Disk Basics

CS 537 - Introduction to Operating Systems

Hard Drive Technology

- Modern Statistics
 - Capacity: 20.5 GB
 - Sector size: 512 bytes
 - Speed: 7200 RPM
 - Platters: 3
 - Heads: 6
 - Cylinders: 17,688
 - Media transfer rate: 35 MB/sec
 - Interface transfer rate: 14.1 - 23.4 MB/sec
 - Cost: $127.00
Hard Drive Terminology

- **Seek Latency**
 - time to move the read head to correct cylinder
 - avg = 9.0 ms
 - track-to-track = 2.2 ms
 - full-track = 15 ms

- **Rotational Latency**
 - time for disk to rotate to needed sector
 - avg = 4.17 ms

- **Transfer Latency**
 - time to actually read and send the data
 - ≈60 µs for 1 KB of data

Disk Access

- Cannot access any random byte on a disk
 - this would be called random access (RAM)
- However, don’t have to access them sequentially
 - have to go through all data to get to desired data (tape drive)
- Disks must be accessed per sector
 - each sector is 512 bytes
 - this is called direct access

Reading from Disk

- To read a single byte from disk
 - provide address of sector
 - cylinder, head, sector number
 - seek to location of data on disk
 - read entire sector into memory (512 bytes)
 - index into memory to grab the necessary byte
Writing to Disk

- To write a single byte out to disk
 - read entire sector into memory
 - modify the necessary byte in memory
 - seek back to disk location
 - write the entire sector back to disk
- Notice 2 times avg. latency required to write a single block

Disk Performance

- Disk is a mechanical device
 - extremely SLOW!!
- Can use DMA and context switching to hide latency
 - this will only help so much
- Want to interact with physical disk as little as possible
- Reading and writing a single byte is a bad idea

Prefetching Blocks

- If the user wants data in sector 23, odds are they will eventually want data in sector 24
 - this assumes intelligent placement of data on disk to start with - more on this later
- Amortize the latencies by reading in sector 23 and sector 24
 - when user does actually want sector 24, already in memory
- Most disks are read in a page at a time
 - 4 KB of data (8 sectors)
Disk Buffering

- If byte 55 of sector 26 is modified, high probability byte 56 of sector 27 will also be modified
- Usually wait awhile to write back a sector that is currently in memory
 - hopefully wait until all data that will be modified is modified
 - again, allows amortization of latencies over a large number of writes