
Adaptively Scheduling Processes on a Simultaneous
Multithreading Processor

Omer Zaki Matthew McCormick Jonathan Ledlie
{ozaki, mattmcc, ledlie} @cs.wisc.edu

Computer Sciences Department
1210 West Dayton St.

Madison, WI 53706, U.S.A.

Abstract

Within recent years the concept of the simultaneous multithreading (SMT) processor has been
gaining in popularity. This hardware allows multiple processes to run on the processor at the
same time providing more potential for instruction level parallelism. These new processors
suggest that the rules an operating system (OS) scheduler follows need to be changed or at least
modified. Our study shows the combination of jobs selected to run on these threads can
significantly affect system performance. Our research shows that scheduling policies are greatly
affected by the system workload and there most likely does not exist a single, best scheduling
policy. However, it can be shown that a scheduler that tries to schedule processes doing a large
number of loads and stores together with jobs doing few loads and stores consistently performs
at levels close to or better than all other scheduling policies examined. It can also be seen that
the more possibilities there are for scheduling, the more necessary it is to have an intelligent
scheduler. In contrast, the few number of decisions to make (few threads and/or few processes)
the less important the decision of a scheduler becomes.

1 Introduction

Simultaneous Multithreading (SMT) processors enable more than one process to have

instructions in flight at the same instant [Tullsen96]. Given that the maximum

number of processes which can be run is built in to the hardware’s implementation,

this begs the question: what policy should be used to pick the processes to run

together? Because different processes have different resource requirements, intuition

would suggest that if we can find processes that are not using the same resources they

will conflict the least, they will be able to get the most instructions through the

pipeline, and, as a consequence, we will achieve higher overall instructions per cycle.

We show that if a mixture of resource−using jobs is available and if we minimize the

1

structural conflicts through scheduling, we obtain a small but consistent gain in

overall IPC over a less intelligent policy.

The essential concept behind SMT is that only so much parallelism can be

extracted from a given process but, if more processes contribute their instructions to

the pool from which the processor can choose, more parallelism and, therefore, more

throughput, will result.

In an SMT, other processes’ instructions can flow around this stalled one. It is

much less likely that interprocess dependencies exist between some process B and A,

than the intraprocess dependency just witnessed.

Two or more processes can conflict with one another if they are attempting to

perform the same kind of instruction at the same time. For example, many concurrent

loads and stores or ALU operations can clog these particular parts of the processor

whether they come from one process or several. This project seeks to ameliorate these

structural bottlenecks by running processes which have different resource demands at

the same time.

Before proceeding into how this scheduling is distinct from traditional operating

systems scheduling, let us establish our nomenclature. For the purposes of this paper,

a process or job is a software construct with long−term state; the distinction between

lightweight software threads and processes is ignored. Here, threads refer to hardware

contexts, of which a processor has a fixed number (1, 2 and 4 in our tests). Processes

run on threads for a short period called a quantum. While each process is running,

hardware counters track each process’s resources usage. After its quantum expires,

software retains this state. Additionally, our schedulers are able to record and

associate hardware state like floating point usage with a particular process. This is

further explained in Sections 3 and 4.

2

Operating systems traditionally handle process scheduling by concentrating on

the amount of time a process is allowed to stay on a processor. The system keeps a

history of the job’s behavior and tries to give it a quantum just long enough to

accomplish what it needs to and no more. Generally, it does not track what kinds of

instructions the process is executing, only how long it demands to use the processor.

For example, a job which has, in its recent past, only needed the processor to set up a

new I/O request after which it relinquishes the processor, is given higher priority than

a seldom−yielding, computationally intensive process.

The concept is simple: because these processes can quickly set up their work

and then can go to sleep, waiting for the next keystroke or disk interrupt, for example,

they should be given higher priority because their work can be done in parallel with a

processor intensive job. This shortest job first policy leads to higher throughput than

some schedule like round robin. Operating system schedulers generally also include

measures to allow for other means of prioritization and to prevent starvation. In the

figure below, the foci are when to remove a process and how to allow short jobs with

small quanta to go first.

3

On an SMT, the problem changes considerably. Here, an OS must not only determine

which processes should run first and for how long, but also which run best together.

In our study we have ignored the former problem and instead focused exclusively on

the latter. We have developed and evaluated three new ways for scheduling on an SMT

and compared them with each other and with a random and round robin scheduler.

1.1 A Simple Example

4

To form a more concrete image in the reader’s mind, we would like to go through a

simple example. Imagine that there is some CPU resource whose usage can be

enumerated and compared to that of other processes. Examples of such resources

include any resource that could potentially become a bottleneck: the result bus, load

and store queues, any or all of the integer or floating point units, the register file.

Because we are not varying the amount of time a process lives on the CPU, each thread

is relieved of its process in round robin fashion. As portrayed in the picture below,

thread 1 has reached the end of its quantum. The other three threads will continue to

run their resource intensive (20 each) processes. The advantage of switching only one

process at a time is that it lessens the deleterious impact of saving the process’s

registers and squashing its in−flight instructions [Tullsen00]. Thread 1 is the victim

and we must choose from the processes which have consumed 9, 10, 8, or 20 units of

the resource during their last quanta.

5

If we choose the process with 20 from the ready queue (for a total of 80 for the

runners), the resource we are metering may become a structural bottleneck and stem

the flow of instructions through the pipeline. We argue that the best process to mix

with the resource−intensive processes is 8 because this will keep the usage of the

resource as low as possible when the heavy users are running. Ideally the system

would soon achieve equilibrium where two 20s and two from { 8, 9, 10, 10 } alternate,

minimizing the resource as a potential bottleneck while preventing starvation. The

schedulers which we developed and describe in Section 3.2 achieve this alternating

equilibrium.

Section 2 discusses previous work on SMT scheduling and how the schedulers

we present are more flexible. Section 3 examines the schedulers themselves and how

we came to choose them from other resource possibilities. Section 4 describes how we

extended an existing SMT simulator to include these scheduling policies. Section 5

shows the schedulers’ performance on combinations of SPEC 2000 benchmarks.

Section 6 looks at future work to build on the performance results. The last section

draws some conclusions about the SMT schedulers we have developed.

2 Related Work

Scheduling jobs on a SMT processor has only recently received attention while the

SMT model has been studied for well over five years.

In a single threaded architecture the objective is to have a single job running on

the processor at all times. When a running job has to wait or is made to wait, a ready

job is allocated the processor. Work in this area has focused on overlapping waits with

computation, thereby attempting to utilize the processor to its fullest extent.

Scheduling jobs on a single threaded processor has been well researched and several

6

successful schemes have been proposed. Most schemes attempt to increase

throughput by overlapping I/O of one job with the calculations of others. For instance,

the scheduling policy chosen for several flavors of Unix (4.3 BSD Unix [Thompson74],

Unix System V, and Solaris TS (timesharing scheduling class)) is Multi−level

Feedback that encourages I/O bound jobs to run more frequently, thus leading to

higher overall machine utilization.

In the case of a SMT processor such a policy would not be sufficient, since

several jobs can be coscheduled on the processor. The jobs executing together on the

processor compete for hardware resources making the choice of jobs to coschedule an

important one, affecting processor utilization. Thus, the full benefits of SMT hardware

can only be realized if the scheduler is aware of the interactions between the

coscheduled jobs [Tullsen00]. Scheduling jobs on a SMT thus, requires finer−grained

scheduling by efficiently allocating processor hardware resources among the

coscheduled jobs.

We are aware of only one other work that has studied scheduling for an SMT. Tullsen,

et al., [Tullsen00] propose a scheme named SOS that schedules jobs in a two−step

process. The first step, called the sampling phase, collects information on various

possible schedules while the second step, called the symbiosis phase, uses sampled

information to predict the schedule that would provide best performance and runs it

for a certain number of cycles until the next sampling phase is triggered. The sampling

phase runs for a small number of cycles when compared to the symbiosis phase.

Success of this scheme thus, largely depends on the quality of schedule chosen in the

sampling phase. To reduce the overhead of sampling, only a small number of schedules

can be considered from the huge space of possible schedules. Information is gathered

for each chosen schedule by running the jobs accordingly.

7

2.1 Motivation

The SOS work demonstrates that the performance of a SMT processor is sensitive to

the set of jobs that are coscheduled by the operating system job scheduler. This forms

the basis of our project. There are however, two major limitations, we identify in SOS:

1) The strict two step decision making process can potentially make scheduling less

responsive to job workload changes and, 2) choosing a good schedule from the large

space of possibilities can be unwieldy in realistic scenarios. We propose a different

scheme that chooses jobs to run on an SMT processor based on the information

collected on each of the ready jobs as well as the information collected on the executing

jobs. Although, like the SOS scheme, ours involves collecting information on the jobs,

we believe it is more adaptive to workload changes than SOS as it bases the scheduling

decisions on the most current state of the jobs. This differs from the strict two−step

scheme of SOS.

3 Adaptive Scheduling

There exists a huge space potential scheduling policies from which to choose. As a

result, a good portion of our project involved trying to come up with possible solutions

to the coscheduling problem. The initial phase involved writing several micro−

benchmarks designed to test very specific process interactions. For example, one

micro−benchmark attempted to exploit spatial locality by accessing a large array in

column−major order. To complement this test, another program was written to access

the same array in row−major order. This gave us two programs with very different

usage characteristics of the same resource.

8

Our other micro−benchmarks included programs to to test temporal locality,

branch prediction capabilities, and the number of loads and stores. Floating−point

and integer versions of all of these programs were constructed. At this point, we

randomly tested combinations of these benchmarks with each other. It was the results

of these micro−tests that lead us to select our scheduling policies. The policies we

decided to implement were a memory usage scheduler, a cache miss scheduler, and a

functional unit usage scheduler. We also implemented two simple, uninformed

schedulers, round−robin and random, to use as a baseline for our results.

Before discussing the policies, it is worthwhile to mention what additions would

be necessary to the hardware to support these scheduling policies. First of all, the

processor must be capable of doing context switching. Should all four processes be

stopped? should two? or only one? In what order should they be preempted? Our

scheduler assumes that only one thread will be stopped at a time and the selection of

threads to stop is done in a purely round−robin fashion. Secondly, resource counters

are needed for each thread. In this way, whenever a process running on a thread uses

a resource, like a floating point adder or a memory read port, the resource counter for

that thread would be incremented by one. This data could then be retrieved by the

operating system whenever it desired the information.

9

The first scheduler, MEM, attempts to schedule jobs doing a lot of loads and stores

with jobs doing few loads and stores. Along the same vain is the MISS scheduler that

tries to schedule jobs with a high cache miss rate with jobs achieving a low cache miss

rate. The implementation for both of these schedulers is almost identical. They both

calculate an average for all processes in the entire system. This average is based on

the resource being examined − MEM averages memory accesses and MISS averages

cache misses. Each waiting job in its turn is then averaged in with the job(s) that are

to remain running on the processor. The process most recently removed from the

processor is not considered during this process. The waiting job that, if it were run,

would give the running processes an average closest to the system average is the one

chosen to run.

10

The functional unit scheduler, FU, is based on the concept that the best

scheduling policy will provide the best possible balance across all of the functional

units. The FU scheduler works by going through each of the waiting jobs, assuming it

would run with the job(s) remaining on the processor and calculating the standard

deviation across all of the functional units. Again, the job most recently removed from

the processor is not figured into these calculations. The waiting process that provides

the lowest standard deviation is the one selected to run.

4 Methodology

We evaluate our adaptive scheme by carrying out a series of experiments using

benchmarks from the SPEC 2000 suite on an extended version of Zilles’ SMT simulator

[Zilles99].

4.1 Simulation infrastructure

To evaluate our adaptive scheme, we extended Zilles’s SMT simulator [Ziles99]. Prior to

our extension, the simulator did not have support to schedule more jobs than

hardware threads. Zilles’ simulator models a SMT processor similar to the one

proposed in [Tullsen96] along with several enhancements. We configured the core of

the processor to have 1, 2, or 4 threads. Instructions are scheduled out−of−order and

all threads share a single fetch unit, branch predictor, decoder, centralized instruction

window (128 entries), scheduler, memory system and a pool of functional units. The

memory system is comprised of separate 64KB L1 data and instruction caches, and a 1

MB L2 unified cache. The functional units are 3 integer units, 6 floating−point units, 1

load unit and 1 store unit. It is capable of fetching 4 instructions per cycle and has 5

pipe stages between fetch and decode, 7 pipe stages between decode and execute (for a

total 12 cycle mispredict penalty). Other specifications of the simulated machine are

described in [Zilles99].

11

In extending Zilles’ simulator to support scheduling we added a:

• Context switch mechanism: A desired job running on a given hardware thread

can now be interrupted and replaced.

• Scheduler mechanism: A higher number of jobs than hardware threads can

now be run on the simulated processor. The jobs get to use the processor

based on policies that can be specified.

• Statistics gathering mechanism: To simulate hardware counters as in a real

processor we added support to keep track of the resource consumption for every

job while it used the processor. In our scheduling schemes we rely on these

gathered statistics to guide take well−informed decisions.

4.2 Benchmarks

Ten benchmarks were selected from the SPEC CPU2000 suite [SPEC CPU 2000]. We

report data from six of them in Table 1. Three of these benchmarks are integer

intensive and the remaining are floating point intensive. Our primary criterion for

choosing these benchmarks was their run−time behavior. Crafty, for instance, heavily

stressed the integer functional units by having a significant number of logical

operations such as and, or, exclusive or and shift, while going easy on the store unit.

Table 2 gives the functional unit usage for two sample INT and FP benchmarks.

For each of these benchmarks we use the reference input set and generate EIO

[Burger97] traces of 100 million instructions (on a Linux system). To take into account

the initialization phase of each benchmark we skip the first 1 million instructions.

In addition to these established benchmarks we created microbenchmarks to

decide upon a set of heuristics to use in making job scheduling choices.

Name IPC Loads
(million)

Stores
(million)

L miss
(million)

S miss
(million)

Branches
(million)

Branch hits
(million)

Hit ratio

12

Crafty 2.770 31.466 7.244 0.208 0.157 9.989 9.546 0.957

Gcc 2.290 28.053 13.039 0.224 0.195 13.487 12.796 0.949

Perl 2.814 25.803 13.460 0.134 0.847 13.831 13.488 0.975

Mgrid 3.750 43.820 8.650 0.136 3.800 1.859 1.809 0.973

Swim 3.286 22.423 4.249 0.028 1.504 1.624 1.609 0.991

Facerec 3.551 22.430 10.406 0.136 0.406 9.557 9.462 0.990

Table 1: Characteristics of some benchmarks. The data was collected for approx. 100
million instructions. The ones shaded are INT and the others are FP.

FU type Crafty Mgrid

Null 1141 390

int−ALU 73,344,019 21,892,622

int−multiply 339,519 163,574

int−divide 0 0

FP−add/sub 115 56,655,872

FP−comparison 0 0

FP−conversion 36,199 0

FP−multiply 25 8,388,608

FP−divide 2 0

FP−sqrt 0 0

rd−port 32,063,507 43,869,561

wr−port 7,298,864 8,650,004

Table 2: Functional unit usage of two benchmarks. The values represent the number of
instructions that used the given unit. The data was collected for approx. 100 million
instructions.

5 Results

To test the various scheduling algorithms, we chose 6 benchmarks. These consisted of

3 integer intensive and 3 floating−point intensive benchmarks. Some relevant

characteristics of these benchmarks together can be found in Table 1. There were

three basic sets of benchmark groupings: integer intensive only, floating−point

13

intensive only, and a combination of floating−point and integer intensive benchmarks.

We ran each of these groups with every scheduling algorithm. All tests were repeated

on 5 different hardware configurations (2 threads−4 processes, 2 threads−8 processes,

2 threads−16 processes, 4 threads−8 processes, and 4 threads−16 processes), for a

total of 75 tests. A representative set of all of this data is presented in the following

sections.

5.1 Floating−Point Only Benchmarks

Graphs 1 represents the average IPC for all of the FP intensive benchmarks running

under a given set of test conditions. Note that whichever scheduler is run, if the only

jobs in the system are floating point intensive, high IPCs result. In fact, there is very

little difference between any of the policies when scheduling a floating−point

benchmark. We believe this is because of three factors. First, floating−point programs

still involve a fair amount of integer work. Integer intensive programs, on the other

hand, involve very little, if any, floating point work. Hence, floating−point programs

have an inherent amount of balance built into them. This results in good parallelism

between programs regardless of how they are scheduled.

Second, Table 1 shows that the floating−point programs we examined tend to do

relatively few branches and have a high branch prediction accuracy when compared to

the integer benchmarks used. Fewer branches and higher accuracy lead to a higher

IPC because there are fewer wasted cycles due to misprediction. When dealing with an

SMT processor, it also means that fewer system resources are being unnecessarily

consumed.

14

Average IPC (200 million instructions, floating point benchmarks only)

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

t h2as4 t h2as8 t h2as16 t h4as8 t h4as15

S c h e d u l i n g P o l i c y

FU

MEM

MIS S

RR

RANDOM

Graph 1

Last, there are twice as many floating−point units as integer units in our

simulator (6 floating−point ALU’s and 3 integer ALU’s). So if there is a mix as to the

type of floating point operations being conducted, these instructions are more likely to

find an idle functional unit. Because the scheduling policy does not appear to impact

floating−point intensive programs, the rest of this section will focus on the integer only

and mixed tests.

5.2 Integer Only and Mixed Benchmarks

We will begin our discussion of the mixed and integer only tests by considering Graphs

2 and 3. Note that almost all of the schedulers noticeably outperform the rest of the

schedulers for some given configuration, and noticeably underperform for a different

configuration. The one exception to this seems to be the MEM scheduler. In almost

every benchmark examined, it either performed the best, or within a small fraction of

the best policy. Intuitively, this result makes sense. If a process, which is in the midst

15

of doing frequent memory references (call it P1), is scheduled with a job doing more

infrequent references (call it P2), the latencies of P1’s memory references can be

“covered” by the instructions in P2. This is true regardless of the type of jobs being

done.

Average IPC (200 million instructions, integer benchmarks only)

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

t h2a s4 t h2a s8 t h2a s15 t h4a s8 t h4a s15

S c h e d u l i n g P o l i c y

FU

MEM

MIS S

RR

RANDOM

Graph 3

In contrast to the MEM scheduler is the FU scheduler. It performs very well for

all of the mixed scheduling jobs, but performs very poorly for all of the integer only

jobs. When dealing with a mixed bag of floating−point and integer jobs, it makes sense

that the FU scheduler should perform well. There is a good deal of contention for all of

the resources in the system with some processes requiring one particular type of

resource (i.e. floating−point functional units) and other processes demanding a

different resource (i.e. integer functional units). This situation provides many

opportunities for instruction level parallelism across functional units, which the FU

scheduler is built to exploit.

16

In contrast, the situation involving only integer benchmarks provides much less

opportunity for parallelism between functional units since all of the processes are

competing for a much smaller number of resources. The reason MEM performs well in

this situation is because it is considering a different resource, namely memory. While

the integer ALUs will continue to be heavily loaded, different benchmarks will have

different memory requirements at different times in their execution. As a result, a

process that is currently in the midst of heavy memory usage (i.e. a loop multiplying

two arrays together and placing the result in a third array) can be scheduled with a job

doing a math intensive operation (i.e. repeatedly solving a set of complex equations).

Average IPC (200 million instructions, floating point and integer benchmarks)

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

th2as4 th2as8 th2as15 th4as8 th4as15

S che duling Po lic y

FU

MEM

MISS

RR

RANDOM

The reason the FU scheduler does not work well in the integer−only situation is

because it only attempts to keep a good balance between all of the functional units and

does not consider the total number of operations a process will add to a functional

unit. This means a job executing a thousand instructions on each of the functional

units will look very similar to a job executing ten thousand instructions on each

17

functional unit – at least, they will look the same to the scheduler used in our

research. Once the functional units have become saturated, it does not matter how

balanced the requirements to each unit are and it is more important to try to use

another system resource – like memory. An FU scheduler based more on the total

number of instructions a process is trying to commit to the functional units would

probably be more effective than one based on balance.

The MISS scheduler’s results correlate well with those found in [Tullsen00].

Here Tullsen and Snavely discovered: “The Dcache predictor was an inconsistent

performer… in some cases it chose the worst schedule.” When only a few threads are

available, there are many processes (th2as8 and th2as16), and the processes running

are a mix of floating−point and integer, the miss scheduler performs very poorly. This

indicates that picking a job to schedule because it has a lot of misses in the L1 cache

is a bad idea if there are not a large number of other threads to cover its latency

(remember: the idea is to schedule jobs of complementary types, so if a job with good

cache hit ratios is selected, one with a poor cache hit ratio will be scheduled when

using MISS). For instance, if there is only one thread other than the one with the large

number of cache misses and it stalls or mispredicts a branch, the overall impact on IPC

is going to be huge. The reason this problem is not encountered in the 2 thread−4

process configuration is because there are so few threads to choose from that the

scheduling policy seems to have little overall effect. The reason it is not a problem with

4 threads is because there are 3 times as many threads to cover the cache miss latency

if a miss occurs.

Why does the cache policy seem to outperform all of the other schedulers when

running few threads and many processes in an integer only configuration? Because it

performs almost exactly the same for the integer only tests as it does for the mixed

tests when running in this configuration. This is interesting because it is the only

18

scheduling policy that performs the same for a mix of processes as well as for integer

only for any of the processor configurations. We conclude from this that processes

tend to have similar capabilities for covering latency across differing workloads when

there are few threads.

The last two schedulers are round−robin and random schedulers. These were

included because they are simple schedulers and would provide a baseline for the more

informed schedulers to try and surpass. The graphs seem to show that in most

instances, round−robin and random perform as well as our more sophisticated

schedulers. First of all, when there are many more processes than threads and those

processes are of different types (floating−point and integer), the FU scheduler

consistently achieves approximately a 5% increase over RR and RANDOM. This can be

seen from the th2as8 and th4as15 data sets. This makes sense since these are the

cases that require the most decision making for scheduling and will benefit the most

from an intelligent policy. The reason these same benefits are not seen in an all integer

benchmark test (and indeed, a drastic decrease in the FU scheduler is seen) is because

there are many fewer resources to schedule for and a simpler, less informed policy is

going to do relatively well.

The RR scheduler tended to be fairly dependant on the way the processes were

presented to it. The performance could vary by approximately 5% for the exact same

set of processes. All of the other schedulers performed the same regardless of the order

they were presented.

One final interesting observation is the drastic drop−off for the random

scheduler for the integer only benchmarks with the th2as4 and th2as8 configurations.

Unlike the mixed (or floating−point only) when running only integer jobs, the

possibility for a very high scheduling value is much lower. As an example, it can be

seen from Graph 4 that random scheduling can produce some spikes in performance

19

that produce much better and much worse instantaneous IPCs than all of the other

policies. Many threads and/or many processes means there usually exists a very good

scheduling policy that none of the other scheduling heuristics uncover. Of course

these spikes are offset by the very low performance schedules RANDOM finds.

However, when there are very few processes and very few threads and the process mix

is one not conducive to good parallelism (e.g. all integer processes), there does not exist

the possibilities for this high parallelism. Yet, there does still exist the possibility for

very poor parallelism (see Graph 5). This means that the average IPC for a random

scheduler with few scheduling options and a difficult to parallelize workload is going to

suffer greatly.

IPC per Quantum (2 threads, 8 asids, integer benchmarks only)

0

0.5

1

1.5

2

2.5

3

3.5

4

Quant um #

FU

MEM

MISS

RR

RANDOM

Graph 4

Graphs 4 and 5 demonstrate several interesting patterns. RANDOM produces

very erratic results, so the usually competitive IPC’s it produces are balanced out by its

unpredictable behavior on a per quantum basis. RR produces a repeatable pattern of

20

IPC values. This is completely intuitive when one considers that RR is simply cycling

through all of the processes in exactly the same order. While there are a few spikes in

the FU scheduling policy when using the 2 threads−8 processes configuration, we feel

that most of these are due to the starvation prevention we built into the scheduler.

Notice that shortly after a spike, FU tends to level out for quite a few cycles. In the 4

thread−16 process configuration, there are no spikes at all for the FU scheduler.

IPC per Quantum (4 threads, 16 processes, integer benchmarks only)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Qu a n t u m #

FU

MEM

MIS S

RR

RANDOM

Graph 5

6 Future Work

In this study we present a number of heuristics that can be used to pick jobs to

coschedule. We would like to see a scheme that would use a combination of these

heuristics to make scheduling decisions. In the same vein, given a number of different

schedulers, a scheme that chooses an appropriate scheduler depending upon the

current workload may also be worthwhile.

21

We do not consider the time the applications spend in the operating system

code or the scheduling overhead caused by the operating system. Focusing entirely on

user−mode execution is not sufficient. To understand the scheduling problem for SMT

a thorough execution and measurement of the operating system and the application is

required.

Through our experiments we tried to capture a few example workloads that may

be coscheduled on a SMT processor. While this is a good starting point, we would like

to consider applications from other domains that are gaining a lot of attention like

multimedia, database and mobile computing.

Since, the power consumption of microprocessors is becoming increasingly

important in design decisions, power−aware scheduling could be reasonable direction

to investigate.

Lastly, we would like to study how well our schemes perform in a scenario in

which jobs arrive and depart. This will be a good test for the adaptation.

7 Conclusions

Our results show that a scheduler based strictly on the number of memory accesses

seems to perform well in all of the tests. A scheduler based on balancing the load

across functional units outperforms all schedulers when there are a large number of

scheduling decisions – many threads, many processes, and a diverse workload. A

scheduler based on the number of cache misses has the potential to perform very

poorly when the there are few threads to schedule and a large number of diverse jobs

to choose from. A random scheduler will find excellent combinations, because it tries

everything, but it will also find terrible combinations of jobs to run, so even though it

tends to have a good average, it also has a large variation from quantum to quantum.

22

The round−robin scheduler also seemed to perform well in most situations, but its

performance is dependant on the ordering of jobs.

The research presented here gives a deeper understanding of the concerns

involved in trying to schedule an SMT processor. We also propose several different

scheduling policies and present the necessary hardware modifications to accommodate

these, and possibly other, schedulers. More than anything, this work shows that the

issues involved in finding the best scheduler are many and complex. In fact, it is most

likely that there does not exist a scheduling policy that performs better than every

other for all possible workloads.

Acknowledgements

We thank Craig Zilles for giving us his SMT simulator and helping us get started and

Mark Hill for giving us access to an Alpha machine (paul.cs.wisc.edu).

Bibliography

[Burger97] D. C. Burger, T. M. Austin. The Simple Scalar Tool, Version 2.0. Technical
Report CS−TR−97−1342, University of Wisconsin−Madison, June 1997.

[SPEC CPU00] CPU−Intensive Benchmark Suite. http://www.spec.org/osg/cpu2000/

[Thompson74] K. Thompson and D. Ritchie. The Unix Time−Sharing System. In
Communications of the ACM, July 1974.

[Tullsen96] D. M. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and R. Stamm. Exploiting
Choice: Instruction Fetch and Issue on an Implementable Simultaneous
Multithreading Processor. In ISCA 96, pages 191−202, May 1996.

[Tullsen00] D. M. Tullsen and A. Snavely. Symbiotic Jobscheduling for a Simultaneous
Multithreading Processor. In 9th International Conference on Architectural
Support for Programming Languages and Operating Systems, November 2000.

[Zilles99] C. B. Zilles, J. S. Emer, and G. S. Sohi. The Use of Multithreading for
Exception Handling. Proceedings for Micro−32, Nov 1999.

23

24

