
Embeddings into Feature Space
Given a set of labelled vectors belonging to some domain set X with labels in Y =
{1,−1}

S := (x1, y1), (x2, y2), . . . , (xm, ym)

it is unlikely that these vectors will be separable by a hyperplane. The halfspace hy-
pothesis space is rather restrictive in real-world applications of machine learning. For
example, consider the vector space R and training set composed of vectors

−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5

with labels defined as follows.

y =
{

1 |x| > 2
−1 otherwise

This scenario is illustrated in Figure 1. Clearly, these items are not linearly separable.

(a) (b)

Figure 1: (a) A set of 11 items in R. Red denotes y = 1 and black denotes y = −1.
(b) The items projected into R2 by the function ψ(x) = [x, x2]. Now they are linearly
separable.

One solution that will allow us to learn a linear classifier on non-separable vectors is
to project the vectors into a new space (usually of higher dimension) where they are
linearly separable. We consider the mapping ψ of vectors inX into a higher-dimensional
space F called the feature-space:

ψ : X → F

Note that for any probability distributionD over X×Y, we can define its image proba-
bility distributionDψ over F × Y as follows:

PDψ(v, y) =
∑

x:ψ(x)=v

PD(x, y)
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Finally, the generalization error overD is defined as

LD(h) = E(x,y)∼D[`(h ◦ ψ, x, y)]

Example: Polynomial Mapping
Given vector space Rn, we define a k-degree polynomial mapping from R to R as

p(x) =
k∑

j=0

w jx j (1)

We see that we can formulate the projection function

ψ(x) = [1, x, x2, . . . , xk]

and consider the vector
w = [w0,w1, . . . ,wk]

for which Equation 1 can be viewed as the dot-product between w and ψ(x). That is

〈w, ψ(x)〉 =
k∑

j=0

w jψ j(x)

=

k∑
j=0

w jx j

Thus, if we find a hyperplane defined by w ∈ Rk that separates the ψ(x) vectors, this will
be the equivalent of finding a polynomial decision boundary in R.

This process can be generalized into any Rn space by defining the multivariate poly-
nomial as

p(x) =
n∑

r=0

∑
j∈{0,1,...,n}r

wJ

r∏
i=1

xJi
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Figure 2: Finding the maximum-margin hyperplane in the polynomial-based projected
space equates to finding a polynomial in R2
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