The Margin of a Separating Hyperplane

We are given the following setting:

- An inner product space \(\mathcal{V} \) with norm \(\|v\| = \sqrt{\langle v, v \rangle} \)

- Labelled vectors \((y_1, x_1), \ldots, (y_m, x_1)\)

- A separating hyperplane defined by the vector \(w \) where \(w \) is normal to the hyperplane with norm \(\|w\| = 1 \). This hyperplane separates all of the labelled vectors by their label. That is

\[
\forall i \; y_i \langle w, x_i \rangle > 0
\]

In this setting, the **margin** of the hyperplane is defined to be the closest vector to the separating hyperplane. This margin is given as follows:

\[
\text{margin} = \min_i \|\langle w, x_i \rangle\|
\]

As we will soon prove, \(|\langle w, x_i \rangle| \) is the distance of \(x_i \) to the hyperplane. Thus, we see that the margin is defined to be the minimal distance of any point to the hyperplane.

Distance of a Vector to the Hyperplane

The distance of a point \(x \) to the hyperplane is defined as

\[
\min \{ \|x - v\| \mid \langle w, v \rangle = 0 \}
\]

That is, the distance to hyperplane is the smallest distance between \(x \) and some vector \(v \) that lies on the hyperplane (i.e. \(v \) lies on the hyperplane because it is orthogonal to \(w \) as evident by the fact \(\langle w, v \rangle = 0 \)). In fact, this distance is given by

\[
|\langle w, x \rangle + b| = \min \{ \|x - v\| \mid \langle w, v \rangle = 0 \}
\]

Proof:

Let the vector \(v \) be defined to be

\[
v := x - \langle w, x \rangle w
\]

We see that this vector lies on the hyperplane because it’s inner product with \(w \) is 0 as shown here:
\[
\langle w, v \rangle = \langle w, x - \langle w, x \rangle w \rangle
\]

\[
= \langle w, x \rangle - \langle w, \langle w, x \rangle w \rangle
\]

\[
= \langle w, x \rangle - \langle w, x \rangle \langle w, w \rangle
\]

\[
= \langle w, x \rangle - \langle w, x \rangle \|w\|^2
\]

\[
= \langle w, x \rangle
\]

\[
= 0
\]

Next we see that no vector on the hyperplane is closer to \(x \) as \(v \).

\[
\|x - u\|^2 = \|x - v + v - u\|^2
\]

\[
= \|x - v\|^2 + \|v - u\|^2 + 2\langle x - v, v - u \rangle \quad \text{See Lemma 1.}
\]

\[
\geq \|x - v\|^2 + 2\langle x - v, v - u \rangle
\]

\[
= \|x - v\|^2 + 2\langle x - (x - \langle w, x \rangle w), v - u \rangle
\]

\[
= \|x - v\|^2 + 2\langle x - x + \langle w, x \rangle w, v - u \rangle
\]

\[
= \|x - v\|^2 + 2\langle \langle w, x \rangle w, v - u \rangle
\]

\[
= \|x - v\|^2 + 2\langle w, x \rangle \langle w, v - u \rangle
\]

\[
= \|x - v\|^2
\]

\(v - u \) is on the hyperplane, thus \(\langle w, v - u \rangle = 0 \).

Lastly, we see that the norm of \(x - v \) is \(\langle w, x \rangle \):
\[\|x - v\| = \|x - (x - \langle w, x \rangle w)\|\]

\[= \|\langle w, x \rangle w\|\]

\[= \langle w, x \rangle \|w\|\]

\[= \langle w, x \rangle\]

\[\square\]

Lemma 1:

\[\|v + u\|^2 = \|v\|^2 + \|u\|^2 + 2\langle v, u \rangle\]

Proof of Lemma 1:

\[\|v + u\|^2 = \langle v + u, v + u \rangle\]

\[= \langle v, v + u \rangle + \langle u, v + u \rangle\]

\[= \langle v, v \rangle + \langle v, u \rangle + \langle u, v + u \rangle\]

\[= \langle v, v \rangle + \langle v, u \rangle + \langle u, v \rangle + \langle u, u \rangle\]

\[= \|v\|^2 + \langle v, u \rangle + \langle v, u \rangle + \|u\|^2\]

\[= \|v\|^2 + \|u\|^2 + 2\langle v, u \rangle\]

\[\square\]