Investigating ext2 optimizations in Linux

Markus Peloquin
markus@cs.wisc.edu

2009-09-30

Abstract

The Linux implementation of the ext2 filesystem con-
tains a number of optimizations to hide artifacts of
the implementation. Read-ahead (buffering data yet
to be requested) completely hides any noticeable tim-
ing effects of both the block size and the way in which
blocks are specified by the filesystem. Caching allows
for some set of blocks to be read repeatedly without
having to return to the disk. The only parameter ini-
tially discoverable is the size of the read-ahead. Only
by disabling this, one can further observe the block
size, the layout of blocks for a file, or the size of the
file cache.

1 Introduction

In more primitive operating systems, block size was
something you had to work around. The Unix func-
tion stat returns a value st_blksize as a hint to
programmers so sequential reads could be better
optimized. The standard C library’s I/O routines
gave programmers a cleaner interface that buffered
I/0O automatically, but this was done by the library.
With modern Unix operating systems, even the ‘un-
buffered’ read system call gets buffered, but now in
the kernel by something called read-ahead or prefetch-
ng.

Read-ahead is accomplished in the kernel by guess-
ing which blocks will be read next, and then buffering
them in the background. There are many different ac-
cess patterns, and the programmer is allowed to select
one with the posix_fadvise system call. Usually, it
is expected that reads will be more or less sequential.

Another optimization is file caching. If a file or
set of files were used recently, they may be stored in
memory for subsequent use. This is useful in such
cases as repeatedly listing a directory’s contents, or
a file that is often sourced by various shell scripts.
Another case it can be useful is when a file gets re-

wound.

2 Method

To understand how read-ahead or caching work, we
must understand the workings of operations. As such,
the block size is important to learn. The filesystem’s
block size is not the only factor affecting performance,
but also the layout of block addresses. Strategies for
revealing the parameters of the filesystem and their
optimizations are given in the following sections.

2.1 Block size

The filesystem reads data from the disk a block at a
time. If only a single byte is needed, the whole block
that it is contained in must be buffered. A trivial
optimization then is to keep that block in memory,
since it costs little to keep it and would cost a lot to
regain it. Subsequent reads to the first block should
then not require any disk activity. To derive the size
of a block, we can just keep reading from what is pre-
sumably the same block in small increments. These
should all be very fast. Once the time taken to read
a small increment takes a long time, then it must be
because the next block is being read.

The above strategy would work, but it presumes
there are no optimizations in effect. Read-ahead
would cause the filesystem to start reading the sub-
sequent blocks, and so we would not find a small
segment of data that took a long time at all. The
Linux kernel allows for this through a general filesys-
tem ioctl (‘I/O control’) called BLKRASET. Setting
this to zero deactivates read-ahead.

We still have caching to consider. An acceptable
strategy would be to read from some large separate
file. This would fill the buffer up with useless data, so
reading from the file that we do care about would re-
quire a disk read. This was not the approach taken, as
Linux allows for a simpler way to achieve this result.

All that is needed to clear the cache is a simple echo
1 > /proc/sys/vm/drop_caches, which allows the
tests to run quicker.

Another approach that might reveal the block size
is to attempt to read a large file with different as-
sumed block sizes (e.g. 512, 1024, 2048). Theoreti-
cally, this should perform the fastest when the incre-
mental read size is a multiple of the real block size.
In practice it reveals little information.

2.2 Read-ahead

When data is read from the disk, the read-ahead al-
gorithm will read more than it needs asynchronously.
Even when the reading program reads past the first
block, it will not need to wait for subsequent blocks.
The strategy is then similar to detection of block
sizes: read in increments, and find the points that
it takes longer than usual. The incremental read size
should be larger, since presumably the read-ahead
size is a multiple of the block size, which we now
should know. Further, the more data read at a time,
the faster we can get to the end of the read-ahead
buffer, hopefully leading to a wait at the end of
each read-ahead buffer. Again, the caches should be
cleared before running the test.

2.3 Caching

A simple model for caching is to keep the last C
blocks in memory in a FIFO scheme. If a block is
read while still in the cache, then it is moved to the
front of the queue if necessary, and no block is re-
moved. The strategy is to read C blocks into the
queue so that the next block takes longer. Since we
do not know C, the strategy is to read the first block,
then the first two blocks, then the first three blocks,
etc. As long as we are only reading the first C' blocks
of a file, the reads to the first block should be rela-
tively constant, since only the memory would need to
be consulted. Once the time to read the first block
begins to increase, we know that the buffer has been
filled.

As usual, the caches need to be cleared, and read-
ahead disabled. Read-ahead must be disabled since
we want to read the blocks in a very specific order,
and read-ahead would violate this.

2.4 Block layout

Like the Unix filesystem (UFS or FFS), ext2/3 stores
block pointers in the inode structures (ext4 does this

in addition to a more optimal method called ex-
tents). First, there is some number of direct point-
ers, followed by an indirect pointer, a double-indirect
pointer, and a triple-indirect pointer. What becomes
important is that upon reading an inode structure,
the filesystem immediately knows where to find the
first D blocks of data. To read block D + 1, it must
first read the indirect block from the disk, and so
requires an extra disk access. Theoretically, reading
block D+ 1 should take twice as long as it did to read
block D.

As usual, any caches should be cleared. Read-
ahead must be disabled again, otherwise the extra
delay in finding block D + 1 will not be noticeable.

3 Results

It should be noted that these tests were run on a 32-
bit machine. While this does not change the results of
the filesystem layout, it may affect the values relevant
to the optimizations (caching and read-ahead). The
x86 rdtsc instruction was used to measure time, and
CPU frequency scaling disabled.

Each test was run 16 times. For all but the caching
test, the read rates at each point in the file were av-
eraged between the tests. The read rate itself was
computed either as the centered difference approxi-
mation or a one-sided approximation, depending on
what sample points exist. Let h be the separation
between samples. The approximations are

F(w) % 5 (Fla +h) = f(z = 1)

F/(@) % o (~37(@) + 4f (@ +) — o+ 20))

This was used to give the rate in terms of ticks
per byte. Taking the inverse gives the desired units
bytes per tick. These are the rates that are averaged,
giving the average read rate at a point in the file.

3.1 Block size

Segments of 16 bytes were read in at a time (h = 16).
The size does not particularly matter, as it must only
be a divisor of any possible block sizes. There is a
clear pattern in Figure 1, showing read drops at reg-
ular intervals. When reading data in from a cached
block, the execution time is mostly due to the system
call. At intervals of 4096 bytes, the read operation
takes a much longer time, and so it is concluded for
the rest of the experiments that the block size is 4 kB.

o S ——y

0.01 | i
=
e
S 0.008 [-
8
>
2
5 0006 | .
<
&
0.004 | .
0.002 | .
0
0 4096 8192 12288 16384 20480

File position (bytes)

Figure 1: The read rate at each position in the file
when read 16 bytes at a time. The rate drops are at
4 kB intervals, taken to mean one block.

3.2 Read-ahead

Segments of 512 bytes were read at a time (h = 512).
The size should not matter so much, except that
the results were most clear with this value. Figure
2 shows the read rate at different points of the file.
There are four evenly spaced points at which a large
decrease is noticeable, and the separation between
consecutive points is exactly 126976 bytes, 248 sec-
tors, 124 kB, or 31 blocks.

B g s s

< 02 .
2
Q
5 015 .
=
2
g o1 -
0.05 .
0 1
(=] =t

6
128 F
192 |
256 F
320 -
384 [
448 |
512
576 -
640

File position (kB)

Figure 2: The rates of consecutive reads at 512 byte
increments. Large drops at 122880, 249856, 376832,
... bytes are at intervals of 126976 bytes or 248 sec-
tors, the read-ahead size.

That is not the only observable pattern in the fig-

ure. At exactly 256 kB and 512 kB are two less-
significant rate drops. The reason is unknown, but
the more significant drops were used as the basis of
the read-ahead size.

Another thing of interest is all the drops near the
beginning. There are multiple possible reasons for
this. It may be that read-ahead works differently
at the beginning. OpenBSD’s FFS implementation
does a ‘clustered’ read of the first few blocks at the
beginning of the file, and follows a different algorithm
afterwards.

3.3 Caching

The file was read in one block at a time in the order
0, 0-1, 0-2, 0-3, The time reported in Figures 3
and 4 is the time required to read the first block. This
graph is less clear, but the increase in time seems to
begin at block 175 (700 kB), where the time shifts
upward slightly. After almost a megabyte, the cache
effects begin to wear off, so it seems likely that the
cache size is less than a megabyte.

5000 T T T T T uw V|
4500 | -
£ 4000 | E
=
2
S 3500 - Ww E
3000 | WMMW §
2500 1 1 1 1 1 1 1
[} Nej (] [} < (=l o o o0
'el — O (o] 0 o (=)} <t
4« W o= g a8 v § g
Read size (kB)

Figure 3: The time to read the first block with re-
spect to how much of the file is already in the cache.
Beginning around block 175 (716800 bytes, 700 kB),
there is a slight increase in the time taken, and an-
other increase at around 241 blocks (987136 bytes,
964 kB).

One potential reason for the increase in slope is
the hard disk’s own 8 MB cache. Another potential
reason is that the disk must seek to read data no
longer in its cache, but this would mean the graph
should be linearly increasing.

10000 T

8000 |-

6000

4000 b

Time (ticks)

2000 b

0 1 1 1 1
0 1 2 3 4 5

Read size (MB)

Figure 4: A wider version of Figure 3.
continues linearly after 4 MB.

The graph

3.4 Block layout

A file was read in at half block increments (h = 2048).
The tests were not as revealing with any increments
as large as the block size (partially a consequence of
the rate approximation used). Like the test for read-
ahead, Figure 5 has rates computed as a centered
difference approximation. The main dip is at 49152
bytes or 12 blocks.

0.016

0.014

0.012

0.01

0.008

0.006

Rate (bytes/tick)

0.004

0.002

() 1 1 1 1 1 1 1 1 1 1 1
0 8 16 24 32 40 48 56 64 72 80 88 96
File position (kB)

Figure 5: The rate of each consecutive read at half
block increments. The first main dip is at 49152 bytes
or 12 blocks.

The graph is near zero for the first 2 kB because
of limitations of the rate estimation. The second ob-
servable dip occurring at around block 15 was consis-
tently present, possibly the result of some filesystem

optimization.

4 Conclusions

The block size reported in §3.1 is correct. Upon in-
specting the superblock of the filesystem, the block
size is reported as, indeed, 4 kB.

In a similar way to deactivating the read-ahead,
the default read-ahead can be obtained (before set-
ting it to zero) by calling ioctl on the filesystem’s
device with the request BLKRAGET. Before it was reset
to zero, the value returned is 248: the exact result
obtained in §3.2.

Definitively determining the cache size of the op-
erating system (§3.3) or the filesystem was not as
straightforward. Unlike read-ahead, its state can
never be modified, except to clear what is already
in it.

The number of direct block pointers inside an
ext2/3 filesystem is no secret. It has, and proba-
bly always had, room for 12 direct block pointers,
confirming the result observed in §3.4.

