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SPECTRAL IMAGE CLUSTERING

Problem: Given a sparse pairwise similarity graph over images, find assignment
that best groups similar images together.

PRIORS AND REGULARIZATION

Can be used to express priors (must-link, tags, transductive learning).
Incorporates side information and extrinsic properties of the clustering problem.

Analysis is general w.r.t. many possible regularization functions g.
g any convex, possibly non-smooth, function.
One Example: Given some known groups C of similar images:

g(V ) :=
∑

groups C

√
1
|C|
∑
t∈C

d(vt, v̄C)2

OPTIMIZATION MODEL

Clustering is posed as an optimization problem.

min
V∈Rn×p

f (V ) :=
∑

u

tr(V TL(u)V ) + g(V )

s.t. V TV = I
L(u) is Laplacian for graph from “view” u.

Rows of the optimal V are quantized to produce clusters.

OPTIMIZATION ON THE STIEFEL MANIFOLD

Stiefel Manifold: Manifold of orthonormal matrices.

Sn,p = {V ∈ Rn×p | V TV = Ip}

For any skew-symmetric W ∈ Rn×n and

Y (τ ) =
(

I +
τ

2
W
)−1 (

I − τ

2
W
)

V

then Y (τ )TY (τ ) = V TV for all τ .
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Y (τ )

V

−∇f (V )

PΩ(V − γt∇f (V ))

PARALLELIZATION

Contribution: Techniques to parallelize Stiefel manifold optimization, focusing on
large-scale image clustering.
1. Stochastic gradient/coordinate descent. (Used in both algorithms below)
2. Parallelizable feasible methods. (Algorithm 2)

STOCHASTIC GRADIENT

Any uniformly sampled subset of the terms in∑
u

tr(V TL(u)V ) =
∑

u

∑
ij

L(u)
ij 〈Vi ·,Vj ·〉 =

∑
u

∑
i∼j

w (u)
ij ‖Vi · − Vj ·‖2

2

will in expectation be equal to the gradient.

Equivalent to sampling matrix L̂t s.t. E(L̂t) = L.

Simplest way to use this is projected stochastic gradient:

Vt+1 = PΩ(Vt − γt(2L̂tVt + ∂g(Vt)))

Convergence Theorem: Let V ∗ be a convergent point of the sequence {Vt}.
Suppose {Vt} is contained in a small ball with radius δ > 0. Denote f (V ∗) as f ∗.
If PΩ is a nonexpansive projection on this ball, we have upper bounds on the
expected suboptimality w.r.t. the convergent point.
i) If the stepsize is chosen as γt = φδ√

((M+N)2+σ2)T
and

V̄T = (
∑T

t=1 γt)
−1∑T

t=1 γtVt, then E
(
f (V̄T )

)
− f ∗ ≤ (φ + φ−1)δ2Υ.

ii) If the step size is chosen as γt = θt
f (Vt)−f ∗

(M+N)2+σ2, then E(f (ṼT ))− f ∗ ≤ δ√
θmin

Υ where

ṼT = 1
T

∑T
t=1 Vt, θt ∈ (0,2) and θmin = mint 1− (θt − 1)2.

DESCENT CURVES IN PARALLEL

Reduce the problem to optimizing over some subset of the rows or V index by
K ⊂ {1, ...,n}. Computational units have disjoint choices of K.

VKI := Maximal subset of linearly independent colums of submatrix VK·.
VK· = [VKI,VKIR] P := V T

KIVKI
If V ∈ Sn,p and U ∈ S|K|,|I|, then

W (U) =

[
UP1/2 UP1/2R
VK̄,I VK̄,Ī

]
∈ Sn,p

TWO ALGORITHMS

Projected Stochastic Gradient (#1)
Require: f : Rn×p → R, V0 ∈ Sn,p

for t = 1, ..., T do
Pick some u
Sample L̂t from L(u)’s
Get subgradient d ∈ 2L̂tVt + ∂g(Vt)
Pick step size γt
Take step in Rn×p: V ′t+1← Vt − γtd
Project onto feasible set:

Vt+1← PSn,p(V ′t+1)
end for

Projection-free (#2)
Require: f : Sn,p → R, V0 ∈ Sn,p

for t = 1, ..., T do
Select K ⊆ {1, ... , n}
Take descent curve Y (τ ) in Sn,p

Y (0) = Vt
d(f◦Y )

dτ

∣∣∣
τ=0
≤ 0

(Y (τ ))ij = (Vt)ij ∀τ, i /∈ K
Pick step size τt
Vt+1← Y (τt)

end for

Multiple iterations run in parallel, with sampling of L̂t and K to avoid conflicts.
Projection step requires synchronization.

EXPERIMENTAL SETUP

Evaluating: (a) Performance, with special emphasis on scalability as a function of
size. (b) Accuracy comparison with other multi-view spectral clustering. (c)
Accuracy as a function of the use of priors/regularization.

Large-scale Datasets Features/Views
LabelMe ∼2,700 images Gist, SPM, Object Bank
Caltech101 ∼9,000 See UCSD-MKL
Caltech256 ∼30,000 V1-like, SURF, RegCov
ILSVRC 2013 (subset) ∼130,000 Decaf, Gist, TinyImage, SIFT

(full) ∼1,300,000 “ ”
TinyImages ∼80,000,000 Gist
Artificial data (GMM) up to 108 N/A

Naı̈ve methods unsuitable for spectral clustering Caltech256 and larger.

ACCURACY

Normalized Mutual Information (NMI) vs ground-truth was comparable to other
multi-view spectral clustering models (Kumar et. al. 2011).

Caltech101 ML Datasets
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Ours
Pairwise
Centroid Digits Reuters

Ours 0.798(0.03) 0.312(0.01)
Pairwise 0.659 0.305
Centroid 0.669 0.308

Best 1-view 0.641 0.288

NMI on artificial GMM: 0.769 for 106 points, 0.683 for 108 points.

Using priors from tags on LabelMe increases NMI from 0.561 for no prior to 0.679
when using all tags.

CONVERGENCE AND PERFORMANCE

Comparison of Methods Varying number of rows
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Stochastic gradient with projection, |K| = 4096
Stochastic gradient on manifold, |K| = 2048
Stochastic gradient on manifold, |K| = 4096
Full gradient with projection
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Feasible methods (with a line search) show improved convergence versus
projected stochastic coordinate descent.

Iterations needed for convergence depends on the number of rows used.
Trade-off between number of iterations and computational cost of each.

Classical subspace iteration methods (e.g. Arnoldi’s algorithm in ARPACK and
MATLAB’s eigs) limited by memory usage. >32GB used for n = 105.
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