, and this obstacle must be addressed if we are
to feature latency. Perhaps we can draw inspiration
from the more mature automotive industry, which
advertises time to accelerate from 0-to-60 miles per
hour in addition to peak horsepower and top speed.

So What?
If everything improves at the same rate, then noth-
ing really changes. When rates vary, we see real dis-
location that in turn requires real innovation.

If you agree with this observation, how should it
affect what you build? Table 1 shows performance
milestones recently occurred every three or four years.
As successful systems last much longer than three or
four years, your design decisions should work well
across several new milestones.

Let’s pick a hypothetical example. Suppose you are
designing a storage system that keeps multiple replicas
of data at different remote sites to ensure data depend-
ability. Caching is an obvious choice to reduce latency.
Your design could take advantage of the replicas by
making requests from the one that tends to be fastest
or by making multiple requests to multiple copies and
just using the fastest reply. Prefetching should also be
considered, as the downside to prefetching will
decline over time. You might have a choice between a
chatty protocol that uses many small messages or one
that uses few very large ones. Bandwidth advances
favors the latter, even if you ultimately send more
bytes. Depending on the mixture of reads and writes,
you might select a log-structured file system for each
remote site since its performance is tied to disk band-
width whereas the performance traditional update-in-
place file systems are tied to disk latency. Finally, you
might also want to accumulate data into large block
sizes, as these would be a good match to the increas-
ing bandwidth of the memory and the disks.

Thus, new designs should consider caching, repli-
cation, and prediction, as these techniques have
worked well in the past. In addition, there will be
design decisions where latency advances would lean
one way while bandwidth advances would lean
another. I would lean toward bandwidth.

Hardware and software innovators may look across
disciplines to find techniques that can turn band-
width into useful performance, as the increasing
imbalance requires invention. Since processors are
often the first to face these obstacles, they have been a
rich source of inspiration for others. To try to cope
with further imbalance, processor designers have con-
sidered predicting the value of an operand before it is
calculated in order to let computation proceed.
Latency to memory is approaching the time to exe-
cute a thousand instructions, so we may see tech-

niques like recalculation instead of going to memory
to fetch a value. Perhaps such exotic solutions will
inspire novel approaches to join caching, replication,
and prediction as important techniques to help cope
with the bountiful bandwidth but limited latency.

Conclusion
We have seen rapid performance advances in proces-
sors, memories, networks, and disks since 1980. Fig-
ure 1 shows that bandwidth has improved much
more than latency. This article discusses six reasons
why this imbalance occurs, and notes that caching,
replication, and prediction help cope with it.

From a system’s perspective, you can argue that Fig-
ure 1 understates the case, as using multiple compo-
nents multiplies bandwidth without helping latency.
For example, there are greater bandwidth gains using
multiple disks in a disk array, simultaneous commu-
nication in a switched network, multiple memory
modules in a large memory, or multiple processors in
a cluster or shared memory multiprocessor.

This article offers a rule of thumb to set expecta-
tions of products in four disparate technologies: in the
time that bandwidth doubles, latency improves by no
more than a factor of 1.2 to 1.4; stated more simply,
bandwidth grows by at least the square of the
improvement in latency. I expect this ratio of band-
width-latency advances will hold for the foreseeable
future. Hardware and software developers should plan
accordingly.

References
1. Gries, M. A survey of synchronous RAM architectures. Computer Engi-

neering and Networks Laboratory (TIK). Zurich, Germany, (Apr. 1999).
2. Grochowski, E. and Halem, R. Technological impact of magnetic hard

disk drives on storage systems. IBM Systems J. 42, 2 (July 2003), 338-346.
3. Hennessy, J. and Patterson, D. Computer Architecture: A Quantitative

Approach. Morgan Kauffman, San Francisco, CA, 1990, 1996, 2003.
(Most of the historical data in Table 1 comes from the three editions of
this book.)

4. IC Knowledge. History of the Integrated Circuit; www.icknowledge.
com/history/history.html (2003)

5. Patterson, D. and Hennessy, J. Computer Organization and Design: The
Hardware/Software Interface. Morgan Kauffman San Francisco, CA,
1994, 1998, 2004. (Some historical data in Table 1 comes from the three
editions of this book.)

6. Ross, P. 5 commandments of engineering. IEEE Spectrum (Dec. 2003).

David A. Patterson (patterson@cs.berkeley.edu) is the Pardee
Professor of Computer Science at the University of California at
Berkeley. He is also the president of ACM.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

© 2004 ACM 0001-0782/04/1000 $5.00

c

COMMUNICATIONS OF THE ACM October 2004/Vol. 47, No. 10 75

