Threads

CS 337 • Introduction to Operating Systems

Thread Description

• Thread’s Private Information
  – ID
  – program counter
  – register set
  – stack

• Thread’s Shared Information
  – code and data Memory
  – files
  – other OS resources

User Threads

• User process is in complete control
  – usually use a library to implement (pthreads)
• OS not involved
  – very fast to create and manage
• OS has no knowledge of multiple threads
  – if one thread blocks on I/O, process blocks
  – other threads in process may be available to run
Kernel Threads

- OS devotes multiple threads to a process
- Controlled by OS
  - slow to create and manage
- OS does have knowledge of process threads
  - If one process thread blocks, OS can schedule another thread of process

Multithreading Models

- Many-to-One Model
  - one kernel thread per process
  - all process threads share a kernel thread
    - one blocks, all blocked
  - can’t run a multithreaded process on multiple processors

Many-to-One
Multithreading Models

- One-to-One Model
  - one kernel thread per user thread
  - one blocks, another can run
  - slow to create and manage
  - usually a finite set of threads available from OS
  - allows multithreaded process to run on multiple processors

One-to-One

Multithreading Models

- Many-to-Many Model
  - multiple user level and kernel level threads
  - process can assign a set of threads to a kernel thread
  - if one thread blocks, all threads in its group block but another group of threads in the process could run
  - still have limitations within a group or switching between groups
  - all in all, though, much more flexible