
AdaBoost
AdaBoost, which stands for ``Adaptive Boosting", is an ensemble learning algorithm
that uses the boosting paradigm [1].

We will discuss AdaBoost for binary classification. That is, we assume that we are
given a training set S := (x1, y1), (x2, y2), . . . , (xn, yn) where ∀i, yi ∈ {−1, 1} and a pool
of hypothesis functionsH from which we are to pick T hypotheses in order to form an
ensemble H. H then makes a decision using the individual hypotheses h1, . . . , hT in the
ensemble as follows:

H(x) =
T∑

i=1

αihi(x) (1)

That is, H uses a linear combination of the decisions of each of the hi hypotheses in the
ensemble. The AdaBoost algorithm sequentially chooses hi from H and assigns this
hypothesis a weight αi. We let Ht be the classifier formed by the first t hypotheses. That
is,

Ht(x) =
t∑

i=1

αihi(x)

= Ht−1(x) + αtht(x)

where H0(x) := 0. That is, the empty ensemble will always output 0.
The idea behind the AdaBoost algorithm is that the tth hypothesis will correct for the

errors that the first t− 1 hypotheses make on the training set. More specifically, after we
select the first t − 1 hypotheses, we determine which instances in S our t − 1 hypotheses
perform poorly on andmake sure that the tth hypothesis performs well on these instances.
The pseudocode for AdaBoost is described in Algorithm 1. A high-level overview of
the algorithm is described below:

1. Initialize a training set distribution

At each iteration 1, . . . , T of the AdaBoost algorithm , we define a probability distribu-
tionD over the training instances in S . We letDt be the probability distribution at the tth

iteration andDt(i) be the probability assigned to the ith training instance, (xi, yi) ∈ S , ac-
cording toDt. As the algorithm proceeds, each iteration will designDt so that it assigns
higher probability mass to instances that the first t − 1 hypotheses performed poorly on.
That is, the worse the performance on xi, the higher will beDt(i).

At the onset of the algorithm, we set D1 to be the uniform distribution over the
instances. That is,

∀i ∈ {1, 2, . . . , n},D1(i) :=
1

n

© Matthew Bernstein 2017 1

Algorithm 1 AdaBoost for binary classification
Precondition: A training set S := (x1, y1), . . . , (xn, yn), hypothesis spaceH , and num-

ber of iterations T .

1 for i ∈ {1, 2 . . . , n} do
2 D1(i)← 1

n
3 end for
4 H ← ∅
5 for t = 1, . . . , T do
6 ht ← argminh∈H Pi∼Dt(h(xi) , yi) ▷ find good hypothesis on weighted training
set

7 ϵt ← Pi∼Dt(ht(xi) , yi) ▷ compute hypothesis's error
8 αt ← 1

2
ln

(
1−ϵt
ϵt

)
▷ compute hypothesis's weight

9 H ← H ∪ {(αt, ht)} ▷ add hypothesis to the ensemble
10 for i ∈ {1, 2 . . . , n} do ▷ update training set distribution
11 Dt+1(i)← Dt(i) e−αtyiht(xi)∑n

j=1Dt(j) e−αty jht(x j)

12 end for
13 end for
14 return H

where n is the size of S .

2. Find a new hypothesis to add to the ensemble

At the tth iteration, we search for a new hypothesis, ht, that performs well on S assuming
that instances are drawn fromDt). By ``performs well", we mean that ht should have a
low expected 0-1 loss on S underDt. That is

ht := argmin
h∈H

Ei∼Dt [ℓ0−1(h, xi, yi)]

= argmin
h∈H

Pi∼Dt(yi , h(xi))

We call this expected loss the ``weighted loss" because the 0-1 loss is not computed
on the instances in the training set directly, but rather on the weighted instances in the
training set.

© Matthew Bernstein 2017 2

3. Assign the new hypothesis a weight

Once we compute ht, we assign ht a weight αt based on its performance. More specifi-
cally, we give it the weight

αt :=
1

2
ln

(
1 − ϵt
ϵt

)
(2)

where
ϵt := Pi∼Dt(yi , ht(xi))

. We will soon explain the theoretical justification of this precise weight assignment,
but intuitively we see that the the higher ϵt, the the larger will be the denominator and
the smaller the numerator in 1−ϵt

ϵt
thus, the smaller will be 1

2
ln

(
1−ϵt
ϵt

)
. Thus, if the new

hypothesis, ht, has a high error, ϵt, then we assign this hypothesis a smaller weight. That
is, ht will contribute less to the output of ensemble H.

4. Recompute the training set distribution

Once the new hypothesis is added to the ensemble, we recompute the training set distri-
bution to assign each instance a probability proportional to how well the current ensem-
ble Ht performs on the training set. We computeDt+1 as follows:

Dt+1(i) :=
Dt(i) e−αtyiht(xi)∑n

j=1Dt(j) e−αty jht(x j)
(3)

We will soon explain a theoretical justification for this precise probability assignment,
but for now we can gain an intuitive understanding. Note the term e−αtyiht(xi). If ht(xi) =
yi, then yiht(xi) = 1which means that e−αtyiht(xi) = e−αt . If, on the other hand, ht(xi) , yi,
then yiht(xi) = −1 which means that e−αtyiht(xi) = eαt . Thus, we see that e−αtyiht(xi) is
smaller if the hypothesis's prediction agrees with the true value. That is, we assign
higher probability to the ith instance if ht was wrong on xi.

Repeat steps 2 through 4

Repeat steps 2 through 4 for T − 1 more iterations.

Derivation of AdaBoost from first principles
The AdaBoost algorithm can be viewed as an algorithm that searches for hypotheses of
the form of Equation 1 in order to minimize the empirical loss under the exponential
loss function:

ℓexp(h, x, y) := e−yh(x)

© Matthew Bernstein 2017 3

We note that there are many ways in which one might search for a hypothesis of the
form of Equation 1 in order to minimize the exponential loss function. The AdaBoost
algorithm performs this minimization using a sequential procedure such that, at iteration
t, we are given Ht−1 and our goal is to produce

Ht = Ht−1 + αtht

where the new ht and αt minimizes the exponential loss of Ht on the training data. The-
orem 1 shows that AdaBoost's choice of ht minimizes the exponential loss of Ht over
the training data. That is,

ht = argmin
h∈H

LS (Ht−1 + Ch)

where

LS (Ht−1 + Ch) :=
1

n

n∑
i=1

ℓexp(Ht−1 + Ch, x, y)

and C is an arbitrary constant. Theorem 2 shows that once ht is chosen, AdaBoost's
choice of αt then further minimizes the exponential loss of Ht over the training set. That
is,

αt := argmin
α

LS (Ht−1 + αht)

.

Theorem 1 The choice of ht under AdaBoost,

ht := argmin
h∈H

Pi∼Dt(yi , h(xi))

, minimizes the exponential-loss of Ht over the training set. That is, given an arbi-
trary constant C,

ht = argmin
h∈H

LS (Ht−1 + Ch)

.

© Matthew Bernstein 2017 4

Proof:

ht =argmin
h∈H

LS (Ht−1 + Ch)

= argmin
h∈H

1

n

n∑
i=1

e−yi[Ht−1(xi)+Ch(xi)]

= argmin
h∈H

1

n

n∑
i=1

e−yiHt−1(xi)e−yCh(xi)

= argmin
h∈H

1

n

n∑
i=1

wt,ie−yCh(xi) let wt,i := e−yiHt−1(xi)

= argmin
h∈H

n∑
i=1

wt,ie−yCht(xi)

= argmin
h∈H

 ∑
i:h(xi)=yi

wt,ie−C +
∑

i:h(xi),yi

wt,ieC

 split the summation

= argmin
h∈H


 n∑

i=1

wt,ie−C −
∑

i:h(xi),yi

wt,ie−C

 + ∑
i:h(xi),yi

wt,ieαt


= argmin

h∈H


n∑

i=1

wt,ie−C +
∑

i:h(xi),yi

wt,i(eC − e−C)


= argmin

h∈H

K +
∑

i:h(xi),yi

wt,i(eC − e−C)

 K :=
n∑

i=1

wie−αt is a constant

= argmin
h∈H

(eC − e−C)
∑

i:h(xi),yi

wt,i


= argmin

h∈H

∑
i:h(xi),yi

wt,i

= argmin
h∈H

1∑n
j=1 wt, j

∑
i:h(xi),yi

wt,i
1∑n

j=1 wt, j
is a constant

= argmin
h∈H

∑
i:h(xi),yi

wt,i∑n
j=1 wt, j

= argmin
h∈H

Pi∼Dt(yi , h(xi)) See Lemma 1

□

© Matthew Bernstein 2017 5

Lemma 1

Pi∼Dt(yi , h(xi)) =
∑

i:h(xi),yi

wt,i∑n
j=1 wt, j

where

wt,i := e−yiHt−1(xi)

Proof:

First, we show that

Dt(i) =
wt,i∑n

j=1 wt, j
(4)

We show this fact by induction. First, we prove the base case:

w1,i∑n
j=1 w1, j

=
e−yiH0(xi)∑n

j=1 e−y jH0(x j)

=
1

n
because H0(xi) = 0

= D1(i) for all i

Next, we need to prove the inductive step. That is, we prove that

Dt(i) =
wt,i∑n

j=1 wt, j
=⇒ Dt+1(i) =

wt+1,i∑n
j=1 wt+1, j

© Matthew Bernstein 2017 6

This is proven as follows:

Dt+1(i) :=
Dt(i) e−αtyiht(xi)∑n

j=1Dt(j) e−αty jht(x j)
by Equation 3

=

wt,i∑n
j=1 wt, j

e−αtyiht(xi)∑n
j=1

wt, j∑n
k=1 wt,k

e−αty jht(x j)
by the inductive hypothesis

=

e−yiHt−1(xi)∑n
j=1 e−y jHt−1(x j)

e−αtyiht(xi)

∑n
j=1

e−y jHt−1(x j)∑n
k=1 e−yk Ht−1(xk)

e−αty jht(x j)
by the fact that wt,i := e−yiHt−1(xi)

=

1∑n
j=1 e−y jHt−1(x j)

e−yiHt−1(xi) e−αtyiht(xi)

1∑n
k=1 e−ykHt−1(xk)

∑n
j=1 e−y jHt−1(x j) e−αty jht(x j)

=
e−yiHt−1(xi)−αtyiht(xi)∑n

j=1 e−y jHt−1(x j)−αty jht(x j)

=
e−yiHt(xi)∑n

j=1 e−y jHt(x j)

=
wt+1,i∑n

j=1 wt+1, j

Now that we have proven Equation 4, it follows that∑
i:h(xi),yi

wt,i∑n
j=1 wt, j

=
∑

i:h(xi),yi

Dt(xi)

= Pi∼Dt(yi , ht(xi))

□

Theorem 2 The choice of αt under AdaBoost,

αt :=
1

2
ln

(
1 − ϵt
ϵt

)
where

ϵt := Pi∼Dt(yi , ht(xi))

© Matthew Bernstein 2017 7

, minimizes the exponential-loss of Ht over the training set. That is,

αt = argmin
α

LS (Ht−1 + αht)

.

Proof:

Our goal is to solve

αt := argmin
α

LS (Ht−1 + αht)

= argmin
α


 ∑

i:h(xi),yi

wt,i

 eα +

 ∑
i:h(xi)=yi

wt,i

 e−α


To do so, set the derivative of the function in the argmin to zero and solve for α (the
function is convex, though we don't prove it here):

d
dα


 ∑

i:h(xi),yi

wt,i

 eα +

 ∑
i:h(xi)=yi

wt,i

 e−α
 = 0

=⇒

 ∑
i:h(xi),yi

wt,i

 eα −

 ∑
i:h(xi)=yi

wt,i

 e−α = 0

=⇒ e2α = −
∑

i:h(xi),yi
wt,i∑

i:h(xi)=yi
wt,i

=⇒ 2α = ln
(
−

∑
i:h(xi),yi

wt,i∑
i:h(xi)=yi

wt,i

)
=⇒ α =

1

2
ln

(∑
i:h(xi)=yi

wt,i∑
i:h(xi),yi

wt,i

)
=⇒ α =

1

2
ln

(∑n
i=1 wt,i −

∑
i:h(xi),yi

wt,i∑
i:h(xi),yi

wt,i

)

=⇒ α =
1

2
ln

 1∑n
i=1 wt,i

1∑n
i=1 wt,i

∑n
i=1 wt,i −

∑
i:h(xi),yi

wt,i∑
i:h(xi),yi

wt,i


=⇒ α =

1

2
ln

1 −
∑

i:h(xi),yi wt,i∑n
i=1 wt,i∑

i:h(xi),yi wt,i∑n
i=1 wt,i


=⇒ α =

1

2
ln

(
1 − ϵt
ϵt

)

© Matthew Bernstein 2017 8

□

© Matthew Bernstein 2017 9

Bibliography

[1] Y. Freund and R.E. Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences, 1996.

10

