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SPECTRAL IMAGE CLUSTERING

Problem: Given a sparse pairwise similarity graph over images, find assignment
that best groups similar images together.
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PRIORS AND REGULARIZATION

Can be used to express priors (must-link, tags, transductive learning).
Incorporates side information and extrinsic properties of the clustering problem.

Analysis is general w.r.t. many possible regularization functions g.
g any convex, possibly non-smooth, function.
One Example: Given some known groups C of similar images:

g(V)= > \/ézd(Vt,VC)z

groups C teC

OPTIMIZATION MODEL

Clustering is posed as an optimization problem.

VeRM<p

min  f(V):=) w(V LYV)+g(V)

st. VIV=]
L) is Laplacian for graph from “view” u.

Rows of the optimal V are quantized to produce clusters.

OPTIMIZATION ON THE STIEFEL MANIFOLD

Stiefel Manifold: Manifold of orthonormal matrices.
Sn’p — {V = RnXp ’ VTV — p}

For any skew-symmetric W € R"*" and
T —1 T
Y(r) = (/+ EW) (/— EW) v
then Y(7)'Y(r)= V'V forall r.
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PARALLELIZATION

Contribution: Technigues to parallelize Stiefel manifold optimization, focusing on
large-scale image clustering.

1. Stochastic gradient/coordinate descent. (Used in both algorithms below)
2. Parallelizable feasible methods. (Algorithm 2)

STOCHASTIC GRADIENT

Any uniformly sampled subset of the terms Iin
> ou(VILOV) =3 S LV V) = w Vi - Vi3
u u If u

i~

will in expectation be equal to the gradient.
Equivalent to sampling matrix L; s.t. E(L;) = L.

Simplest way to use this is projected stochastic gradient:
Virr = Pa(Ve — (2L Vi + 09(V1)))

Convergence Theorem: Let V* be a convergent point of the sequence {V;}.
Suppose { V;} is contained in a small ball with radius 6 > 0. Denote f(V*) as 1.
It Py IS @ nonexpansive projection on this ball, we have upper bounds on the
expected suboptimality w.r.t. the convergent point.

i) If the stepsize is chosen as ~; = \/((M+ﬁ)2+ = and

Vi = (L) Xl Ve then B (f(V7)) — £ < (64 ¢7")47.

ii) If the step size is chosen as v = br-pz—, then E(f(V7)) — f* < =T where

Vr =13/, Vi, 6; € (0,2) and Opin = ming 1 — (6; — 1)2.

;

DESCENT CURVES IN PARALLEL

Reduce the problem to optimizing over some subset of the rows or V index by
IC C {1,...,n}. Gomputational units have disjoint choices of K.

Vicr := Maximal subset of linearly independent colums of submatrix Vi..
V/C. — [VICL V/CIR] P .= Vlgl VICI
If V € Sppand U € Sz, then

UP'/2 UP'2R

W(U) - { VIC,Z VIC,I

} c Snp

TWO ALGORITHMS

EXPERIMENTAL SETUP

Evaluating: (a) Performance, with special emphasis on scalability as a function of
size. (b) Accuracy comparison with other multi-view spectral clustering. (c)
Accuracy as a function of the use of priors/regularization.

Large-scale Datasets Features/Views

LabelMe ~2,700 images Gist, SPM, Object Bank

Caltech101 ~9,000 See UCSD-MKL

Caltech256 ~30,000 V1-like, SURF, RegCov

ILSVRC 2013 (subset) ~130,000 Decaf, Gist, Tinylmage, SIFT
(full) ~1,300,000 ‘ "

Tinylmages ~80,000,000 Gist

Artificial data (GMM) up to 108 N/A

Naive methods unsuitable for spectral clustering Caltech256 and larger.

ACCURACY

Normalized Mutual Information (NMI) vs ground-truth was comparable to other
multi-view spectral clustering models (Kumar et. al. 2011).

Caltech101 ML Datasets
= Digits Reuters
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NMI on artificial GMM: 0.769 for 10° points, 0.683 for 102 points.

Using priors from tags on LabelMe increases NMI from 0.561 for no prior to 0.679
when using all tags.

CONVERGENCE AND PERFORMANCE

Projected Stochastic Gradient (#1)
Require: f: R™P = R, Vo € Spp
fort=1, ..., T do
Pick some u
Sample L; from L(’s

Projection-free (#2)

Require: f: S,p — R, Vo € Spp
fort=1, ..., T do
Select K C {1, ... ,n}
Take descent curve Y(7) in Spp

Get subgradient d € 2L;V; + dg(V;) Y(0) = V;
Pick step size v @‘ <0

Take step in R™P: V{,; < Vi —7d (YET))T,“:O: (V)i rid K
Project onto feasible set: Pick stepjsize - J ’

d\?ﬂ — Ps,,(Vi1) Vit < Y(m)
end for
end for

Multiple iterations run in parallel, with sampling of [, and K to avoid conflicts.
Projection step requires synchronization.

Comparison of Methods Varying number of rows
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Feasible methods (with a line search) show improved convergence versus
projected stochastic coordinate descent.

lterations needed for convergence depends on the number of rows used.
Trade-off between number of iterations and computational cost of each.

Classical subspace iteration methods (e.g. Arnoldi’s algorithm in ARPACK and
MATLAB’s eigs) limited by memory usage. >32GB used for n = 10°.

European Conference on Computer Vision (ECCV)

NSF RI 1116584, NSF CAREER award 1252725, NIH R01 AG040396, NSF CGV 1219016, and others.

Collins was supported by a CIBM fellowship (NLM 5T15LM007359).




