
Variational inference
Variational inference is a high-level paradigm for estimating a posterior distribution
when computing it explicitly is intractable. Unlike expectation maximization, varia-
tional inference estimates a closed form density function for the posterior rather than
a point estimate for the latent variables. Thus, variational inference is also different
from MCMC methods in that it involves approximating the posterior with an analytical
approximation rather than via sampling.

More specifically, variational inference is used in situations in which we have a
model that involves hidden random variables Z, observed data X, and joint model over
the hidden and observed data p(z, x). Our goal is to perform inference on the hidden
data via the posterior distribution over Z as given by Bayes theorem:

p(z | x) :=
p(x | z)p(z)

p(x)
Variational inference casts the problem of computing the posterior as that of finding
another distribution q(z) that is “close” to p(z | x). Ideally, q(z) is easier to evaluate than
p(z | x), and, if p(z | x) and q(z) are similar, then we can use q(z) as a replacement for
p(z | x) in our inference tasks.

We restrict our search for q(z) to a family of surrogate distributions over Z, called the
variational distribution family, denoted q(z | φ). The parameter φ are the variational
parameters and are used to characterize each member of the variational family. Our
goal then is to find the value for φ that makes q(z | φ) as “close” to p(z | x) as possible.

Variational inference uses the KL-divergence from p(z | x) to q(z | φ) as a measure
of “closeness”:

KL(q(z | φ) || p(z | φ)) := Ez∼q

[
log

q(z | φ)
p(z | x)

]
(1)

Thus, variational inference attempts to find

φ̂ := argminφ KL(q(z | φ) || p(z | x))

and then returns
q(z | φ̂)

as the approximation to the posterior.
In general, there are many algorithms for performing variational inference, each with

strengths and weaknesses depending on p(z, x) and the surrogate family. Variational
inference is a high-level strategy rather an explicit algorithm.

Details
At the core of variational inference is the use of Jensen’s inequality:

E[ f (X)] ≤ f (E[X])
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where f is a convex function. We derive the variational inference algorithm by applying
Jensen’s Inequality on the log-marginal likelihood (also called the evidence):

log p(x) = log
∫

p(x, z) dz

= log
∫

p(x, z)
q(z | φ)
q(z | φ)

dz

= log
(
EZ∼q

[
p(x,Z)
q(Z | φ)

])
≥ EZ∼q

(
log

p(x,Z)
q(Z | φ)

)
Jensen’s Inequality

= EZ∼q
[
log p(x,Z)

]
− EZ∼q

[
log q(Z | φ)

]
This final quantity is called the evidence lower bound (ELBO) since it is provides a
lower bound for the evidence. Variational inference finds φ that maximizes the ELBO.
We show below that this also minimizes the KL-divergence in Equation 1, which is our
true goal:

KL(q(z | φ) || p(z | x)) = EZ∼q

[
log

q(Z | φ)
p(Z | x)

]
= EZ∼q

[
log q(Z | φ)

]
− EZ∼q

[
log p(Z | x)

]
= EZ∼q

[
log q(Z | φ)

]
− EZ∼q

[
log p(Z | x)

]
= EZ∼q

[
log q(Z | φ)

]
− EZ∼q

[
log

p(Z, x)
p(x)

]
= EZ∼q

[
log q(Z | φ)

]
− EZ∼q

[
log p(Z, x)

]
+ EZ∼q

[
log p(x)

]
= log p(x) −

(
EZ∼q

[
log p(x,Z)

]
− EZ∼q

[
log q(Z | φ)

])
= log p(x) − ELBO

In the last line, we see that the KL-divergence is the evidence minus the ELBO. Thus,
in order to minimize the KL-divergence, we need to maximize the ELBO. (As another
interesting note, we see that the difference between the evidence and the ELBO as given
by Jensen’s inequality is exactly the KL-divergence from q(z | φ) to p(z | x)).
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