The logistic regression model **Logistic regression** is a discriminative, linear model for binary classification. That is, it models the probability distribution $p(y \mid \mathbf{x})$ where y is the class label of the item (either -1 or 1), and \mathbf{x} is its feature representation. Once $p(y \mid \mathbf{x})$ is learned, the model will classify a new item as belonging to class 1 if $p(y = 1 \mid \mathbf{x}) > t$ and -1 otherwise where t is a threshold that can be determined by the user (usually, we choose t = 0.5). Stated differently, logistic regression finds a hypothesis of the form $$h(\mathbf{x}) = \begin{cases} 1 : p(y = 1 \mid \mathbf{x}) > t \\ -1 : \text{ otherwise} \end{cases}$$ where the probability distribution $p(y \mid \mathbf{x})$ is represented as $$p(y = 1 \mid \mathbf{x}) = \frac{1}{1 + e^{-\beta^{\mathsf{T}} \mathbf{x}}}$$ $$= \sigma \left(\boldsymbol{\beta}^{\mathsf{T}} \mathbf{x} \right)$$ where σ is the **sigmoid function** $$\sigma(x) = \frac{1}{1 + e^{-x}}$$ and β is the weight-vector. Thus, each hypothesis in the considered hypothesis space is characterized by a β vector. Choosing a hypothesis, then, is akin to finding an appropriate β . For example, we can choose a β to be the maximum likelihood estimate of a training dataset. As another example, a Bayesian method can be employed to derive a posterior distribution over β . ## Motivation For the sake of brevity, let $$\theta := p(y = 1 \mid \mathbf{x})$$. Logistic regression is motivated by the attempt to model θ as a linear combination of the components of \mathbf{x} . That is, we believe that $$\theta = \alpha + \sum_{i=1}^{k} \beta_i x_i$$. The problem with this model is that it does not inherently guarantee that θ will be between zero and one and thus there is no guarantee that it will be a proper probability. Is there a way to force θ to stay between zero and one while allowing it to depend on a linear combination of the features? The trick to accomplishing this is to model the log odds of θ as this function rather than θ directly: $$\log\left(\frac{\theta}{1-\theta}\right) = \alpha + \sum_{i=1}^{k} \beta_i x_i$$. Recall the log odds is given by the logit function. Thus, the model becomes $$logit(\theta) = \alpha + \sum_{i=1}^{k} \beta_i x_i$$. Recall that the inverse of the logit function is the sigmoid function. Thus, we can express θ as $$\theta = \operatorname{logit}^{-1} \left(\alpha + \sum_{i=1}^{k} \beta_i x_i \right)$$ $$= \sigma \left(\alpha + \sum_{i=1}^{k} \beta_i x_i \right)$$. Furthermore, we note that since the sigmoid function lies between zero and one, the math works out to ensure that θ is a valid probability. Lastly, we note that if we let the first element of the β vector be α and let the first element of any feature vector \mathbf{x} be 1, then we have come to the logistic regression model: $$\theta = \sigma \left(\boldsymbol{\beta}^{\mathsf{T}} \mathbf{x} \right)$$. ## Logistic regression is a linear model Logistic regression is a linear classifier due to the fact that the decision boundary is a hyperplane. This arises from the fact that $p(y \mid \mathbf{x})$ is modeled as a monotonic function of $\mathbf{x}^{\mathsf{T}}\boldsymbol{\beta}$. We note that in order to classify an item \mathbf{x} as 1, we need $p(y \mid \mathbf{x}) > 0.5$. This will occur if $\boldsymbol{\beta}^{\mathsf{T}}\mathbf{x} > 0$. Thus, the decision boundary is $$\boldsymbol{\beta}^{\mathsf{T}}\mathbf{x} = 0$$, which is a hyperplane. Figure 1 illustrates the decision boundary of a logistic regression classifier learned on 2-dimensional data. Figure 1: Plotting $p(y = 1 \mid \mathbf{x})$. Note that the decision boundary at $p(y = 1 \mid \mathbf{x}) = 0.5$ is linear.