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The Origin of TPUv2



Late 2013
● TPUv1 project started

○ TPU = Tensor Processing Unit, an example of a DSA
○ DSA = Domain-specific architecture
○ Tensor = multidimensional array

● Provided >10X better perf/TCO than contemporary alternatives
○ perf/TCO = end-to-end performance / total cost of ownership (including power over lifetime)
○ Simple to deploy PCIe card
○ But it only accelerates inference

4From ISCA 2017

https://arxiv.org/abs/1704.04760


Late 2014
● TPUv1 was being fabbed
● We realized training capability was the limiting factor to producing models
● People thought a DSA chip for ML training would be too complicated to build

5



Late 2014
● TPUv1 was being fabbed
● We realized training capability was the limiting factor to producing models
● People thought a DSA chip for ML training would be too complicated to build
● So we decided to build a DSA chip plus an ML training supercomputer! 😀
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Basic Plan

● Don’t invent anything more than necessary
○ Required to meet aggressive schedule
○ TPU team only ~3X larger than CDC 6600 team

■ Aside: 6600 was a DSA for HPC vs. general-purpose 360 for all applications

● Codesign from compiler down to chip physical design
○ Early XLA team part of design team

● Start from a typical vector CPU architecture and add matrix operations
○ Similar to how the Cray-1 extended previous scalar machines with vector operations
○ Advantage: start with an architecture type having compilers and add stuff
○ Leverage known compiler techniques for handling matrices in HPC (e.g., blocking, loop unrolling)

● Connect chips with very high bandwidth torus
○ Non-coherent distributed shared memory
○ Much higher bandwidths with lower costs than a datacenter network like ethernet or infiniband
○ Similar to the Cray T3E, but simpler

7

Thomas J. Watson Jr.’s 1963 IBM memo on the CDC6600:

https://en.wikipedia.org/wiki/Cray-1
https://en.wikipedia.org/wiki/Cray_T3E
https://www.computerhistory.org/revolution/supercomputers/10/33/62


Cray-1 Architecture

8

This part looks 
like previous 
CDC6600 and 
CDC7600 
machines

Circa 1975

https://en.wikipedia.org/wiki/Cray-1


Cray-1 Architecture

9

This part looks 
like previous 
CDC6600 and 
CDC7600 
machines

Cray-1 added 
vector hardware 
in a consistent 
manner

Circa 1975

https://en.wikipedia.org/wiki/Cray-1


Aside: Tensor Processing and Computer History
● The universe is built with tensor fields

○ Einstein’s general theory of relativity is expressed in tensor mathematics

● Computers have been working on tensor problems since Eniac
○ Original Eniac mission was computing artillery tables based on ballistics vs. temperature, wind 

speed, and direction

● Early computers tried to accelerate matrix operations with multiple scalar issue
○ IBM ACS project involving up to 200 people from 1961-1969 without resulting in a product

● Cray accelerated them with vectors
○ The Cray architecture in the 1970’s

● Only recently (thanks to Moore’s Law) have we been able to build machines that 
can natively operate on >100x100 matrices in 1 cycle (albeit at lower precision)

○ TPUs
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https://en.wikipedia.org/wiki/Field_(physics)
https://en.wikipedia.org/wiki/Mathematics_of_general_relativity
https://en.wikipedia.org/wiki/ENIAC#:~:text=Although%20ENIAC%20was%20designed%20and,feasibility%20of%20the%20thermonuclear%20weapon.
https://en.wikipedia.org/wiki/IBM_Advanced_Computer_Systems_project
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Requirements: Training vs. Inference



Training and Inference Are Very Different Problems
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Training Inference

Operations per solution 3.5 x 1020 (MLP0) 1.2 x 108 (MLP0)

Solution latency Hours or days 7-10 milliseconds

Location Key ML hubs >20 locations worldwide

Data size Petabytes Modest real-time user input

Metrics Perf/TCO and capability Perf/TCO at latency goal
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Training Inference

Operations per solution 3.5 x 1020 (MLP0) 1.2 x 108 (MLP0)

Solution latency Hours or days 7-10 milliseconds

Location Key ML hubs >20 locations worldwide

Data size Petabytes Modest real-time user input

Metrics Perf/TCO and capability Perf/TCO at latency goal

So do we need different architectures for training and inference?

No.  We’ll show how to support both with the same DSA.



Overview of Inference Goals at Google
● Support high-velocity new model deployment

○ WYTIWYS (What You Train Is What You Serve)
○ Move from training to serving in minutes, not months
○ Leverage biggest investment: models and software

● Support many inference models on one device
○ Multitenancy (supported with HBM memory) 

● Serve models with the required latency goal: SLO 
○ SLO = Service Level Objective
○ Provide low TCO without sacrificing flexibility
○ BTW, lower latency than required wastes resources

● Enables rapid rollout of new product capabilities
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WYTIWYS?
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WYTIWYS

● WYTIWYS: What You Train Is What You Serve
○ Use same software stack for inference and training
○ Performance correlation - if it trains well, inference on same core should work similarly
○ Provides same exception behavior - if it trains well, inference shouldn’t cause an exception
○ Avoids accuracy problems - some customers have very stringent requirements

■ Subtle quantization problems delayed rolling out a TPUv1 model by months
● Luiz Barroso: “We want to train models overnight and deploy them the next day 

without the involvement of anyone with ML experience.”
○ This is possible with WYTIWYS
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Training Serving



Multitenancy

● Many inferencing applications need to support multiple models
○ Near zero switching time between models (e.g., <100 us)

● Examples:
○ Main model plus experimental models at various load percentages
○ Translate - many different language pairs and models
○ Securely timeshare a TPU among multiple customers

● Poses challenges for SRAM-only inference architectures
○ Loading parameters from host when switching between models is slow

● HBM (High Bandwidth Memory) enables seamless switching
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Aiming Ahead of Our Moving Target



Image Model Size Over Time

21

Parameter size of Imagenet models vs. time. Compute Requirements of Imagenet models vs. time. 

~10X model size growth in 4 years = 78% per year
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Platforms Performance 22

Translate Model Size Trends

Recent research directions:
● Gshard multilingual neural machine translation transformer model with sparsely-gated 

mixture-of-experts with up to 600B parameters!

Continued benefit with 15x larger models

GPipe Paper

https://arxiv.org/abs/2006.16668
https://arxiv.org/pdf/1811.06965.pdf
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SRAM Scaling Trends

23
Data from WikiChip

https://en.wikichip.org/wiki/16_nm_lithography_process
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Platforms Performance

SRAM Scaling Trends
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On-chip SRAM not 
scaling; >10X gap

Data from WikiChip

https://en.wikichip.org/wiki/16_nm_lithography_process


1+ year design, 1+ year deployment, 3+ year service
● Scrimping on memory can be one of the easiest ways to reduce cost
● But memory requirements have grown incessantly since the first computers

○ EDSAC (1949) only had 1KB of memory
○ Remember “640KB ought to be enough for anybody”?

● At current rates in next 5 years, model memory requirements could grow by:
○ 1.755 = 16X!
○ But on-chip SRAM isn’t scaling!

● Need a memory hierarchy with DRAM
○ On-chip SRAM plus off-chip high-bandwidth memory

● Adequate memory provisioning raises costs in the near term
○ But increases the useful lifetime dramatically -> net positive
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https://en.wikipedia.org/wiki/EDSAC
https://quoteinvestigator.com/2011/09/08/640k-enough/
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Implementation Tradeoffs



● 2014 data from Mark Horowitz’s Computing's Energy Problem:

●

SRAM Accesses Consume a Lot of Power

https://ieeexplore.ieee.org/document/6757323/figures#figures


● 2014 data from Mark Horowitz’s Computing's Energy Problem:

●

● Since 2014 computation has gotten ~3X cheaper but SRAM is still about the same

SRAM Accesses Consume a Lot of Power

https://ieeexplore.ieee.org/document/6757323/figures#figures


● 2014 data from Mark Horowitz’s Computing's Energy Problem:

●

● Since 2014 computation has gotten ~3X cheaper but SRAM is still about the same

∴ Data reuse is REALLY important for efficiency (and FLOPs are cheap)

SRAM Accesses Consume a Lot of Power

https://ieeexplore.ieee.org/document/6757323/figures#figures
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● VLIW Architecture
○ Leverage known compiler techniques

● Linear Algebra ISA
○ Scalar, vector,  and matrix
○ Built for generality



TPU Core: Scalar Unit

● 322b VLIW bundle
○ 2 scalar slots
○ 4 vector slots (2 for load/store)
○ 2 matrix slots (push, pop)
○ 1 misc slot
○ 6 immediates

● Scalar Unit performs:
○ Full VLIW bundle fetch and decode
○ Scalar slot execution
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TPU Core: Matrix Multiply Unit

● 128 x 128 systolic array
○ Streaming LHS and results
○ Stationary RHS (w/ optional transpose)

● Numerics
○ bfloat16 multiply

■ {s, e, m} = {1, 8, 7}
○ float32 accumulation
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TPU Core: Transpose, Reduction, Permute Unit

● Efficient common matrix transforms
○ Transpose
○ Reduction
○ Permutation

● Reshuffle data across vector lanes



Memory System

HBM

TPU Core

● Loads and stores against SRAM 
scratchpads

● Provides predictable scheduling 
within the core

● Can stall on sync flags

● Accessible through 
asynchronous DMAs

● Indicate completion in 
sync flags



“Speeds and Feeds”
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Non-coherent Shared Memory Interconnect

Interconnect
Router

LinkLink

LinkLink

Core Core

● On-die router with 4 links

● 500 Gbps per link

● Assembled into 2D torus

● Software view:

○ Uses DMAs just like HBM

○ Restricted to push DMAs

○ Simply target another 
chip id



Floorplan

= Compute

= Memory

= Host

= Interconnect

= Routing



TPUv3



TPU Core 0

Matrix
Multiply

Unit

Vector
Unit Transpose / 

Permute Unit

HBM

PCIe
Queues

Interconnect
Router

Scalar
Unit

Li
nk

Li
nk

Li
nk

Li
nk

TPU Core 1

Matrix
Multiply

Unit

Vector
UnitTranspose / 

Permute Unit

HBM

Scalar
Unit

PCIe
Queues

= Compute

= Memory

= Host

= Interconnect

Start With a TPUv2



TPU Core 0

Matrix
Multiply

Unit
Vector
Unit Transpose / 

Permute Unit

HBM

PCIe
Queues

Interconnect
Router

Scalar
Unit

Li
nk

Li
nk

Li
nk

Li
nk

TPU Core 1

Vector
UnitTranspose / 

Permute Unit

HBM

Scalar
Unit

PCIe
Queues

= Compute

= Memory

= Host

= Interconnect

Matrix
Multiply
Unit (2x)

Matrix
Multiply

Unit

Matrix
Multiply
Unit (2x)



TPU Core 0

Matrix
Multiply

Unit
Vector
Unit Transpose / 

Permute Unit

HBM

PCIe
Queues

Interconnect
Router

Scalar
Unit

Li
nk

Li
nk

Li
nk

Li
nk

TPU Core 1

Vector
UnitTranspose / 

Permute Unit

HBM

Scalar
Unit

PCIe
Queues

= Compute

= Memory

= Host

= Interconnect

Matrix
Multiply
Unit (2x)

Matrix
Multiply

Unit

Matrix
Multiply
Unit (2x)

+30% freq +30% freq



TPU Core 0

Matrix
Multiply

Unit
Vector
Unit Transpose / 

Permute Unit

HBM

PCIe
Queues

Interconnect
Router

Scalar
Unit

Li
nk

Li
nk

Li
nk

Li
nk

TPU Core 1

Vector
UnitTranspose / 

Permute Unit

HBM

Scalar
Unit

PCIe
Queues

= Compute

= Memory

= Host

= Interconnect

Matrix
Multiply
Unit (2x)

Matrix
Multiply

Unit

Matrix
Multiply
Unit (2x)

+30% freq

+30% b/w

+30% freq

+30% b/w



TPU Core 0

Matrix
Multiply

Unit
Vector
Unit Transpose / 

Permute Unit

HBM

PCIe
Queues

Interconnect
Router

Scalar
Unit

Li
nk

Li
nk

Li
nk

Li
nk

TPU Core 1

Vector
UnitTranspose / 

Permute Unit

HBM

Scalar
Unit

PCIe
Queues

= Compute

= Memory

= Host

= Interconnect

Matrix
Multiply
Unit (2x)

Matrix
Multiply

Unit

Matrix
Multiply
Unit (2x)

+30% freq

+30% b/w

2x capacity

+30% freq

+30% b/w

2x capacity



TPU Core 0

Matrix
Multiply

Unit
Vector
Unit Transpose / 

Permute Unit

HBM

PCIe
Queues

Interconnect
Router

Scalar
Unit

Li
nk

Li
nk

Li
nk

Li
nk

TPU Core 1

Vector
UnitTranspose / 

Permute Unit

HBM

Scalar
Unit

PCIe
Queues

= Compute

= Memory

= Host

= Interconnect

Matrix
Multiply
Unit (2x)

Matrix
Multiply

Unit

Matrix
Multiply
Unit (2x)

+30% freq

+30% b/w

2x capacity

+30% b/w

+30% freq

+30% b/w

2x capacity



TPU Core 0

Matrix
Multiply

Unit
Vector
Unit Transpose / 

Permute Unit

HBM

PCIe
Queues

Interconnect
Router

Scalar
Unit

Li
nk

Li
nk

Li
nk

Li
nk

TPU Core 1

Vector
UnitTranspose / 

Permute Unit

HBM

Scalar
Unit

PCIe
Queues

= Compute

= Memory

= Host

= Interconnect

Matrix
Multiply
Unit (2x)

Matrix
Multiply

Unit

Matrix
Multiply
Unit (2x)

+30% freq

+30% b/w

2x capacity

+30% b/w

4x nodes

+30% freq

+30% b/w

2x capacity



TPU Core 0

Matrix
Multiply

Unit
Vector
Unit Transpose / 

Permute Unit

HBM

PCIe
Queues

Interconnect
Router

Scalar
Unit

Li
nk

Li
nk

Li
nk

Li
nk

TPU Core 1

Vector
UnitTranspose / 

Permute Unit

HBM

Scalar
Unit

PCIe
Queues

= Compute

= Memory

= Host

= Interconnect

Matrix
Multiply
Unit (2x)

Matrix
Multiply

Unit

Matrix
Multiply
Unit (2x)

+30% freq

+30% b/w

2x capacity

+30% b/w

4x nodes

+30% freq

+30% b/w

2x capacity

Voila!  A TPUv3
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Supercomputer with Shared-memory Interconnect

• TPUv1: single-chip system—built as coprocessor to a CPU 
• Works well for inference

• TPUv2 & TPUv3: ML supercomputers 
• Multi-chip scaling critical for practical training times

• Single TPUv2 chip would take 60 - 400 days for 
production workloads



Supercomputer with Shared-memory Interconnect

TPUv2 boards = 4 chips 

TPUv2 supercomputer 
(256 chips)



TPUv3 boards = 4 chips TPUv2 boards = 4 chips 

Supercomputer with Shared-memory Interconnect
TPUv2 supercomputer 
(256 chips)

TPUv3 supercomputer (1024 chips)



11.5 petaflops
4 TB HBM
2-D torus
256 chips

> 100 petaflops
32 TB HBM

Liquid cooled
New chip + larger-scale system

1024 chips

Supercomputer with Shared-memory Interconnect
TPUv2 supercomputer 
(256 chips)

TPUv3 supercomputer (1024 chips)



TPU Training Pod Architecture 
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• MultiLayer Perceptrons (MLP) 

• MLP0 is unpublished  

• MLP1 is RankBrain [Cla15]

• Convolutional Neural Networks (CNN)  

• CNN0 is AlphaZero, which mastered the games chess, Go, and shogi [Sil18]

• CNN1 is an Google-internal model for image recognition

• Recurrent Neural Networks (RNN)

• RNN0 is a Translation model [Che18] 

• RNN1 is a Speech model [Chi18]

[Cla15]  Clark, J. October 26, 2015, Google Turning Its Lucrative Web Search Over to AI Machines. Bloomberg Technology.
[Che18] Chen, M.X. et al, 2018. The best of both worlds: Combining recent advances in neural machine translation. arXiv preprint arXiv:1804.09849.
[Chi18]  Chiu, C.C. et al, 2018, April. State-of-the-art speech recognition with sequence-to-sequence models. In IEEE Int'l Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4774-4778.
[Sil18]   Silver, D. et al, 2018. A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science, 362(6419), pp.1140-1144.

6 Production Applications



● MLP0 & MLP1 

○ 40% & 14% of perfect linear scaling

○ Limited by embeddings

● CNN0 

○ 96% of perfect linear scaling!

● CNN1, RNN0, RNN1

○ 3 production apps run at 99% of 

perfect linear scaling at 1024 chips!

TPUv3 Supercomputer Scaling: 6 Production Apps 



● Improved scaling for newer larger models 

and SW improvements for better quality 

○ MLP0-next: 67% of perfect linear 

scale at 1024 chips

■ Up from 40% from MLP0

TPUv3 Supercomputer Scaling: MLP0-next vs. MLP0 



Compiler and software 
stack advances also sped 
up production apps:
● CNN0 1.8x (more 

bfloat16 use)

● MLP0 1.6x (better 
partitioning and 
placement of 
embeddings) 

Compiler and software 
stack optimizations enable 
larger models for improved 
accuracy

Software Speedup: MLPerf v0.5 vs. v0.6



● Inference similar to forward pass of training
● Bfloat16 numerics provide WYTIWYS in TPUv2/v3 vs int8 in TPUv1

TPUv1

TPUv2

TPUv2
Bigger Batch

TPUv3 
Bigger Batch 

Inference: TPUv2/v3 vs TPUv1



● Current chip technologies enable support 
of matrices as a fundamental data type

● When designing a new architecture it is 
important to learn from the lessons of past 
HW and SW

● Using the same HW and SW for both 
training and inference (WYTIWYS) supports 
reliable, accurate, and high-velocity model 
deployment

Key Takeaways

Used across many products
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