Spectral Clustering with a Convex Regularizer on Millions of Images (Proofs)

Maxwell D. Collins Ji Liu Jia Xu Lopamudra Mukherjee Vikas Sing

September 8, 2014

1 Proofs of Theorems

Theorem 1. Let V^* be a convergent point of the sequence $\{V_t\}$ generated from equation (5) of the main paper which is in a small ball with radius δ and denote $f(V^*)$ as f^* . Let ϕ be a positive value. If there exists a constant $\delta > 0$ such that $\mathcal{P}_{\Omega}\left(V_t - \gamma_t(\hat{L}_tV_t + \partial g(V_t))\right)$ is a nonexpansive projection, we have:

i) If the stepsize is chosen as
$$\gamma_t = \frac{\phi \delta}{\sqrt{((M+N)^2 + \sigma^2)T}}$$
 and $\bar{V}_T = (\sum_{t=1}^T \gamma_t)^{-1} \sum_{t=1}^T \gamma_t V_t$, then $\mathbb{E}\left(f(\bar{V}_T)\right) - f^* \leq (\phi + \phi^{-1}) \frac{\delta}{2} \Upsilon$.

ii) If the step size is chosen as $\gamma_t = \theta_t \frac{f(V_t) - f^*}{(M+N)^2 + \sigma^2}$, then $\mathbb{E}(f(\tilde{V}_T)) - f^* \leq \frac{\delta}{\sqrt{\theta_{\min}}} \Upsilon$ where $\tilde{V}_T = \frac{1}{T} \sum_{t=1}^T V_t$, $\theta_t \in (0,2)$ and $\theta_{\min} = \min_t 1 - (\theta_t - 1)^2$.

Proof. Consider the expansion of $||V_{t+1} - V^*||_F^2$:

$$||V_{t+1} - V^*||_F^2 = ||\mathcal{P}_{\Omega}(V_t - \gamma_t((L + \Delta_t)V_t + \partial g(V_t)) - \mathcal{P}_{\Omega}(V^*)||_F^2$$
from the local nonexpansive projection property,
$$\leq ||V_t - \gamma_t((L + \Delta_t)V_t + \partial g(V_t)) - V^*||_F^2$$

$$\leq ||V_t - V^*||^2 + \gamma_t^2 \underbrace{\|(L + \Delta_t)V_t + \partial g(V_t)\|_F^2}_{T_1}$$

$$- 2\gamma_t \underbrace{\langle (L + \Delta_t)V_t + \partial g(V_t), V_t - V^* \rangle}_{T}.$$
(1)

Take the conditional expectation of T_1 and T_2 in terms of Δ_t given V_t :

$$\mathbb{E}(T_1) = \|LV_t + \partial g(V_t)\|_F^2 + \mathbb{E}(\|\Delta_t V_t\|_F^2) + 2\mathbb{E}\langle LV_t + \partial g(V_t), \Delta_t V_t \rangle$$

$$= \mathbb{E}(\|LV_t + \partial g(V_t)\|_F^2) + \mathbb{E}(\|\Delta_t V_t\|_F^2)$$

$$\leq (M+N)^2 + \sigma^2$$
(2)

$$\mathbb{E}(T_2) = \mathbb{E}\langle LV_t + \partial g(V_t), V_t - V^* \rangle \ge \mathbb{E}(f(V_t)) - f^*. \tag{3}$$

Take the expectation of both sides of (1) in terms of all random variables, together with (2), and (3), we have

$$2\gamma_t(\mathbb{E}(f(V_t)) - f^*) \le \mathbb{E}||V_t - V^*||_F^2 - \mathbb{E}(||V_{t+1} - V^*||_F^2) + \gamma_t^2((M+N)^2 + \sigma^2)$$
(4)

which implies that

$$2\sum_{t=1}^{T} \gamma_t(\mathbb{E}(f(V_t)) - f^*) \le \mathbb{E}\|V_1 - V^*\|_F^2 + ((M+N)^2 + \sigma^2)\sum_{t=1}^{T} \gamma_t^2$$

$$\le \delta^2 + ((M+N)^2 + \sigma^2)\sum_{t=1}^{T} \gamma_t^2.$$

Also note that

$$\sum_{t=1}^{T} \gamma_t = \frac{\phi \delta \sqrt{T}}{\sqrt{(M+N)^2 + \sigma^2}} \quad \sum_{t=1}^{T} \gamma_t^2 = \frac{(\phi \delta)^2}{(M+N)^2 + \sigma^2},$$

and

$$\frac{\sum_{t=1}^{T} \gamma_t \mathbb{E}(f(v_t))}{\sum_{t=1}^{T} \gamma_t} = \frac{\mathbb{E} \sum_{t=1}^{T} \gamma_t f(v_t)}{\sum_{t=1}^{T} \gamma_t} \le \mathbb{E} f(\bar{V}_t). \quad \text{(from the convexity of } f(V_t)\text{)}$$

It follows that

$$\frac{\sum_{t=1}^{T} \gamma_{t}(\mathbb{E}(f(V_{t})) - f^{*})}{\sum_{t=1}^{T} \gamma_{t}} \leq \frac{\delta^{2} + ((M+N)^{2} + \sigma^{2}) \sum_{t=1}^{T} \gamma_{t}^{2}}{2 \sum_{t=1}^{T} \gamma_{t}}$$

$$\Rightarrow \mathbb{E}(f(\bar{V}_{t}) - f^{*}) \leq \frac{\delta^{2} + ((M+N)^{2} + \sigma^{2}) \sum_{t=1}^{T} \gamma_{t}^{2}}{2 \sum_{t=1}^{T} \gamma_{t}}$$

$$= \frac{\delta^{2} + ((M+N)^{2} + \sigma^{2}) \frac{(\phi\delta)^{2}}{(M+N)^{2} + \sigma^{2}}}{2 \frac{\phi\delta\sqrt{T}}{\sqrt{(M+N)^{2} + \sigma^{2}}}}$$

$$= (\phi + \phi^{-1}) \frac{\delta\sqrt{(M+N)^{2} + \sigma^{2}}}{2\sqrt{T}}$$

proving the first claim. Next we prove the second claim. From (1), (2), and (3), we have

$$\mathbb{E}(\|V_{t+1} - V^*\|_F^2) \le \|V_t - V^*\|_F^2 + \gamma_t^2 ((M+N)^2 + \sigma^2) - 2\gamma_t (f(V_t) - f^*)$$

$$\le \|V_t - V^*\|_F^2 - \frac{(f(V_t) - f^*)^2}{(M+N)^2 + \sigma^2} + ((M+N)^2 + \sigma^2) \left(\gamma_t - \frac{f(V_t) - f^*}{(M+N)^2 + \sigma^2}\right)^2$$

$$\le \|V_t - V^*\|_F^2 - \frac{(1 - (1 - \theta_t)^2)(f(V_t) - f^*)^2}{(M+N)^2 + \sigma^2}$$

$$\le \|V_t - V^*\|_F^2 - \frac{\theta_{min}(f(V_t) - f^*)^2}{(M+N)^2 + \sigma^2}.$$

It follows that

$$\frac{\theta_{min}}{(M+N)^2 + \sigma^2} \mathbb{E}(f(V_t) - f^*)^2 \le \mathbb{E}(\|V_t - V^*\|_F^2) - \mathbb{E}(\|V_{t+1} - V^*\|_F^2).$$
 (5)

Taking $t = 0, 1, \dots, T - 1$ in (5) respectively and summarizing all of them, we obtain

$$\frac{\theta_{min}}{(M+N)^2 + \sigma^2} \sum_{t=1}^{T} \mathbb{E}(f(V_t) - f^*)^2 \le \mathbb{E}(\|V_1 - V^*\|_F^2) \le \delta^2$$

$$\Rightarrow T^{-1} \sum_{t=1}^{T} \mathbb{E}(f(V_t) - f^*)^2 \le \frac{\delta^2((M+N)^2 + \sigma^2)}{T\theta_{min}}.$$

Together with

$$T^{-1} \sum_{t=1}^{T} \mathbb{E}(f(V_t) - f^*)^2 \ge T^{-1} \sum_{t=1}^{T} (\mathbb{E}(f(V_t)) - f^*)^2$$
$$\ge (T^{-1} \sum_{t=1}^{T} \mathbb{E}(f(V_t)) - f^*)^2 \ge (\mathbb{E}(f(\tilde{V}_T)) - f^*)^2.$$

The last inequality uses Jensen's inequality, that is, $\mathbb{E}f(x) \geq f(\mathbb{E}(x))$ holds for any convex function. We prove the second claim.

Denote [t] as a subset of coordinates of $V \in \mathbb{R}^{n \times p}$, which is randomly selected at iteration t. To make our following discussion simpler, we assume that the size of [t] is a constant and denote the ratio $R := \frac{np}{|[t]|}$. Consider the following update for V_{t+1} , also appearing in equation (9) of the main paper:

$$V_{t+1} = \mathcal{P}_{\Omega}(V_t - \gamma_t \partial_{[t]} f(V_t)) \tag{6}$$

Theorem 2. Let V^* be a convergent point of the sequence $\{V_t\}$ generated from (6) which is in a small ball with radius δ and denote $f(V^*)$ as f^* . Let ϕ be a positive value. Let $\bar{\Upsilon} := \frac{(M+N)R}{\sqrt{T}}$. If there exists a constant $\delta > 0$ such that $\mathcal{P}_{\Omega}\left(V_t - \gamma_t \partial_{[t]} f(V_t)\right)$ is a nonexpansive projection, we have:

- i) If the stepsize is chosen as $\gamma_t = \frac{\phi \delta}{(M+N)\sqrt{T}}$ and $\bar{V}_T = (\sum_{t=1}^T \gamma_t)^{-1} \sum_{t=1}^T \gamma_t V_t$, then $\mathbb{E}\left(f(\bar{V}_T)\right) f^* \leq (\phi + \phi^{-1})\frac{\delta}{2}\bar{\Upsilon}$.
- ii) If the step size is chosen as $\gamma_t = \theta_t \frac{f(V_t) f^*}{R(M+N)^2}$, then $\mathbb{E}(f(\tilde{V}_T)) f^* \leq \frac{\delta}{\sqrt{\theta_{\min}}} \tilde{\Upsilon}$ where $\tilde{V}_T = \frac{1}{T} \sum_{t=1}^T V_t$, $\theta_t \in (0,2)$ and $\theta_{\min} = \min_t 1 (\theta_t 1)^2$.

This theorem basically shows the convergence rate for (6) is $O(1/\sqrt{T})$, which is the same as the full projection in (5) of the main paper. The speedup property is also similar: both convergence rates are proportional to R. R is basically the inverse of the block size of [t]. Hence, when the block size increases x times, the required iterations to achieve the given accuracy decreases x times.

Proof. Consider the expansion of $||V_{t+1} - V^*||_F^2$:

$$\begin{aligned} \|V_{t+1} - V^*\|_F^2 &= \|\mathcal{P}_{\Omega}(V_t - \gamma_t \hat{\partial}_{[t]} f(V_t)) - \mathcal{P}_{\Omega}(V^*)\|_F^2 \\ &\leq \|V_t - \gamma_t \hat{\partial}_{[t]} f(V_t) - V^*\|_F^2 \quad \text{(from the local nonexpansive projection property)} \\ &\leq \|V_t - V^*\|^2 + \gamma_t^2 \underbrace{\|\hat{\partial}_{[t]} f(V_t)\|_F^2}_{T_3} - 2\gamma_t \underbrace{\langle \hat{\partial}_{[t]} f(V_t), V_t - V^* \rangle}_{T_4}. \end{aligned}$$

$$(7)$$

Take the conditional expectation of T_1 and T_2 in terms of Δ_t given V_t :

$$\mathbb{E}(T_3) = \mathbb{E}(\|\partial_{[t]}f(V_t)\|_F^2) \le \mathbb{E}\|\partial f(V_t)\|_F^2 = \mathbb{E}\|LV_t + \partial g(V_t)\|_F^2 \le (M+N)^2$$
(8)

$$\mathbb{E}(T_4) = \mathbb{E}\langle \partial_{[t]} f(V_t), V_t - V^* \rangle = \frac{1}{R} \mathbb{E}\langle \partial f(V_t), V_t - V^* \rangle \ge \frac{1}{R} (\mathbb{E}(f(V_t)) - f^*).$$
(9)

Take the expectation on both sides of (7) in terms of all random variables, we have

$$2\gamma_t(\frac{1}{R}(\mathbb{E}f(V_t) - f^*)) \le \mathbb{E}\|V_t - V^*\|^2 - \mathbb{E}\|V_{t+1} - V^*\|_F^2 + \gamma_t^2(M+N)^2.$$

The rest of the proof can follow the proof of Theorem 1 by simply treating " $\frac{1}{B}(\mathbb{E}f(V_t) - f^*)$ " as " $\mathbb{E}f(V_t) - f^*$ " in (4).