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Evolution of Personalized Recommendation
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Compute Footprint of Recommendation
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Compute Footprint of Recommendation
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Personalized Recommendation
At Data Center Scale
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How Do Recommender Systems Work?
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How Do Recommender Systems Work?
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How Do Recommender Systems Work?
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How Do Recommender Systems Work?
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How Do Recommender Systems Work?
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Ranking More Items Leads to Better
Recommendations

High
Throughput
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Ranking More Items Leads to Better
Recommendations
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Challenge: Embedding Tables

Storage Capacity Compute Intensity Memory Irregularity

Capacity (MB) Compute Intensity (FLOPs/Byte)

LLC Miss Rate (MPKI)
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[HPCA 2020] The Architectural Implications of Facebook’s DNN-based Personalized Recommendation. U. Gupta, C.-J. Wu, X. Wang, M. Naumoyv, B. Reagen, D. Brooks, B.
Cottel, K. Hazelwood, M. Hempstead, B. Jia, H.-H. Lee, A. Malevich, D. Mudigere, M. Smelyanskiy, L. Xiong, X. Zhang.

[ISCA 2020] RecNMP: Accelerating Personalized Recommendation with Near-Memory Processing. L. Ke, U. Gupta, B. Cho, D. Brooks, V. Chandra, U. Diril, A. Firoozshahian,
K. Hazelwood, B. Jia, H.-S. Lee, M. Li, B. Maher, D. Mudigere, M. Naumov, M. Schatz, M. Smelyanskiy, X. Wang, B. Reagen, C.-J. Wu, M. Hempstead, X. Zhang.
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Challenge: Model Heterogeneity

Three Facebook Recommendation Models

Number of embedding tables m
Size of embeddings mm
Number of lookups per table

[HPCA 2020] The Architectural Implications of Facebook’s DNN-based Personalized Recommendation. U. Gupta, C.-J. Wu, X. Wang, M. Naumov, B. Reagen, D. Brooks, B.
Cottel, K. Hazelwood, M. Hempstead, B. Jia, H.-H. Lee, A. Malevich, D. Mudigere, M. Smelyanskiy, L. Xiong, X. Zhang.
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Challenge: Model Heterogeneity

Three Facebook Recommendation Models

FC sizes
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[HPCA 2020] The Architectural Implications of Facebook’s DNN-based Personalized Recommendation. U. Gupta, C.-J. Wu, X. Wang, M. Naumov, B. Reagen, D. Brooks, B.
Cottel, K. Hazelwood, M. Hempstead, B. Jia, H.-H. Lee, A. Malevich, D. Mudigere, M. Smelyanskiy, L. Xiong, X. Zhang.
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Challenge: Model Heterogeneity

The Landscape of Modern Recommendation Models
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Challenge: Model Heterogeneity

Unique Categories of Recommendation Model Architecture

Attention-dominated
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Many embedding tables Deep, wide MLP layers
Tens to hundreds of lookups Many output DNN stacks
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Challenge: Optimal System Config Varies

Batch Sizes, Compute Platforms

GPUs begin to outperform CPUs
1024 max batch size
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Challenge: Performance Variance

Co-Location Across Different Compute Platforms

30 40 50
Co-Located models
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Characterizing Performance Acceleration with GPUs
Optimizing Neural Recommendation Inference At-Scale

Conclusion and Future Work
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System Implications of Model Heterogeneity

Model Architectures Play a Significant Role in Recommendation Inference Acceleration

I
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1080 Ti

Speedup over Broadwell

10° 10° Batch Size

[lISWC 2020] Cross-Stack Workload Characterization of Deep Recommendation Systems. S. Hsia, U. Gupta, M. Wilkening, C.-J. Wu, G.-Y. Wei, D. Brooks.
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System Implications of Model Heterogeneity

Model Architectures Play a Significant Role in Recommendation Inference Acceleration

Large Embedding Tables Limit Speedup

Speedup over Broadwell

10° 10° Batch Size

[lISWC 2020] Cross-Stack Workload Characterization of Deep Recommendation Systems. S. Hsia, U. Gupta, M. Wilkening, C.-J. Wu, G.-Y. Wei, D. Brooks.



System Implications of Model Heterogeneity

Model Architectures Play a Significant Role in Recommendation Inference Acceleration

Different Implementations of Attention
Mechanisms Lead to Varying GPU Speedup
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[lISWC 2020] Cross-Stack Workload Characterization of Deep Recommendation Systems. S. Hsia, U. Gupta, M. Wilkening, C.-J. Wu, G.-Y. Wei, D. Brooks.



Speedup Limited by Data Communication
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Speedup Limited by Data Communication

100%

O
©
()]
E —
Q { =
> O
e
O =
cC O
S 9
o w
u —
c S 1
: o 50,)
E -
(T
& O
O ©
o
i —.— DIN (1080 Ti) DIEN (1080 Ti)
8 5 0% DIEN (T4)

FACEBOOK Al



Optimal Hardware Varies
Across Model Architectures and Input Batch Size

Cascade Lake GTX 1080 Ti . T4
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[lISWC 2020] Cross-Stack Workload Characterization of Deep Recommendation Systems. S. Hsia, U. Gupta, M. Wilkening, C.-J. Wu, G.-Y. Wei, D. Brooks.




Optimal Hardware Varies
Across Model Architectures and Input Batch Size
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Let’s Consider Runtime Effects

Number of [tems to Rank VVaries across Queries
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Let’s Consider Runtime Effects

Number of [tems to Rank VVaries across Queries
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Let’s Consider Runtime Effects
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Let’s Consider Runtime Effects

Number of Items to Rank Varies across Queries
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System Heterogeneity At-Scale
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Optimal Hardware and Batch Sizes and Vary

When considering runtime effects

®PU speedup over CPU

I | 47 |1024ﬂ 23 |1024H 512 |1024| \VileYo[=)

Batch size

Embedding Attention Categories

[ISCA 2020] DeepRecSys: A System for Optimizing End-to-end At-scale Neural Recommendation Inference. U. Gupta, S. Hsia, V. Saraph, X. Wang, B. Reagen,
G.-Y. Wei, H.-S. Lee, D. Brooks, and C.-J. Wu.



Optimal Hardware and Batch Sizes and Vary
When considering runtime effects

MLP-based models readily
accelerated by GPU
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[ISCA 2020] DeepRecSys: A System for Optimizing End-to-end At-scale Neural Recommendation Inference. U. Gupta, S. Hsia, V. Saraph, X. Wang, B. Reagen,
G.-Y. Wei, H.-S. Lee, D. Brooks, and C.-J. Wu.



Optimal Hardware and Batch Sizes and Vary
When considering runtime effects
MLP-based models readily

Data communication dominates accelerated by GPU
run-time at low batch sizes
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[ISCA 2020] DeepRecSys: A System for Optimizing End-to-end At-scale Neural Recommendation Inference. U. Gupta, S. Hsia, V. Saraph, X. Wang, B. Reagen,
G.-Y. Wei, H.-S. Lee, D. Brooks, and C.-J. Wu.



Optimal Hardware and Batch Sizes and Vary
When considering runtime effects
MLP-based models readily

Data communication dominates accelerated by GPU
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run-time at low batch sizes
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G.-Y. Wei, H.-S. Lee, D. Brooks, and C.-J. Wu.

*



Optimal Hardware and Batch Sizes and Vary
When considering runtime effects
MLP-based models readily

Data communication dominates accelerated by GPU

run-time at low batch sizes
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Latency-bound QPS Optimization

Optimal execution depends on

Recommendation models
Al system architectures
CPUs vs. Al accelerators

Runtime characteristics
Query arrival and working set sizes
Application SLA requirement
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Latency-bound QPS Optimization
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Latency-bound QPS Optimization

1400 I

Inflection point for GPU > CPU

Optimal Query Size Threshold (Q)
Parallelism on CPUs

Optimal execution depends on

Recommendation models
Al system architectures
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Runtime characteristics
Query arrival and working set sizes

Application SLA requirement
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Latency-bound QPS Optimization

DeepRecSched uses simple hill-climb

ing search for
« optimal offloading threshold (Q), and
« batchsize

Recommendation models

Al system architectures
CPUs vs. Al accelerators

Runtime characteristics
Query arrival and working set sizes

Application SLA requirement
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Experimental Setup
More Detail in the Paper

DeepRecSys

Runtime recommendation query patterns (Poisson arrival & production
working set size)

8 Industry-Representative Deep Learning Recommendation Model
Architectures: DLRM-RM-1; DLRM-RM-2; DLRM-RM3; NCF; WND;

MTWND; DIN; DIEN

Experimental systems

Intel dual-socket Broadwell/Skylake CPUs; Intel MKL
NVIDIA GTX1080Ti; CUDA/cuDNN 10.1
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Evaluation Results
Performance and Power Efficiency Advantages

B Static scheduler I DeepRecSched-CPU I DeepRecSched-GPU

Performance
Latency-bounded throughput (QPS)
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o
o

Embedding MLP Attention
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[ISCA 2020] DeepRecSys: A System for Optimizing End-to-end At-scale Neural Recommendation Inference. U. Gupta, S. Hsia, V. Saraph, X. Wang, B. Reagen, G.-Y. Wei, H.-S.
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The proposed scheduler improves datacenter-scale efficiency
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Datacenter deployment (CPUs): 1.3x with production shadow traffic
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DLRM: Deep Learning Recommendation Model

A Configurable Benchmark for E2E Models
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DeepRecSys: Industry-Representative
Neural Recommendation Models

DeepRecSys: A System for Optimizing End-To-End At-

scale Neural Recommendation Inference

https://github.com/harvard-acc/DeepRecSys

DeepRecSys provides an end-to-end infrastructure to study and optimize at-scale neural recommendation
inference. The infrastructure is configurable across three main dimensions that represent different recommendation
use cases: the load generator (query arrival patterns and size distributions), neural recommendation models, and
underlying hardware platforms.

Neural recommendation models

This repository supports 8-industry representative neural recommendation models based on open-source
publications from various Internet services in Caffe2:

1. Deep Learning Recommendation Models (DLRM-RMC1, DLRM-RMC2, DLRM-RMC3); link
2. Neural Collaborative Filtering (NCF); link
3. Wide and Deep (WnD): link




MLPerf includes DLRM + Criteo Ads Dataset

A machine learning performance
benchmark suite with broad industry
and academic support
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MLPerf Includes DLRM + Criteo Ads Dataset

Recommendation Benchmark Advisory Board

Recommendation Model

Cover a diverse set of use cases with the goal to
optimize for both click-through-rate and
conversion-rate, as well as to improve long-term

Recommendation Datasets
Capture the degree of sparsity found in industry-

values

scale problems

Cover user- and item-features as well as user-
item interactions

[ArXiv 2020] Developing a Recommendation Benchmark for MLPerf Training and Inference. C.-J. Wu, R. Burke,
E. Chi, J. Konstan, J. McAuley, Y. Raimond, H. Zhang.

DEVELOPING A RECOMMENDATION BENCHMARK FOR MLPERF TRAINING
AND INFERENCE

Carole-Jean Wu' Robin Burke? Ed H. Chi® Joseph Konstan* Julian McAuley > Yves Raimond ¢
Hao Zhang’

1 INTRODUCTION

Deep learning-based recommendation models are used per-
vasively and broadly, for example, to recommend movies,
products, or other information most relevant to users, in
order to enhance the user experience. Among various ap-
plication domains which have received significant indus-
try and academia research attention, such as image clas-
sification, object detection, language and speech transla-
tion, the performance of deep learning-based recommenda-
tion models is less well explored, even though recommen-
dation tasks unarguably represent significant AI inference
cycles at large-scale datacenter fleets (Jouppi et al., 2017;
Wu et al., 2019a; Gupta et al., 2019).

To advance the state of understanding and enable machine
learning system development and optimization for the e-
commerce domain, we aim to define an industry-relevant
recommendation benchmark for the MLPerf Training and
Inference suites. We will refine the recommendation bench-
mark specification annually to stay up to date to the current
academic and industrial landscape. The benchmark will
reflect standard practice to help customers choose among
hardware solutions today, while also being forward looking
enough to drive development of hardware for the future.

The goal of this white paper is twofold:

e We present the desirable modeling strategies for per-
sonalized recommendation systems. We lay out desir-
able characteristics of recommendation model archi-
tectures and data sets.

e We then summarize the discussions and advice from
the MLPerf Recommendation Advisory Board.

Desirable characteristics for ideal recommendation
benchmark models should represent a diverse set of use

!Facebook/ASU *University of Colorado, Boulder *Google
Research JUniversil?l of Minnesota 5Universit.y of California,
F:

San Diego ®Netflix
Jjedanwu@fb.com

acebook. Send correspondence to carole-

cases, covering a long tail. For example, most recommen-
dation tasks with large candidate sets have both a candi-
date generation model and a ranking model working to-
gether. The candidate generation model tends to be latency-
sensitive with a dot-product or softmax on top, while a rank-
ing model tends to have a lot of interactions being consid-
ered. The end-to-end model should ideally produce predic-
tions for both click-through rate and conversion rate. To en-
able a representative coverage of the recommendation task
diversity and different scales of recommendation tasks (that
are often dependent on the scale of the available data), wed
want to consider recommendation benchmarks of different
scales.

Recommendation models are tasked to produce novel, non-
obvious, diverse recommendations. This is really at the
heart of the recommendation problem — we learn from pat-
terns in the data that generalize to the tail items, even if the
items only occur a few times, despite the temporal changes
in the data sets. Thus, from the system development and op-
timization perspective, even though less-frequently indexed
items can consume significant memory capacity in a sys-
tem and it can be challenging to select an optimizer to de-
termine meaningful weights for the embedding entries in a
few epochs, we must retain all user and item categories in
a feature to capture representative system requirement.

Many enhancement techniques have been explored to
improve recommendation prediction quality. For exam-
ple, variations of RNNs (e.g. attention layers, Trans-
former/LSTM styles) are under active investigation for at-
scale industrial practice. It is not clear yet how to best ex-
ploit the temporal sequence in DNN-based recommenda-
tion models. In addition, dense-matrix multiplication with
very sparse vectors is an interesting case as well. This
could be thought of as embeddings where input vectors
are not just indices but also carry numerical value, to, say,
be multiplied with the corresponding embedding row. We
should keep an eye on the development of the aforemen-
tioned enhancement techniques and refine the recommen-
dation model architecture when it is proven to improve in-
ference quality for practical use cases.




Tutorials on Personalized Recommendation
Systems and Algorithms

https://personal-tutorial.com/

Algorithms
 Understand the evolution of recommendation
systems Data Sets
* Discuss challenges of recommendation systems Systems

* Provide a hands-on tutorial on open-source
benchmarks and datasets (training and inference)

* Brainstorm novel solutions for efficient
personalized recommendation

With ASPLOS-2020 & ISCA-2020
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Recommendation Systems ...

1 © 3

Are Important Are Underinvested Have Unique Systems
Challenges

4 .5

Building Systems for Deep Learning New Benchmarks and Datasets
Recommendation Are NOW Available
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Thank youl!

TO LEARN MORE, VISIT

research.fb.com
github.com/facebookresearch/dIrm
github.com/harvard-acc/DeepRecSys
personal-tutorial.com
miperf.org
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