The Margin of a Separating Hyperplane

We are given the following setting:

- An inner product space \mathcal{V} with norm $\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$
- Labelled vectors $(y_1, \mathbf{x}_1), \dots, (y_m, \mathbf{x}_1)$
- A separating hyperplane define by the vector \mathbf{w} where \mathbf{w} is normal to the hyperplane with norm $||\mathbf{w}|| = 1$. This hyperplane separates all of the labelled vectors by their label. That is

$$\forall i \ y_i \langle \mathbf{w}, \mathbf{x}_i \rangle > 0$$

In this setting, the **margin** of the hyperplane is defined to be the closest vector to the separating hyperplane. This margin is given as follows:

$$margin = \min_{i} \{ |\langle \mathbf{w}, \mathbf{x}_i \rangle| \}$$

As we will soon prove, $|\langle \mathbf{w}, \mathbf{x}_i \rangle|$ is the distance of \mathbf{x}_i to the hyperplane. Thus, we see that the margin is defined to be the minimal distance of any point to the hyperplane.

Distance of a Vector to the Hyperplane

The distance of a point \mathbf{x} to the hyperplane is defined as

$$\min\{||\mathbf{x} - \mathbf{v}|| \mid \langle \mathbf{w}, \mathbf{v} \rangle = 0\}$$

That is, the distance to hyperplane is the smallest distance between \mathbf{x} and some vector \mathbf{v} that lies on the hyperplane (i.e. \mathbf{v} lies on the hyperplane because it is orthogonal to \mathbf{w} as evident by the fact $\langle \mathbf{w}, \mathbf{v} \rangle = 0$). In fact, this distance is given by

$$|\langle \mathbf{w}, \mathbf{x} \rangle + b| = \min\{||\mathbf{x} - \mathbf{v}|| \mid \langle \mathbf{w}, \mathbf{v} \rangle = 0\}$$

Proof:

Let the vector v be defined to be

$$\mathbf{v} := \mathbf{x} - \langle \mathbf{w}, \mathbf{x} \rangle \mathbf{w}$$

We see that this vector lies on the hyperplane because it's inner product with \mathbf{w} is 0 as shown here:

$$\langle \mathbf{w}, \mathbf{v} \rangle = \langle \mathbf{w}, \mathbf{x} - \langle \mathbf{w}, \mathbf{x} \rangle \mathbf{w} \rangle$$

$$= \langle \mathbf{w}, \mathbf{x} \rangle - \langle \mathbf{w}, \langle \mathbf{w}, \mathbf{x} \rangle \mathbf{w} \rangle$$

$$= \langle \mathbf{w}, \mathbf{x} \rangle - \langle \mathbf{w}, \mathbf{x} \rangle \langle \mathbf{w}, \mathbf{w} \rangle$$

$$= \langle \mathbf{w}, \mathbf{x} \rangle - \langle \mathbf{w}, \mathbf{x} \rangle ||\mathbf{w}||^2$$

$$= \langle \mathbf{w}, \mathbf{x} \rangle - \langle \mathbf{w}, \mathbf{x} \rangle$$

$$= 0$$

Next we see that no vector on the hyperplane is closer to \mathbf{x} as \mathbf{v} .

$$||\mathbf{x} - \mathbf{u}||^2 = ||\mathbf{x} - \mathbf{v} + \mathbf{v} - \mathbf{u}||^2$$

$$= ||\mathbf{x} - \mathbf{v}||^2 + ||\mathbf{v} - \mathbf{u}||^2 + 2\langle \mathbf{x} - \mathbf{v}, \mathbf{v} - \mathbf{u}\rangle \quad \text{See Lemma 1.}$$

$$\geq ||\mathbf{x} - \mathbf{v}||^2 + 2\langle \mathbf{x} - \mathbf{v}, \mathbf{v} - \mathbf{u}\rangle$$

$$= ||\mathbf{x} - \mathbf{v}||^2 + 2\langle \mathbf{x} - (\mathbf{x} - \langle \mathbf{w}, \mathbf{x} \rangle \mathbf{w}), \mathbf{v} - \mathbf{u}\rangle$$

$$= ||\mathbf{x} - \mathbf{v}||^2 + 2\langle \mathbf{x} - \mathbf{x} + \langle \mathbf{w}, \mathbf{x} \rangle \mathbf{w}, \mathbf{v} - \mathbf{u}\rangle$$

$$= ||\mathbf{x} - \mathbf{v}||^2 + 2\langle (\mathbf{w}, \mathbf{x}) \rangle \langle \mathbf{w}, \mathbf{v} - \mathbf{u}\rangle$$

$$= ||\mathbf{x} - \mathbf{v}||^2 + 2\langle (\mathbf{w}, \mathbf{x}) \rangle \langle \mathbf{w}, \mathbf{v} - \mathbf{u}\rangle$$

$$= ||\mathbf{x} - \mathbf{v}||^2 + 2\langle (\mathbf{w}, \mathbf{x}) \rangle \langle \mathbf{w}, \mathbf{v} - \mathbf{u}\rangle$$

$$= ||\mathbf{x} - \mathbf{v}||^2 + 2\langle (\mathbf{w}, \mathbf{x}) \rangle \langle \mathbf{w}, \mathbf{v} - \mathbf{u}\rangle$$

$$= ||\mathbf{x} - \mathbf{v}||^2 + 2\langle (\mathbf{w}, \mathbf{x}) \rangle \langle \mathbf{w}, \mathbf{v} - \mathbf{u}\rangle$$

$$= ||\mathbf{v} - \mathbf{v}||^2 + 2\langle (\mathbf{w}, \mathbf{v}) \rangle \langle \mathbf{w}, \mathbf{v} - \mathbf{u}\rangle$$

$$= ||\mathbf{v} - \mathbf{v}||^2 + 2\langle (\mathbf{w}, \mathbf{v}) \rangle \langle \mathbf{w}, \mathbf{v} - \mathbf{u}\rangle$$

Lastly, we see that the norm of $\mathbf{x} - \mathbf{v}$ is $\langle \mathbf{w}, \mathbf{x} \rangle$:

$$\begin{aligned} ||\mathbf{x} - \mathbf{v}|| &= ||\mathbf{x} - (\mathbf{x} - \langle \mathbf{w}, \mathbf{x} \rangle \mathbf{w})|| \\ &= ||\langle \mathbf{w}, \mathbf{x} \rangle \mathbf{w})|| \\ &= \langle \mathbf{w}, \mathbf{x} \rangle ||\mathbf{w}\rangle|| \\ &= \langle \mathbf{w}, \mathbf{x} \rangle \end{aligned}$$

Lemma 1:

$$\|\mathbf{v} + \mathbf{u}\|^2 = \|\mathbf{v}\|^2 + \|\mathbf{u}\|^2 + 2\langle \mathbf{v}, \mathbf{u} \rangle$$

Proof of Lemma 1:

$$||\mathbf{v} + \mathbf{u}||^2 = \langle \mathbf{v} + \mathbf{u}, \mathbf{v} + \mathbf{u} \rangle$$

$$= \langle \mathbf{v}, \mathbf{v} + \mathbf{u} \rangle + \langle \mathbf{u}, \mathbf{v} + \mathbf{u} \rangle$$

$$= \langle \mathbf{v}, \mathbf{v} \rangle + \langle \mathbf{v}, \mathbf{u} \rangle + \langle \mathbf{u}, \mathbf{v} + \mathbf{u} \rangle$$

$$= \langle \mathbf{v}, \mathbf{v} \rangle + \langle \mathbf{v}, \mathbf{u} \rangle + \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{u} \rangle$$

$$= ||\mathbf{v}||^2 + \langle \mathbf{v}, \mathbf{u} \rangle + \langle \mathbf{v}, \mathbf{u} \rangle + ||\mathbf{u}||^2$$

$$= ||\mathbf{v}||^2 + ||\mathbf{u}||^2 + 2\langle \mathbf{v}, \mathbf{u} \rangle$$

 \Diamond