
The logistic regression model
Logistic regression is a discriminative, linear model for binary classification. That is, it
models the probability distribution p(y | x) where y is the class label of the item (either
−1 or 1), and x is its feature representation. Once p(y | x) is learned, the model will
classify a new item as belonging to class 1 if p(y = 1 | x) > t and -1 otherwise where
t is a threshold that can be determined by the user (usually, we choose t = 0.5). Stated
differently, logistic regression finds a hypothesis of the form

h(x) =

{
1 : p(y = 1 | x) > t
−1 : otherwise

where the probability distribution p(y | x) is represented as

p(y = 1 | x) =
1

1 + e−β>x

= σ
(
β>x

)
where σ is the sigmoid function

σ(x) =
1

1 + e−x

and β is the weight-vector. Thus, each hypothesis in the considered hypothesis space is
characterized by a β vector. Choosing a hypothesis, then, is akin to finding an appro-
priate β. For example, we can choose a β to be the maximum likelihood estimate of a
training dataset. As another example, a Bayesian method can be employed to derive a
posterior distribution over β.

Motivation
For the sake of brevity, let

θ := p(y = 1 | x)

. Logistic regression is motivated by the attempt to model θ as a linear combination of
the components of x. That is, we believe that

θ = α +

k∑
i=1

βixi

. The problem with this model is that it does not inherently guarantee that θ will be
between zero and one and thus there is no guarantee that it will be a proper probability.
Is there a way to force θ to stay between zero and one while allowing it to depend on a
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linear combination of the features? The trick to accomplishing this is to model the log
odds of θ as this function rather than θ directly:

log
(

θ

1 − θ

)
= α +

k∑
i=1

βixi

. Recall the log odds is given by the logit function. Thus, the model becomes

logit(θ) = α +

k∑
i=1

βixi

. Recall that the inverse of the logit function is the sigmoid function. Thus, we can
express θ as

θ = logit−1

α +

k∑
i=1

βixi


= σ

α +

k∑
i=1

βixi


. Furthermore, we note that since the sigmoid function lies between zero and one, the
math works out to ensure that θ is a valid probability. Lastly, we note that if we let the
first element of the β vector be α and let the first element of any feature vector x be 1,
then we have come to the logistic regression model:

θ = σ
(
β>x

)
.

Logistic regression is a linear model
Logistic regression is a linear classifier due to the fact that the decision boundary is a
hyperplane. This arises from the fact that p(y | x) is modeled as a monotonic function
of x>β. We note that in order to classify an item x as 1, we need p(y | x) > 0.5. This
will occur if β>x > 0. Thus, the decision boundary is

β>x = 0

, which is a hyperplane. Figure 1 illustrates the decision boundary of a logistic regres-
sion classifier learned on 2-dimensional data.
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Figure 1: Plotting p(y = 1 | x). Note that the decision boundary at p(y = 1 | x) = 0.5 is
linear.
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