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1 Proofs of Theorems

Theorem 1. Let V* be a convergent point of the sequence {V;} generated from
equation (5) of the main paper which is in a small ball with radius § and denote
f(V*) as f*. Let ¢ be a positive value. If there exists a constant 6 > 0 such

that Pq (Vt — %([A/tVt + 89(%))) is a nonexpansive projection, we have:
$8
(M+N)2to2)T

Ve = (1) S Ve, then B (f(Vr)) — f* < (¢ + ¢~ 1)3T.

i) If the stepsize is chosen as v = and

1) If the step size is chosen as y; = Ht%, then B(f(Vr)) — f* <

\/Q‘i?'r where Vi = % Zthl Vi, 0; € (0,2) and Omin = ming 1 — (6; — 1)2.

Proof. Consider the expansion of ||V;11 — V*||%:

IVirs = V7 = [Pa(Vi = %((L + A)V; + 9g(Va)) — Pa(VF)|I%
from the local nonexpansive projection property,
<V = (L + A)Vi + 9g(Va)) = V7
<NV = V297 (L + AV + 0g(Vo) [
T:
=2y (L+ AV 4+ 09(Vy), Vi = V7).
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Take the conditional expectation of 77 and 75 in terms of A; given V;:

E(Ty) = ||LV; + 8g(V)||% + E(| AVi||%) + 2E(LV; + 8g(V3), A V3)
=E(|LV; + 99(V))||7) + E([|AVA]1F)
<(M+N)*+o°

E(Ty) = E(LV; + 9g(V3), Vi = V™) 2 E(f(V})) — f™.
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Take the expectation of both sides of (1) in terms of all random variables,
together with (2), and (3), we have

2%(E(f (Vi) = f) SE|Ve = VF|[5 = E([Vesr = V*[[7) + 7/ (M + N)* + 0?)

(4)
which implies that
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Also note that
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It follows that
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proving the first claim. Next we prove the second claim. From (1), (2), and (3),
we have

<Ef(V;). (from the convexity of f(V}))
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E(|[Vig1 — V7)) < IV = VHI% + %2 (M + N)? 4+ %) — 27%(f (V) — f¥)
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It follows that

AT BV = £ < BV = V) ~ BV V') )

Taking ¢t = 0,1,---,T — 1 in (5) respectively and summarizing all of them, we

obtain

<M+7$"+UQZE SO = 1P SE(V -V <8

S G - < ((M;QJL)H o)

Together with

T T
TUNTE(F(V) = £)2 > T (B(F(VD) — f)?
T
> (T E(f(V) = £)% = (B(f(Vr) — 7)?

The last inequality uses Jensen’s inequality, that is, Ef(z) > f(E(z)) holds for
any convex function. We prove the second claim. O

Denote [t] as a subset of coordinates of V' € R™*P_ which is randomly selected
at iteration ¢. To make our following discussion simpler, we assume that the
size of [t] is a constant and denote the ratio R := ﬁ. Consider the following

update for V;11, also appearing in equation (9) of the main paper:

Visr = Pa(Vi — 70 f(Vh)) (6)

Theorem 2. Let V* be a convergent point of the sequence {Vi} generated
from (6) which is in a small ball with radius 6 and denote f(V*) as f*. Let ¢
be a positive value. Let Y := MENE If there exists a constant § > 0 such that
Pa (Vt — 'ytﬁ[t]f(Vt))) is a nonexrpansive projection, we have:

i) If thf stepsize is chosen as g 7: ﬁ and Vp = (Z;T:l 7)1t Zthl 7Vt
then E (f(Vr)) - [* < (6 + ¢ )3T )

i) If the step size is chosen as vy, = Gtm, then E(f(Vp)) — f* < MT
where Vi = T thl Vi, 0; € (0,2) and Omin = ming 1 — (6; — 1)2.

This theorem basically shows the convergence rate for (6) is O(1/v/T), which
is the same as the full projection in (5) of the main paper. The speedup property
is also similar: both convergence rates are proportional to R. R is basically the
inverse of the block size of [¢]. Hence, when the block size increases x times, the
required iterations to achieve the given accuracy decreases x times.



Proof. Consider the expansion of ||V;11 — V*||%:

[Vier = V¥ I3 = IPa(Vi — %0 f (Vi) — Pa(V)3
< ||V — 'yté[t] f(V;) = V*||%  (from the local nonexpansive projection property)
<NVi = V1P + 97 100 f (VO 17 =23 O f(Va), Vi = V7).

T3 Ty

Take the conditional expectation of 77 and 75 in terms of A; given V;: "
E(T3) = E(|og f(Vo)llE) < EN0f(Vi)l[F = EILV: + dg(Vo)[[ < (M + N)? .
B(T1) = B0 f(V), Vi = V*) = ZEOF(V), Vi — V") 2 Z(BU(W) - 1)

Take the expectation on both sides of (7) in terms of all random variables, (vgv)e)z

have

1 . \ .
2n(HEF(V) - 7)) <E[V: -V I = E[Virr = V7[5 + 97 (M + N)2.

The rest of the proof can follow the proof of Theorem 1 by simply treating
LL%(Ef(‘/'t) _ f*)77 as LLEf(W) _ f*77 in (4). D



