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Abstract

The potential for GPUs to attain high speedup
over traditional multicore systems has made them
a popular target for parallel programmers. However,
they are notoriously difficult to program and debug.
Meanwhile, there are several programming models in
the multicore domain which are designed to be sim-
ple to design and program for, such as Cilk. Open-
CLunk attempts to combine Cilk’s ease of program-
ming with the good performance of the GPU. We
implemented a Cilk-like task-parallel programming
framework for the GPU, and evaluated its perfor-
mance. The results indicate that while it is possible
to implement such a system, it is not possible to
attain good performance, and therefore a Cilk-like
system is currently not feasible as a programming
model for the GPU.

1 Introduction

Graphical Processing Units (GPUs) are becoming
more and more common, and have recently started
being used for purposes outside of graphics accel-
eration. They can enable some programs to attain
large speedups; speedups of greater than 100 are
frequently reported, and supercomputers now com-
monly make use of them. However, they are also
much harder to program for than traditional mul-
tiprocessors, and debugging is difficult. One of the
main reasons for this is that they are a much more
recent innovation than CPUs, and as such, there has
not been time for as many helpful tools to be devel-
oped. Another reason is that they are more limited
than CPUs in what they support, so programmers
commonly have to put work into changing their al-
gorithms to work on them (for example, rewriting
recursion-based code to use stacks instead).

In contrast, there are a number of programming

models, tools, and languages that exist to exploit
parallelism on CPUs. One example is the task-based
parallel language Cilk. It uses a simple but powerful
extension of C to allow programmers to easily write
code.

We decided to try to combine the elegance of Cilk
with the acceleration of the GPU. From the start,
we knew that this would not be simple. Cilk is de-
signed to be a task-parallel language, and GPUs ex-
cel at data parallelism. However, we thought that it
might be advantageous to have a model that was sim-
ple to program, even if the speedup was more mod-
est than the exceptional cases often cited. Therefore,
we had several goals. The first was to simply imple-
ment a Cilk-like model, where Cilk programs could
be easily ported and run: something simple enough
for a compiler to target. Our second goal was to use
some benchmarks to evaluate the performance of this
model, and to prove that it is possible to run pro-
grams in a task-parallel manner upon a GPU. Fi-
nally, we wanted to characterize the performance of
our benchmarks and determine the feasibility of us-
ing our implementation as a tool to attain speedup
on a GPU.

There has been other work on adapting existing CPU
parallel programming platforms onto GPGPUs. An
OpenMP to CUDA compiler extension called O2G
was developed with generally positive results [4].
Since both platforms are already data-parallel, the
authors focused mostly on modifying code to fit the
GPGPU’s memory model. Because it is already fairly
well understood how to write data-parallel code for
the GPU, and because there are already tools to aid
in development and debugging, we wanted to focus
on another model, and a task-parallel model has not
been widely studied for the GPU. Hence, we chose
to implement a Cilk-like model.

Section 2 gives a background of the technologies in-
volved. Section 3 describes the details of our imple-
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mentation’s design and interface. Evaluation is cov-
ered in Section 4. We discuss the OpenCLunk model
in 5 and conclude in Section 6.

2 Background

2.1 GPGPUs

As the difficulty of improving uniprocessor perfor-
mance has increased, the landscape has changed
to include other architectures besides CPUs. GPUs
have been used to accelerate graphics calculations
for some time, but recently they have been repur-
posed for general-purpose computation, under the
name GPGPUs. Calculations are offloaded from the
CPU onto the GPU and executed there.

GPGPUs differ from CPUs in a number of ways.
They are intended for data-level parallelism: many
threads all executing the same instructions at the
same time. They have far more cores than typical
multicore systems; they also can run hundreds of
threads simultaneously. Transcendental functions are
implemented in hardware, allowing them to be very
fast, especially for single-precision floating point op-
erations.

However, there are some disadvantages of GPUs as
opposed to CPUs. Threads are executed in thread
groups, typically of 32 threads. Within these groups,
all threads execute the same instructions. If there is
an if condition that only evaluates true for some
threads, a form of predicated execution will disable
the threads for which the if condition was false, then
perform the instructions in the if block. Afterwards,
those threads may be disabled and the others enabled
while the instructions in an else block are executed.
This is called divergence, and limits performance.
Another limitation is in what types of code can be
run on the GPU. One limitation that is particularly
salient to our task was that recursive calls are not
possible since their use of memory is unbounded.

2.2 OpenCL

OpenCL (Open Computing Language) is a C-based
language for writing kernels, which can then be exe-
cuted on GPUs and CPUs [2]. It is portable between
different manufacturers: it can be used for both

ATI’s and NVIDIA’s devices. That was a main mo-
tivation in choosing OpenCL over CUDA. OpenCL
claims to support task-level parallelism in the form of
command queues and the option CL QUEUE OUT OF-

ORDER EXEC MODE ENABLE [3]. However, this is not
supported on most architectures. Unfortunately, this
is not so much an instruction to OpenCL as it is a
suggestion. No errors or warnings are given when this
option is used for hardware that does not support it.
Since the hardware we had access to does not support
out-of-order execution, we implemented a framework
using other features, which we will describe later.

2.3 Cilk

Cilk is an extension of the C programming language
to enable easy parallelization of programs [1]. It uses
a task-based parallelism model. If the Cilk keywords
are removed from a Cilk program (the C elision is
taken), the program executes correctly in serial, sim-
plifying program design and debugging. The main
Cilk keywords are spawn and sync. The spawn key-
word is used to indicate that a function call can run
in parallel with the main method and other spawned
functions. The sync keyword pauses the execution
of a thread until all of previous spawns in the same
function call have completed. It is common for Cilk
programs to be recursive, with each function having
multiple recursive calls to itself.

The way that these keywords are implemented in
Cilk is to use work-stealing queues. When a thread
spawns a new function, it adds it to the head of
its work queue. Other threads can steal from the
tail of other queues when they exhaust the work in
their own queue. When a thread steals, it converts
the function to a slower version that executes syn-
chronization statements; in the common case, syn-
chronization is unnecessary because by the time the
thread reaches a sync statement, it would have ex-
ecuted all previous instructions anyway. This allows
for very cheap spawns, which is part of why Cilk has
very good performance.

We chose to use Cilk as the model for our system
because it is an easy to use programming model, yet
powerful enough to implement a wide variety of pro-
grams. Because our platform was different, we did
not however use the same design for our implemen-
tation; in particular, we made no use of work-stealing
queues.
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3 OpenCLunk

OpenCLunk is our implementation of a task-parallel
model for GPGPUs. Its name is a combination of
OpenCL, Cilk, and ‘clunk’, and serves to describe
both its roots and its performance.

3.1 Execution model

The way tasks execute in OpenCLunk is similar to
what happens in Cilk, but necessarily differs in some
key ways. The first and most important problem to
solve was how to spawn tasks. As the GPGPU en-
vironment is quite restrictive, our solution was for a
task to return whatever arguments would have been
used in the spawn invocations back to the CPU.
These spawn arguments then serve as input argu-
ments for subsequent spawned tasks. The only other
thing a task might respond with is a return value,
corresponding with the base case of a recursive func-
tion. As a simplification, we force the number of
spawns to be constant across all tasks.

Tasks are not actually spawned until the parent tasks
return to the CPU. The sync step from Cilk can
therefore only be implicit. We also needed to sup-
port code that would run after the spawned tasks
complete. This might include summing the results
of the spawned tasks or finding the maximum. We
decided for simplicity to have the post-sync code,
the reduction, execute on the CPU. This is accept-
able since reductions rarely do intensive work, and
the additional migration costs for this simple action
would be prohibitively large.

3.2 Task groups

Tasks are executed in a series of task groups. The
first task group is merely the root task. It will be
sent the initial arguments that the user specified, but
it is otherwise indistinguishable from the other task
groups. Each subsequent task group is composed ex-
clusively of tasks that were spawned off of the pre-
vious group. Since tasks all take the same amount
of time to execute, each level of the execution tree
can be invoked at once, reducing the communication
traffic with the GPGPU.

It would have been convenient to use the spawn
arguments of one task group as the arguments for

the subsequent task group. One benefit of this ap-
proach would have been less memory bandwidth:
once a task group completes, they need only transfer
back some relatively small status information. This
has the problem of leaving holes in the arguments,
since not all tasks will spawn. As subsequent levels of
spawns execute, those holes take up more and more
memory. Our approach was to copy the spawn argu-
ments back to the CPU. Task groups would then be
rearranged so that all spawning tasks would be at
the front, moving the remainder at the back.

One of our previous approaches was to have each
group consisting solely of the spawned tasks of the
previous group. This offered a more fluid execu-
tion, but it had higher memory requirements for the
task groups and additional communication with the
GPGPU. It also depended on the OpenCL device
supporting out-of-order execution, which our hard-
ware did not support. It did, however, simplify the
reduction process and did not require rearranging
the task groups, so it had some computational ad-
vantage.

3.3 Dependencies

All tasks have a result value, but it is often dependent
on the results of the tasks the parent has spawned.
Whenever a task group completes execution, Open-
CLunk scans through the completed tasks in this
group. For each completed task, the value is copied
into a buffer belonging to its parent. If this was the
last task to add its result to its parent, the reduction
operation is performed, and the parent takes on that
result. This process repeats when the parent in turn
copies its new result to its parent.

3.4 Execution process

When a user runs an OpenCLunk function, a loop
begins that terminates when the root gets a value.
Before the loop, a root task is created and invoked
on the GPGPU. On completion, OpenCL asyn-
chronously will add completed task groups to a queue
in OpenCLunk using event callback functions. Each
completed task group is handled within the loop.
First, a task group is removed from the queue. Its
tasks are rearranged before making a new child task
group, which is subsequently sent to OpenCL for ex-
ecution. Once they are added to OpenCL’s command
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queue, dependencies are handled and reductions per-
formed. The last task group will be able to resolve
all remaining dependencies, and OpenCLunk returns
the final value.

3.5 Restrictions

Tasks may only choose to spawn or to not spawn,
so we require that a task always spawn a constant
number of times. This is sufficient for many bench-
marks, and simplifies the design. It would be possible
to allow tasks to spawn up to N times by returning
a bitmask value ⌈N/32⌉ bits long. This would have
caused the code in the user-level kernel functions, the
code performing the task group rearranging, and the
code performing reductions to become more compli-
cated.

As it is currently, OpenCLunk can only handle prob-
lem sizes up to some threshold. Task groups require
a particularly large buffer for their spawn arguments;
for recursive Fibonacci, it doubles in size nearly ev-
ery time. Resources can be exhausted, and so global
work sizes have per-algorithm limits. The way to get
around this would be to divide the tasks into two
task groups. The two task groups would need to be
executed in serial, and task group sizes would never
decrease. The consequence of this situation is that
throughput would become constant. For the purpose
of benchmarking when resources are exhausted, it
improves little. The average speedup could increase,
but only up to some limit. For simplicity then, we do
not implement this capability.

There are also some limitations in what features
OpenCLunk supports. OpenCLunk is similar to Cilk,
but does not implement all of its features. For exam-
ple, Cilk includes an explicit abort keyword to allow
all tasks to be stopped. This is useful in cases like
searches where only the first result needs to be re-
turned, and execution can stop at that point. It is
currently possible to emulate abort functionality in
OpenCLunk by means of a read-write buffer param-
eter that is checked at the beginning of each ker-
nel, and if it is found to be set to a value indicating
an abort, the task returns immediately without do-
ing any work or spawning any children. However, it
would be possible to implement a better abort that
stopped the CPU portion of the code from starting
more task groups.

Another limitation is that tasks can only make re-

cursive spawns. In Cilk, any function can be spawned
from within any other function. This feature could be
implemented by passing back the name of the func-
tion to be called (or an enumerated representation of
it), but it is not currently available in OpenCLunk.

Finally, although many Cilk functions can be rewrit-
ten so that all syncs take place at the end of the
kernel and results are combined in a reduction phase,
this is non-trivial or even impossible for some cases.
For example, in some Cilk programs, there is a phase
with several spawns followed by a sync, followed by
additional spawns. Alternately, the end result of a
Cilk function has a more complicated operation than
addition performed on it, such as a multiplication by
some factor at each step. These patterns of execution
are not allowed in OpenCLunk.

3.6 Writing for OpenCLunk

Ideally, the user would be able to use a few sim-
ple keywords, and the compiler would generate the
code needed to run on the GPU. However, since this
project was primarily a proof-of-concept, the initial
implementation of OpenCLunk requires the user to
make use of a somewhat clunky interface. The inten-
tion was to determine whether OpenCLunk would be
successful before worrying about the value of having
a compiler and attractive interface.

There are three primary components to an Open-
CLunk algorithm implementation. Most of the re-
cursive function survives as the kernel function. The
user must also specify the arguments in the CPU
code. Reductions are separate from the kernel and
are a part of the CPU code as well. This subsection
gives example code for the recursive Fibonacci algo-
rithm, but a more general and complete example can
be found in Appendix A.

3.6.1 Kernel function

Most important is the kernel function, which is the
majority of what in Cilk would be recursive function.
It has some base case that returns a value, as well as
necessary code to spawn child tasks. The recursive
kernel of the recursive Fibonacci algorithm is shown
in Listing 1. The first argument, max tid is the global
work size. arg n is the list of arguments sent to the
tasks, indexed by tid, and spawn n is the list of out-
put arguments, indexed both by tid and the spawn

4



offset. Though not strictly necessary, the list of ar-
guments should be declared with constant to take
advantage of caching; the rest are writable and must
be global. Lines 11–15 are the base case; the task
indicates it should not spawn and its result is n. The
remainder sets up the spawn arguments: the task in-
dicates it would like to spawn and specifies what to
use for the arguments to the spawned tasks.

__kernel void fib(

unsigned max_tid ,

__constant unsigned *arg_n ,

__global unsigned *result ,

5 __global unsigned *spawn ,

__global unsigned *spawn_n )

{

unsigned tid = get_global_id(0);

i f (tid > max_tid ) return;
10 unsigned n = arg_n [tid ];

i f (n < 2) {

spawn [tid] = fa l se ;
result [tid] = n;

return;
15 }

spawn[tid ] = true;
spawn_n += tid * 2;

spawn_n [0] = n - 1; /∗ spawn ∗/
spawn_n [1] = n - 2; /∗ spawn ∗/

20 } /∗ sync ∗/

Listing 1 – Recursive Fibonacci kernel

3.6.2 Argument specification

Arguments need to be specified in the CPU code
so OpenCLunk knows how to invoke them. This is
done in the constructor to simplify the resulting
code. There are two types of arguments: parame-
ters and plain arguments. Parameters get passed to
all tasks of all task groups in the same way. These
will be either constants or buffers. Readable buffers
are just large parameters. Writable buffers are use-
ful in cases that the tasks each write to disjoint
regions, as is the case with matrix multiplication.
Read-writable buffers are less often useful because
of the synchronization model; two applications are
in-place sorting and algorithms that allow oppor-
tunistic pruning (e.g. increasing a lower bound for
a solution). Arguments are created similarly, where
the value represents only the initial value sent to the
root task. The return type is a template parameter,
and it is required only to be a non-void type. The
Fibonacci argument specification is shown in List-
ing 2. The class inherits from the Alg spec<Result>

class, indicating a return value type unsigned. This
is the class that contains the various add arg() and
add param() functions. Fib’s constructor defines a
single unsigned argument with initial value n.

class Fib : public Alg_spec <cl_uint > {

public:
Fib(unsigned n)

{

5 add_arg ( static cast <cl_uint >(n));

}

/∗ . . . ∗/
};

Listing 2 – Recursive Fibonacci argument specifica-
tion

3.6.3 Reduction

The reduction operation is performed on the CPU,
and so it is also a part of the Arg spec subclass.
OpenCLunk will first copy the results to a buffer,
since they may have been rearranged. The Fibonacci
reduction is shown in Listing 3, overloading a pure
virtual function in the super class. The reduction is
only the function reduce(), and its argument types
match the template argument. Also shown on lines
11–18 are two other necessary functions (pure vir-
tual in the super class) that describe the name of
kernel function to be executed and the exact num-
ber of subtasks the kernel will spawn (if any).

class Fib : public Alg_spec <cl_uint > {

/∗ . . . ∗/
protected:

void reduce (

5 const cl_uint *child_results ,

size_t len , cl_uint *result )

{

*result = child_results[0] +

child_results[1];

10 }

std :: string name() const
{

return "fib";

}

15 unsigned sub_tasks () const
{

return 2;

}

};

Listing 3 – Recursive Fibonacci reduction, kernel
name, and subtask count
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The user code must then invoke the function, which
requires only minimal work. Listing 4 shows the
process of invoking OpenCLunk with the above Fi-
bonacci example. Lines 1–2 initialize OpenCLunk
and compile the list of source files. Line 4 creates the
Fibonacci instance and line 5 begins the execution.

const char *paths [] = { ’fib .cl’ };

Openclunk openclunk (paths , paths + 1);

Fib fib (17);

5 unsigned result = fib.run (openclunk );

Listing 4 – Recursive Fibonacci invocation

4 Results

4.1 Evaluation Methodology

Ultimately, the best metric of OpenCLunk’s perfor-
mance is its speedup compared to sequential code. To
this end, we implemented a number of benchmarks
on the OpenCLunk framework and compared their
performance with an equivalent version in C (similar
to the C elisions for Cilk code). We expected to see
low performance, and so we also chose to evaluate
on benchmarks which expose the inefficiencies of the
platform.

Our test platform consisted of a comparable CPU
and GPU. Both were purchased at the same time,
July 2009. The CPU was the AMD Phenom II 955.
It was manufactured with a 45 nm process, had 4
3.2GHz cores, and caches L1: 4×(64 kB + 64 kB),
L2: 4×512kB, L3: 6MB. The GPUs were two ATI
Radeon HD 4870 cards in CrossFire (equivalent to
NVIDIA’s SLI). The GPUs were manufactured with
a 55 nm process, had 800 stream processing units
512MB GDDR5 memory, and a PCI Express 2.0×16
interface.

4.2 Benchmarks

We ported or implemented a number of benchmarks
to evaluate OpenCLunk. It was possible to port fib,
heat, and knapsack directly from the examples dis-
tributed with Cilk-5.4.6. The fib benchmark calcu-
lates the Fibonacci sequence using the recursive al-
gorithm. It is a useful benchmark because it does so

little work per invocation that it is ideal for measur-
ing overheads associated with the system. heatmod-
els heat diffusion. knapsack solves the 0-1 knapsack
problem, where a thief is trying to fill her knapsack
with the most valuable combination of items that
does not exceed a specified weight. These three ex-
amples could be easily ported, with the main calcu-
lation going into the kernel and the reduction oper-
ation following simply from the return value of the
function.

One interesting thing about knapsack is that it em-
ploys pruning: it keeps track of the best combination
of items found thus far, and does not spawn new
tasks with a given item combination if there is no
way for it to be better than the previously found so-
lution. In the original Cilk algorithm, this was done
by way of a global where the write is a benign race
condition. We employed the same method, but rather
than using a global, we used instead a single-element
read-write buffer. As it is only a hint to the algorithm
to stop checking some combinations early, it does not
matter in terms of correctness which thread succeeds
in writing to the global if more than one tries in an
iteration.

Several of our other benchmarks have Cilk analogs,
but we re-implemented them rather than porting
them. This was mainly due to some limitations in
OpenCLunk as compared with Cilk, as previously
discussed. The n-queens benchmark solves the prob-
lem where n queens must be placed on an n by n
board such that none of them are in the same row,
column, or diagonal. It is similar to the one dis-
tributed with Cilk, but instead of returning the first
solution found, it finds all solutions. The quicksort
benchmark performs an in-place quicksort, and is
similar to cilksort. The matmul benchmark multiplies
two matrices together, similar to Cilk’s matmul, but
with a slightly different algorithm.

Finally, we implemented one benchmark of our own.
The bucketfill benchmark takes a matrix of inte-
gers, an old value, and a new value. If a starting point
has the old value, the algorithm recursively changes
that element and all neighboring elements with the
same value to the new value. This is similar to the
bucket fill tool in a paint program.
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Benchmark CPU Time GPU Time Speedup
bucketfill(16, 18) 3.85× 10−6 4.08 9.42× 10−7

fib(10) 4.80× 10−7 1.21× 10−6 2.30× 10−6

fib(19) 1.97× 10−5 9.62× 10−1 2.05× 10−5

heat(medium) 1.24 5.62 2.21× 10−1

knapsack(11) 3.53× 10−7 1.63 3.53× 10−5

matmul(64) 1.70× 10−6 2.39× 10−1 7.11× 10−6

matmul(256) 1.70× 10−6 7.49× 10−1 2.27× 10−6

n-queens(4) 2.23× 10−5 4.83× 10−1 1.82× 10−5

n-queens(6) 2.23× 10−5 4.83× 10−1 4.62× 10−5

quicksort(1000) 5.48× 10−5 1.10 5.00× 10−5

quicksort(9000) 5.60× 10−4 1.46 4.09× 10−4

Table 1 – Performance of OpenCLunk on the GPU as compared to a sequential version on the CPU. Times are
measured in seconds.

4.3 Performance

We compared speedup to the sequential C elision
running on the CPU. The times and speedups are
shown in Table 1. Except for heat, matmul, and
quicksort, all benchmarks are shown with the
largest input size before they would need to start
breaking apart thread groups; matmul fails sometime
between 256 and 512, while quicksort fails some-
time between 9000 and 10000. The speedups were
all quite low, but there are a few interesting features
to notice.

The benchmark that performed the best was heat,
which we attribute to two qualities that it alone
has. The only other floating-point benchmark was
matmul, but the difference is that heat has better
locality. The way they are written, each thread in
the final thread group of matmul multiplies a subse-
quence of columns of one matrix by the entire other
matrix. Each thread of heat in the final thread group
gets their own column of the matrix, and does reads
only on the two neighboring columns

Three of the algorithms performed better as
the problem size increased. fib, n-queens, and
quicksort all had higher speedups with larger in-
put sizes. This was expected since larger task groups
have higher throughput. On the other hand, matmul
went slower with a larger input size. The difference
between the two sets of algorithms is that the matmul
does work only with the last task group, while the
rest do work in all task groups. fib is the exception
which does the absolute minimum amount of work
in either case, but that also means it is balanced.

4.4 Overheads

To determine where the overheads are coming from,
OpenCLunk was instrumented to give timing infor-
mation. We looked at how the various phases of exe-
cution changed over time from multiple perspectives.
There are three primary components to the execu-
tion of some algorithm within OpenCLunk’s main
loop: buffer reordering (CPU), reductions (CPU),
and the kernel (GPU, including CPU time to add
the job to the OpenCL command queue). We looked
closely at only three algorithms. We chose fib since
it is a minimal task-parallel function, matmul because
it does not do any work until the final iteration, and
n-queens because it is has many distinguishing fea-
tures (work is done in the spawn and not the base
case, it has many spawns per task, and tasks often
exit early). These overheads are shown in Figure 1.

fib has a hump at the 13th and 14th iterations. All
threads are still active, but afterward, many threads
begin completing without spawning. The dip before
the hump in Figure 1b was consistent; it occurs be-
fore the first tasks begin to complete without spawn-
ing (iteration 9). We attribute it to an artifact of
OpenCL.

The behavior of matmul is expected: all tasks spawn
except in the last iteration where none do. No re-
orders ever occur, reductions only happen at the end,
and the GPU does not perform any work except at
the last iteration.

The n-queens behavior is more varied. Its volatility
comes from the tasks that die because they are in-
feasible. Reordering is a bigger issue with n-queens,
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Figure 1 – Buffer reordering and reduction overheads (CPU) and kernel execution time (GPU) throughout execution.

which is 4µs at minimum (excluding first and last
iterations) while fib is as low as 1µs. This comes up
because of the infeasible solutions that stop early.
The increasing reduction costs is attributed to the
increase in infeasible solutions as the number of tasks
increases. Finally, the kernel execution time remains
somewhat consistent. The variation on iteration 5 we
attribute to subtleties of the n-queens problem.

The most useful view of the execution is in the time-
lines in Figure 2. Clearly, the CPU overheads are in-
consequential, and the reductions could stand to be
far less efficient without affecting anything. In the
fib timeline the execution time of the kernels in-
creases over time. Given that the body of the kernel is
the minimum for OpenCLunk (takes one argument,

usually spawns twice), the increased kernel execution
time must be because of the data transfers. Further,
the execution time can be seen in the first iterations,
consistently near an average of 23.1ms. Inexplicably,
there are two intervals with periods 3.84 and 8.27ms,
corresponding with the dip in Figure 1b.

Even though it performed poorly, matmul had the
expected behavior. There were a few short iterations
where the work was merely divided, and then a long
execution without having to cross back and forth be-
tween the CPU and GPU. Unfortunately, the exe-
cution time was just far too long, perhaps because
there were only 64 threads executing that last it-
eration. Furthermore, about 40% of the overhead is
attributed to overheads in crossing between the GPU
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Figure 2 – Timelines of the execution separated by CPU vs. GPU. In the CPU timeline, reordering and reduction
steps occur close together, reordering usually the thicker band.

and CPU, so there many factors preventing speedup.

Execution time did not vary for n-queens despite
the large number of spawns at each stage. It was
expected that the kernel execution times would grow
much faster than fib, so the difference may be due
to abandoning infeasible solutions. Aside from the
large spawn count, the overheads in the algorithm
come from the array argument. It is required to be
copied in the kernel for each spawn, and it consumes
a lot of memory. This is why so few iterations were
possible, but it also explains the large minimum task
execution time.

5 Discussion

As seen in Section 4, OpenCLunk failed to perform
well. We will discuss several reasons for this, followed
by a brief discussion of possible improvements that
could lead to better performance in OpenCLunk.

5.1 Performance of OpenCLunk

There are several reasons why OpenCLunk failed to
attain good speedup. The main problem is that there

is a fundamental mismatch between the strengths
of Cilk and the strengths of the GPU. Cilk per-
forms well on benchmarks with a large number of
spawns, because in the common case, they are not
much more expensive than ordinary function calls.
Therefore, programs written for Cilk tend to spawn

many more times than there are threads, because it
enables load balancing. Each task tends to do only
a small amount of work. Although OpenCLunk also
needs many spawns in order to take advantage of
the large number of threads available on the GPU,
they are more expensive than in Cilk, as shown by
both the amount of overhead and the mandatory syn-
chronization inherent in generations of OpenClunk
spawns. Hence, to get good performance, there must
be more computation in each spawned function to
amortize the higher cost. The benchmarks that we
tested on have little computation per kernel, and are
therefore not well suited for OpenCLunk. In general,
tasks will not have much computation; if there is
a lot of computation per kernel, the problem could
easily be adapted to use a data-parallel model and
OpenCLunk would not be necessary.

Another reason that we did not attain high speedups
was because the benchmarks we tested on did not,
in general, exploit the strengths of the GPU. In ad-
dition to the small amount of computation per ker-
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nel, most of the benchmarks use integer rather than
single-precision arithmetic, and we made no use of
the fast transcendental functions built into the GPU.
For both of these cases, it could be argued that we
should simply test OpenCLunk on benchmarks that
would be expected to perform well, such as ones with
large amounts of computation in each step and which
use transcendental functions. However, those types
of problems can already be implemented efficiently
and easily on the GPU. It is much more valuable to
examine the performance of benchmarks that could
not previously be easily run on the GPU.

5.2 Potential improvements

There is room for OpenCLunk to improve, but we
expect that the improvements would not be enough
to make OpenCLunk perform well. Eliminating the
cost of switching between the CPU and GPU would
be key. One improvement would be to keep the spawn
arguments on the GPU; it would make debugging
harder, but there is definite room for improvement
for algorithms with large arguments.

Reducing the number of times tasks actually execute
on the GPU would reduce the overall cost of CPU–
GPU switches. One way of doing this would be to
‘unroll’ the recursion one or two steps; instead of
spawning just two tasks, fib might spawn four or
eight.

Another method would be to more accurately find
the resource limit. Currently, the resource limit is
reached because the spawn argument buffers get too
big. Some algorithms might be rewritten to switch
to a different kernel on the last iteration that can
fit within the resource limit. This final kernel would
compute the result without further spawning (per-
haps using a different algorithm than it otherwise
would), so large spawn argument buffers would be
unnecessary. Since no further spawns would occur,
there would be no further CPU–GPU crossings, al-
lowing the costs of OpenCLunk to be amortized. It
could also achieve a better thread-to-memory ratio
because the memory would no longer be the limiting
factor, and so it would better utilize the capabilities
of the GPGPU.

6 Conclusion

We showed that it is possible to write a Cilk-like
task-based parallel programming framework for the
GPGPU. We were able to port Cilk benchmarks and
run them on the GPU, obtaining correct results. In
the case of heat, the performance was actually near-
ing baseline, and with some of the above improve-
ments, it could feasibly see speedup. However, in all
other cases, we found that the performance was unus-
ably bad, indicating that it would not be worthwhile
to continue with the project or to write a compiler for
OpenCLunk. The reasons that the framework failed
can mostly be attributed to the fundamental incom-
patibility between the advantages of the GPU and
the advantages of Cilk. Furthermore, the high trans-
fer time between the GPU and CPU created an in-
surmountable amount of overhead.

It would take large architectural changes to graphics
processors to make Cilk-like parallelism on GPUs a
reality. Higher transfer speeds would reduce the time
to execute task groups by a constant factor. Lower
delays would also improve performance by reducing
the minimum execution time of task groups. If GPG-
PUs had the ability to create tasks themselves, that
would fix the issue as well; that would be nothing
more than a shift towards the CPU model. Without
these changes, the Cilk-like model will remain infea-
sible on GPGPUs.
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A General OpenCLunk exam-

ple

What follows is a general example that uses more of
the OpenCLunk interface. The interface was devel-
oped while implementing the various benchmarks in
our framework, so the following illustrates most of
the supported ways for arguments to be used.

Parameters are values or buffers that are the same
across all tasks. They can be values, readable buffers,
and writable buffers. Listing 5 shows the argu-
ments for matrix multiplication, and it is a mostly
comprehensive example. Lines 7–10 specify read-
only buffers, the operands to the multiplication.
add param() can be used similarly for a buffer ar-
gument; these require more careful indexing in the
kernel function. Lines 8–9 show a writable buffer,
the result of the multiplication. Lines 13–15 are the
dimensions, and lines 16–17 specify two column in-
dices, used in the work division.

In the kernel (in a separate file), arguments are
all in a precise order, partially determined by the
Matmul constructor. First are the six parameters in
the same order they were defined in the construc-
tor; there are zero or more in general. Then comes
an unsigned max tid, the global work size, and it
is always present. The two arguments come next in
the same order they were defined in the constructor;
in the general case there are zero or more. result
comes next (it will not be used, but it must have
non-zero size), followed by spawn; they are always
present. Last are the spawn arguments correspond-
ing with the arguments on lines 30–31.

Lines 41–48 show how Matmul would be called. In
many cases, including this one, using code that in-
vokes OpenCLunk can be almost completely trans-
parent.

class Matmul : public Alg_spec <cl_uchar > {

public:
Matmul (const cl_float *A,

const cl_float *B, cl_float *C,

5 cl_uint m, cl_uint n, cl_uint o)

{

add_param (A, m*n* s izeof(cl_float ),
Argument_buffer ::read );

add_param (B, n*o* s izeof(cl_float ),
10 Argument_buffer ::read );

add_param (C, m*o* s izeof(cl_float ),
Argument_buffer ::write );

add_param (m);

add_param (n);

15 add_param (o);

add_arg ( static cast <cl_uint >(0));

add_arg (o);

}

/∗ . . . ∗/
20 };

void __kernel matmul (

__constant f loat *A, /∗ read−only ∗/
__constant f loat *B, /∗ read−only ∗/

25 __global f loat *C, /∗ wri te−only ∗/
unsigned m,

unsigned n,

unsigned o,

unsigned max_tid ,

30 __constant unsigned *arg_c0 ,

__constant unsigned *arg_c1 ,

__global unsigned char *result ,

__global unsigned *spawn ,

__global f loat *spawn_c0 ,

35 __global f loat *spawn_c1

)

{

/∗ . . . ∗/
}

40

void matmul (Openclunk &openclunk ,

const cl_float *A, const cl_float *B,

cl_float *C,

unsigned m, unsigned n, unsigned o)

45 {

Matmul matmul (A, B, C, m, n, o);

matmul .run(openclunk );

}

Listing 5 – Matrix multiplication arguments
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