Spectral Clustering with a Convex Regularizer on Millions of Images

Maxwell D. Collins¹ Ji Liu² Jia Xu¹ Lopamudra Mukherjee³ Vikas Singh¹

¹University of Wisconsin-Madison ²University of Rochester ³University of Wisconsin-Whitewater

ROCHESTER

UNIVERSITY of

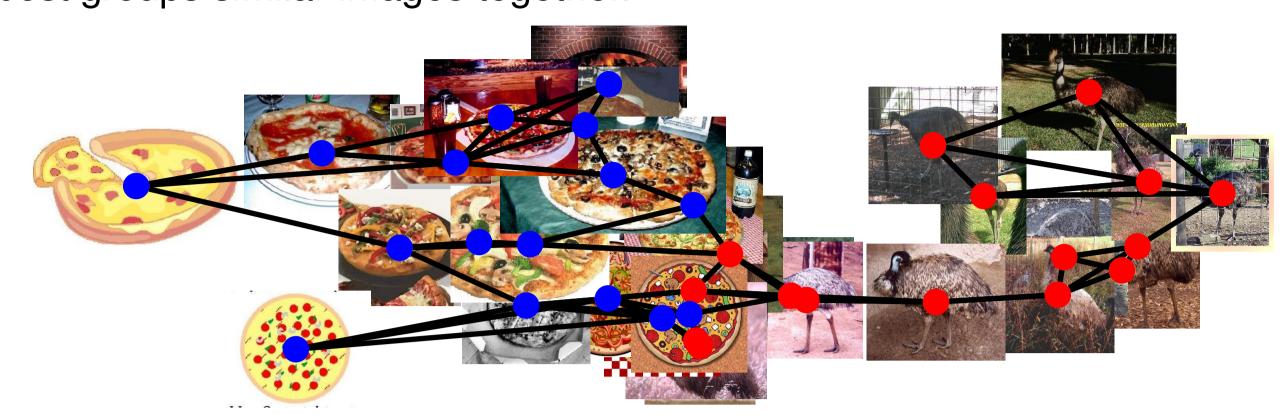
MELIORA

ROCHESTER

http://pages.cs.wisc.edu/~mcollins/pubs/eccv2014.html

SPECTRAL IMAGE CLUSTERING

Problem: Given a sparse pairwise similarity graph over images, find assignment that best groups similar images together.



PRIORS AND REGULARIZATION

Can be used to express priors (must-link, tags, transductive learning). Incorporates side information and extrinsic properties of the clustering problem.

Analysis is general w.r.t. many possible regularization functions g. g any convex, possibly non-smooth, function.

One Example: Given some known groups C of similar images:

$$g(\mathit{V}) := \sum_{\mathsf{groups}\; \mathsf{C}} \sqrt{rac{1}{|\mathit{C}|} \sum_{t \in \mathit{C}} \mathit{d}(\mathit{v}_t, ar{\mathit{v}}_\mathit{C})^2}$$

OPTIMIZATION MODEL

Clustering is posed as an optimization problem.

$$egin{aligned} \min_{m{V} \in \mathbb{R}^{n imes p}} & f(m{V}) := \sum_{m{u}} \mathrm{tr}(m{V}^T m{L}^{(m{u})} m{V}) + m{g}(m{V}) \ & ext{s.t.} & m{V}^T m{V} = m{I} \end{aligned}$$

 $L^{(u)}$ is Laplacian for graph from "view" u.

Rows of the optimal *V* are *quantized* to produce clusters.

OPTIMIZATION ON THE STIEFEL MANIFOLD

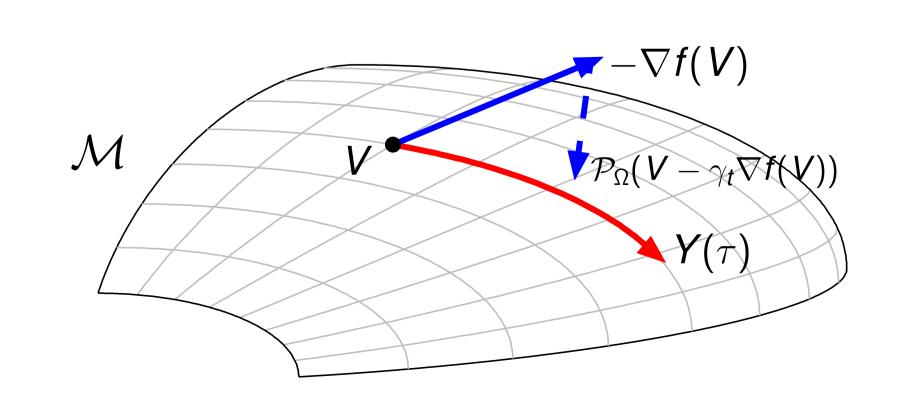
Stiefel Manifold: Manifold of orthonormal matrices.

$$\mathcal{S}_{n,p} = \{ V \in \mathbb{R}^{n \times p} \mid V^T V = I_p \}$$

For any skew-symmetric $W \in \mathbb{R}^{n \times n}$ and

$$Y(\tau) = \left(I + \frac{\tau}{2}W\right)^{-1} \left(I - \frac{\tau}{2}W\right)V$$

then $Y(\tau)^T Y(\tau) = V^T V$ for all τ .



PARALLELIZATION

Contribution: Techniques to parallelize Stiefel manifold optimization, focusing on large-scale image clustering.

- Stochastic gradient/coordinate descent. (Used in both algorithms below)
- 2. Parallelizable feasible methods. (Algorithm 2)

STOCHASTIC GRADIENT

Any uniformly sampled subset of the terms in

$$\sum_{u} \operatorname{tr}(V^{T} L^{(u)} V) = \sum_{u} \sum_{ij} L^{(u)}_{ij} \langle V_{i}, V_{j} \rangle = \sum_{u} \sum_{i \sim j} w^{(u)}_{ij} ||V_{i} - V_{j}||_{2}^{2}$$

will in expectation be equal to the gradient.

Equivalent to sampling matrix \hat{L}_t s.t. $\mathbb{E}(\hat{L}_t) = L$.

Simplest way to use this is projected stochastic gradient:

$$oldsymbol{V_{t+1}} = \mathcal{P}_{\Omega}(oldsymbol{V_t} - \gamma_t (2\hat{oldsymbol{L}}_t oldsymbol{V_t} + \partial oldsymbol{g}(oldsymbol{V_t})))$$

Convergence Theorem: Let V^* be a convergent point of the sequence $\{V_t\}$ Suppose $\{V_t\}$ is contained in a small ball with radius $\delta > 0$. Denote $f(V^*)$ as f^* . If \mathcal{P}_{Ω} is a nonexpansive projection on this ball, we have **upper bounds on the** expected suboptimality w.r.t. the convergent point.

i) If the stepsize is chosen as
$$\gamma_t = \frac{\phi \delta}{\sqrt{((M+N)^2+\sigma^2)T}}$$
 and $\bar{V}_T = (\sum_{t=1}^T \gamma_t)^{-1} \sum_{t=1}^T \gamma_t V_t$, then $\mathbb{E}\left(f(\bar{V}_T)\right) - f^* \leq (\phi + \phi^{-1})\frac{\delta}{2}\Upsilon$.

ii) If the step size is chosen as $\gamma_t = \theta_t \frac{f(V_t) - f^*}{(M+N)^2+\sigma^2}$, then $\mathbb{E}(f(\tilde{V}_T)) - f^* \leq \frac{\delta}{\sqrt{\theta_{\min}}}\Upsilon$ where $\tilde{V}_T = \frac{1}{T} \sum_{t=1}^T V_t$, $\theta_t \in (0,2)$ and $\theta_{\min} = \min_t 1 - (\theta_t - 1)^2$.

DESCENT CURVES IN PARALLEL

Reduce the problem to optimizing over some subset of the rows or V index by $\mathcal{K} \subset \{1,...,n\}$. Computational units have disjoint choices of \mathcal{K} .

 $V_{\mathcal{KI}} :=$ Maximal subset of linearly independent colums of submatrix $V_{\mathcal{KI}}$.

$$V_{\mathcal{K}\cdot}=[V_{\mathcal{K}\mathcal{I}},V_{\mathcal{K}\mathcal{I}}R]$$
 $P:=V_{\mathcal{K}\mathcal{I}}^{T}V_{\mathcal{K}\mathcal{I}}$ If $V\in\mathcal{S}_{n,p}$ and $U\in\mathcal{S}_{|\mathcal{K}|,|\mathcal{I}|}$, then

$$W(U) = egin{bmatrix} UP^{1/2} & UP^{1/2}R \ V_{ar{\mathcal{K}},\mathcal{I}} & V_{ar{\mathcal{K}},ar{\mathcal{I}}} \end{bmatrix} \in \mathcal{S}_{n,p}$$

Two Algorithms

Projected Stochastic Gradient (#1) Projection-free (#2) Require: $f: \mathbb{R}^{n \times p} \to \mathbb{R}, \ V_0 \in S_{n,p}$ **Require:** $f: S_{n,p} \to \mathbb{R}, \ V_0 \in S_{n,p}$ for t = 1, ..., T do for t = 1, ..., T do Select $\mathcal{K} \subseteq \{1, ..., n\}$ Pick some *u* Sample \hat{L}_t from $L^{(u)}$'s Take descent curve $Y(\tau)$ in $S_{n,p}$ Get subgradient $d \in 2\hat{L}_t V_t + \partial g(V_t)$ $Y(0) = V_t$ Pick step size γ_t Take step in $\mathbb{R}^{n \times p}$: $V'_{t+1} \leftarrow V_t - \gamma_t d$ $(Y(\tau))_{ij} = (V_t)_{ij} \quad \forall \tau, i \notin \mathcal{K}$ Project onto feasible set: Pick step size τ_t $V_{t+1} \leftarrow \mathcal{P}_{S_{n,n}}(V'_{t+1})$ $V_{t+1} \leftarrow Y(\tau_t)$ end for end for

Multiple iterations run in parallel, with sampling of \hat{L}_t and \mathcal{K} to avoid conflicts. Projection step requires synchronization.

EXPERIMENTAL SETUP

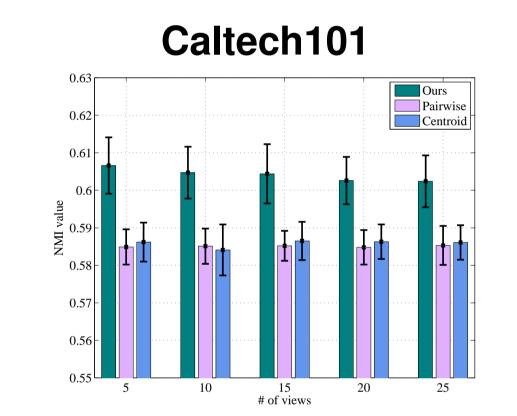
Evaluating: (a) Performance, with special emphasis on scalability as a function of size. (b) Accuracy comparison with other multi-view spectral clustering. (c) Accuracy as a function of the use of priors/regularization.

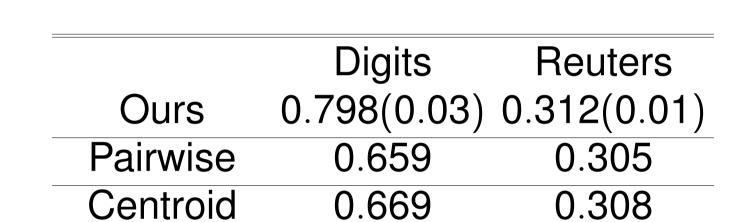
Large-scale Datasets		Features/Views
LabelMe	\sim 2,700 images	Gist, SPM, Object Bank
Caltech101	\sim 9,000	See UCSD-MKL
Caltech256	\sim 30,000	V1-like, SURF, RegCov
ILSVRC 2013 (subset)	\sim 130,000	Decaf, Gist, Tinylmage, SIFT
(full)	\sim 1,300,000	66 77
Tinylmages	\sim 80,000,000	Gist
Artificial data (GMM)	up to 10 ⁸	N/A

Naïve methods unsuitable for spectral clustering Caltech256 and larger.

ACCURACY

Normalized Mutual Information (NMI) vs ground-truth was comparable to other multi-view spectral clustering models (Kumar et. al. 2011).





0.641

0.288

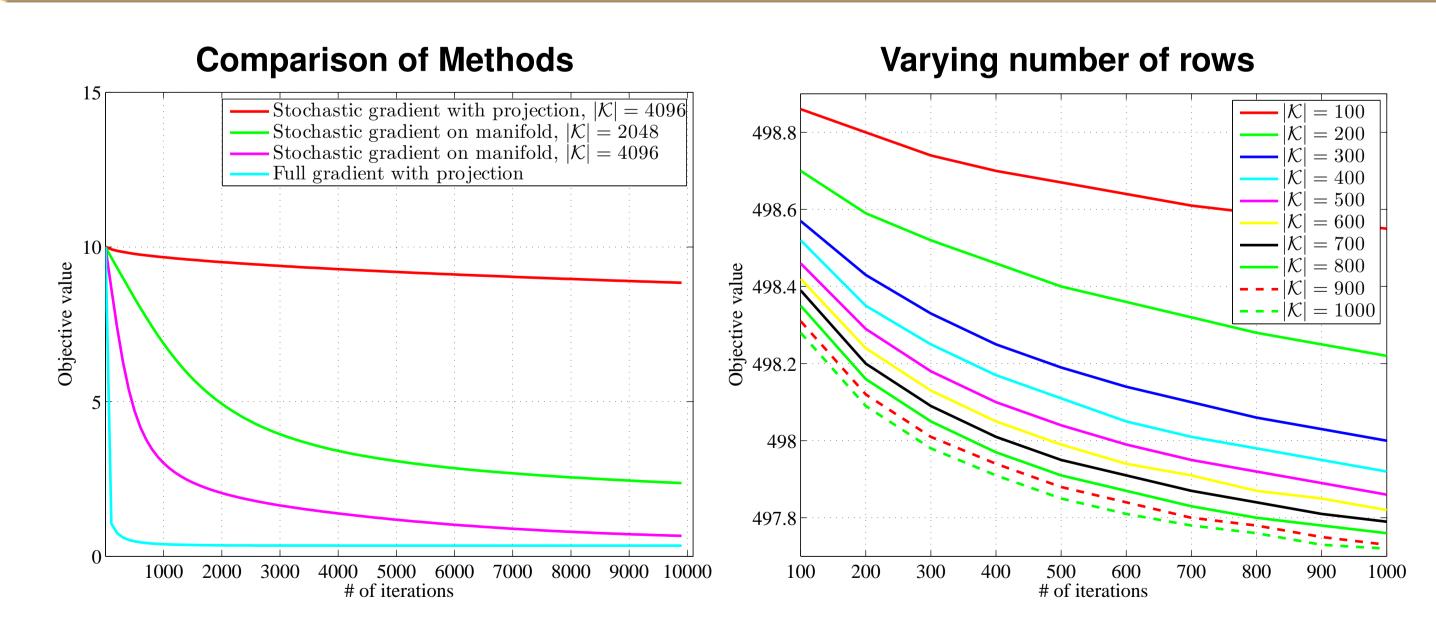
ML Datasets

NMI on artificial GMM: 0.769 for 10⁶ points, 0.683 for 10⁸ points.

Using priors from tags on LabelMe increases NMI from 0.561 for no prior to 0.679 when using all tags.

Best 1-view

CONVERGENCE AND PERFORMANCE



Feasible methods (with a line search) show improved convergence versus projected stochastic coordinate descent.

Iterations needed for convergence depends on the number of rows used. Trade-off between number of iterations and computational cost of each.

Classical subspace iteration methods (e.g. Arnoldi's algorithm in ARPACK and MATLAB's eigs) limited by memory usage. >32GB used for $n = 10^5$.