
The Baum-Welch Algorithm
Given a set of sequences X = x1, . . . , xn generated by a hidden Markov model with
fixed structure, our goal is to estimate the emission probabilities for each state as well
as the transition probabilities between the states. To solve this problem, we employ an
expectation-maximization algorithm known as the Baum-Welch algorithm.

Like all expectation-maximization strategies, we first define the observed data, hidden
data, and parameters for the model:

• Observed data: X = {x1, . . . , xn} the set of observed sequences

• Hidden data: Z = {π1, . . . πn} the paths through the HMM that generated X

• Parameters: θ = the set of emission and transition probabilities

The idea is that the algorithm alternates between calculating the expected number of
times each transition and emission is used to generate X. These expected counts are
used to re-estimate the emission and transition probabilities (i.e. the parameters). These
parameters are then used again for computing the expected counts of the emissions and
transitions. The algorithm then converges on a local maxima of the likelihood surface
for the observed sequences X.

Description
Since the Baum-Welch algorithm is an implementation of the EM algorithm, we break
it down into the E (expectation) and M (maximization) steps:

E-Step

For each sequence, we run the forward and backward algorithms on x j. This gives all
forward values f j

k (i) and backward values b j
k(i).

We then use these values to calculate the expected number of times each transition akl

was used for each sequence. To do this, we first note that the probability that akl was
used at position i in sequence x is calculated as:

P(πi = k, πi+1 = l, x | θ) = P(πi = k, πi+1 = l, | x, θ) P(x)

= fk(i) akl el(xi+1) bl(i + 1)
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Therefore,

P(πi = k, πi+1 = l, x | θ) =
fk(i) akl el(xi+1 bl(i + 1)

P(x)

=
fk(i) akl el(xi+1) bl(i + 1)

fN(L)
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