
The SVM Optimization Formulation with Kernels
In order to show how we can learn an SVM using only kernel functions, we will rely on a
result called the Representer Theorem. Recall the generalized optimization formulation
of the SVM:

min
w
{ f (〈w, ψ(x1)〉, 〈w, ψ(x2)〉, . . . , 〈w, ψ(xm)〉) + R(‖w‖) } (1)

The Representer Theorem is then,

Theorem (Representer Theorem): Given a set of vectors S := x1, x2, . . . , xm re-
siding in a vector space X and mapping ψ : X → F where F is a Reproducing Kernel
Hilbert Space, then there exists a vector α ∈ Rm such that

w =

m∑
i=1

αiψ(xi)

is the solution to Equation 1

Proof:

First, note that the vectors ψ(x1), ψ(x2), . . . , ψ(xm) span a subspace of F , which we de-
note as F. That is, F ⊆ F . Though not proven rigorously here, it follows that F can be
formed by

F = F ⊕ F⊥

where F⊥ is the orthogonal compliment of F. That is F⊥ is the set of all vectors orthog-
onal to vectors in F. Thus, every vector f ∈ F can be written as

f = f‖ + f⊥

where f‖ ∈ F and f⊥ ∈ F⊥.

Now, let w∗ be the solution to Equation 1. By the previous fact, w∗ can be formed
by

w∗ =

m∑
i=1

αiψ(xi) + u

where u ∈ F⊥. That is, w∗ can be formed by taking a linear combination of the ψ(xi)
vectors added to at least one vector u that is orthogonal to all of the ψ(xi).
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We’ll denote the linear combination of ψ(xi) vectors used to construct w∗ as w. That
is,

w :=
m∑

i=1

αiψ(xi)

Thus,

w∗ = w + u

=⇒ w = w∗ − u

Now, since u is orthogonal to all ψ(xi) vectors it follows that for all i,

〈u, ψ(xi)〉 = 0

=⇒ 〈u, αiψ(xi)〉 = 0

=⇒

m∑
j=1

〈u, α jψ(x j)〉 = 0

=⇒

〈
u,

m∑
j=1

α jψ(x j)
〉

= 0 by linearity of the inner-product

=⇒ 〈u,w〉 = 0

Now, looking at the value of the f function evaluated on w we see that

f (〈w, ψ(x1)〉, . . . , 〈w, ψ(xm)〉) = f (〈w∗ − u, ψ(x1)〉, . . . , 〈w∗ − u, ψ(xm)〉)

= f (〈w∗, ψ(x1)〉 − 〈u, ψ(x1)〉, . . . , 〈w∗, ψ(xm)〉 − 〈u, ψ(x1)〉)

= f (〈w∗, ψ(x1)〉, . . . , 〈w∗, ψ(xm)〉)

Thus, we see that f evaluated on w is equal to f evaluated on the optimal vector w∗.
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To prove that w is also an optimal vector, we need to show that R evaluated on w∗
is greater than or equal to R evaluated on w. Since we have established that w⊥ u, then
it follows that

‖w∗‖2 = ‖w‖2 + ‖u‖2

≥ ‖w‖2

Since R is, by definition, a monotonically increasing function, it follows that

R
(
‖w∗‖2

)
≥ R

(
‖w‖2

)
�

Thus, with the Representer Theorem, we have show that our solution to the SVM op-
timization formulation can be expressed as the sum of the weighted example vectors.
That is,

w =

m∑
i=1

αiψ(xi)

Then, the inner product 〈w, ψ(xi)〉 can be expressed as

〈w, ψ(xi)〉 =

〈 m∑
j=1

α jψ(x j), ψ(xi)
〉

=

m∑
j=1

〈α jψ(x j), ψ(xi)〉

=

m∑
j=1

α j〈ψ(x j), ψ(xi)〉

=

m∑
j=1

α jK(x j, xi)

Similary,
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‖w‖2 = 〈w,w〉

=

〈 m∑
j=1

α jψ(x j),
m∑

i=1

αiψ(xi)
〉

=

m∑
j=1

α j

〈
ψ(x j),

m∑
i=1

αiψ(xi)
〉

=

m∑
j=1

m∑
i=1

α jαi

〈
ψ(x j), ψ(xi)

〉

=

m∑
j=1

m∑
i=1

α jαiK(x j, xi)

Therefore, the SVM optimization can be formulated only in terms of the kernel function
as follows

min
α

 f

 m∑
j=1

α jK(x j, x1), . . . ,
m∑

j=1

α jK(x j, xm)

 + R


√√ m∑

j=1

m∑
i=1

α jαiK(x j, xi)


 (2)

The Gram Matrix
In practice, an efficient implementation of an SVM would first compute the value of
the Kernel function for every pair of training vectors. Each value is stored in an m × m
matrix G called the Gram matrix. That is, G is defined as

Gi, j = K(xi, x j)

We know show how to compute ‖w‖2 and 〈w, xi in terms of the Gram matrix.

Claim 1:
m∑

j=1

α jK(x j, xi) = (Gα)i
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Proof:

Gα = α1


G1,1

G2,1
...

Gm,1

 + α2


G1,2

G2,2
...

Gm,2

 + · · · + αm


G1,m

G2,m
...

Gm,m



=


α1G1,1 + α2G1,2 + · · · + αmG1,m

α1G2,1 + α2G2,2 + · · · + αmG2,m
...

α1Gm,1 + α2Gm,2 + · · · + αmGm,m


Thus we see that the ith value of this vector is

α1Gi,1 + α2Gi,2 + · · · + αmGi,m = α1K(xi, x1) + α2K(xi, x2) + · · · + αmK(xi, xm)

=

m∑
j=1

α jK(xi, x j)

=

m∑
j=1

α jK(x j, xi)

�

Claim 2:
m∑

j=1

m∑
i=1

α jαiK(x j, xi) = αTGα

Proof:

From Claim 1,

Gα =


α1G1,1 + α2G1,2 + · · · + αmG1,m

α1G2,1 + α2G2,2 + · · · + αmG2,m
...

α1Gm,1 + α2Gm,2 + · · · + αmGm,m


Now,
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αTGα = [α1, α2, . . . , αm]


α1G1,1 + α2G1,2 + · · · + αmG1,m

α1G2,1 + α2G2,2 + · · · + αmG2,m
...

α1Gm,1 + α2Gm,2 + · · · + αmGm,m


= α1(α1G1,1 + α2G1,2 + · · · + αmG1,m) + · · · + αm(α1Gm,1 + α2Gm,2 + · · · + αmGm,m)

=

m∑
j=1

m∑
i=1

α jαiG j,i

=

m∑
j=1

m∑
i=1

α jαiK(x j, xi)

�

SVM Optimization with Kernels
Hard-SVM with Kernels

For the hard-SVM Equation 2 becomes the optimization problem

minimize
m∑

j=1

α jαi

m∑
i=1

K(x j, xi)

subject to ∀i yi

m∑
j=1

α jK(x j, xi) ≥ 1

From Claims 1 and 2, this becomes the optimization problem

minimize αTGα
subject to ∀i yi(Gα)i ≥ 1

Soft-SVM with Kernels

For the soft-SVM Equation 2 becomes the optimization problem
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minimize
m∑

j=1

m∑
i=1

K(x j, xi) +
λ

m

m∑
i=1

max

0, 1 − y
m∑

j=1

α jK(x j, xi)


From Claims 1 and 2, this becomes the optimization problem

minimize αTGα +
λ

m

m∑
i=1

max {0, 1 − yi(Gα)i}

7


