
Incorporating Topological Constraints within Interactive Segmentation and
Contour Completion via Discrete Calculus∗

Jia Xu Maxwell D. Collins Vikas Singh
University of Wisconsin-Madison

http://pages.cs.wisc.edu/˜jiaxu/projects/euler-seg/

Abstract

We study the problem of interactive segmentation and
contour completion for multiple objects. The form of con-
straints our model incorporates are those coming from user
scribbles (interior or exterior constraints) as well as infor-
mation regarding the topology of the 2-D space after par-
titioning (number of closed contours desired). We discuss
how concepts from discrete calculus and a simple identity
using the Euler characteristic of a planar graph can be uti-
lized to derive a practical algorithm for this problem. We
also present specialized branch and bound methods for the
case of single contour completion under such constraints.
On an extensive dataset of ∼ 1000 images, our experi-
ments suggest that a small amount of side knowledge can
give strong improvements over fully unsupervised contour
completion methods. We show that by interpreting user in-
dications topologically, user effort is substantially reduced.

1. Introduction

This paper is focused on developing optimization
models for the problem of multiple contour comple-
tion/segmentation subject to side constraints. The type of
constraints our algorithm incorporates are (a) those relating
to inside (or outside) seed indications given via user scrib-
bles; (b) global constraints on the topology, i.e., information
which reflects the number of unique closed contours a user
is looking for. Given the output from a boundary detec-
tor (e.g., Probability of Boundary or Pb [25]), we obtain a
large set of weighted locally-based contours (or edgelets) as
shown in Fig. 1. The objective then is to find k closed “le-
gal” contour cycles with desirable properties (e.g., curvilin-
ear continuity, strong edge gradient, small curvature), where
legal solutions are those that satisfy the side constraints,
shown in Fig. 1. The basic primitives in our construction
are contour fragments, not pixels. The motivation for this
choice is similar to most works on contour detection for im-

∗This is a extended-CVPR version, dated May 1, 2013, with detailed
optimization schemes and more experimental results.

age segmentation – by moving from predominantly region-
based terms to a function that utilizes strength of edges, we
seek to partly mitigate the dependence of the final segmen-
tation on the homogeneity of the regions alone and the num-
ber of seeds. Additionally, in at least some circumstances,
one expects benefits in terms of running time by utilizing a
few hundred edges instead of a million pixels in the image.
Our high level goal is the design of practical contour com-
pletion algorithms that take advice – which in a sense paral-
lels a powerful suite of methods that have recently demon-
strated how global knowledge can be incorporated within
popular region-based image segmentation methods [26].

Figure 1: Left to right: input images, edgelets or contours with
seed indications, and final contour. Foreground is marked in green;
background is marked in red; boundrary is marked in white. Best
viewed in color.
Related Work. The study of methods for detection of
salient edges and object boundaries from images has a long
history in computer vision [37]. The associated body of
literature is vast – methods range from performing edge de-
tection at the level of local patches [32], to taking the conti-
nuity of edge contours into account [37, 29], to incorporat-
ing high-level cues [36] such as those derived from shape
and/or appearance [25]. While the appropriateness of a spe-
cific contour detector is governed by the downstream appli-
cation, developments in recent years have given a number
of powerful methods that yield high quality boundary detec-
tion on a large variety of images and perform well on estab-
lished benchmarks [25]. Broadly, this class of methods uses
local measurements to estimate the likelihood of a boundary
at a pixel location. To do this, the conventional approach
was to identify discontinuities in the brightness channel,

1

http://pages.cs.wisc.edu/~jiaxu/projects/euler-seg/


where as newer methods exploit significantly more infor-
mation. For instance, [27] suggests a logistic regression on
brightness, color, and texture, and [9, 24] learns a classifier
by operating on a large number of features derived from im-
age patches or filter responses at multiple orientations. Con-
temporary to this line of research, there are also a variety of
existing algorithms that integrate (or group) local edge in-
formation into a globally salient contour. Since one expects
the global contour to be smooth, the well known Snakes for-
mulation introduced an objective function based on first and
second derivative of the curve. Others have proposed utiliz-
ing the ratio of two line integrals [18], incorporating curva-
ture [31, 10], joining pre-extracted line segments [40, 35],
and using CRFs to ensure the continuity of contours [30].
Note that despite similarities, contour detection on its own
is not the same as image segmentation. In fact, even when
formalized under contour completion, an algorithm may not
always produce a closed contour. Nonetheless, from most
“edge-based” methods one can obtain a partition of the im-
age into object and background regions. Without getting
into the merits of edges versus regions, one can view edge-
based contours as a viable alternative to “region-based” im-
age segmentation methods in many applications.

The success of the above developments notwithstanding,
the applicability of these methods has been somewhat lim-
ited by their inability to successfully discriminate between
contours of different classes of objects. To address this lim-
itation, there has been a noticeable shift recently towards
the incorporation of additional information within the con-
tour completion process. In particular, several groups have
presented frameworks that leverage category specific (or se-
mantic) information into the process of obtaining closed ob-
ject boundaries. Specific examples of this line of work in-
clude semantic contours [16], the hierarchical ultrametric
contour map [2], and particle filtering based object detec-
tion via edges [23]. The basic idea here is to achieve a
balance between bottom up edge/boundary detection and
top-down supervision, for simultaneous image segmenta-
tion and recognition. While semantic knowledge based con-
tour completion is quite powerful, its performance invari-
ably depends on the richness of the underlying training cor-
pus. Indeed, if the shape epitomes do not reflect the object
of interest accurately enough (significant pose variations),
if there is clutter/occlusion, or when a novel class is not
well represented in the training data, the results may be
unsatisfactory. In these circumstances, it seems natural to
endow the contour completion models with the capability
to leverage some form of user supervision (foreground and
background seeds) [15]. Further, knowledge provided in the
form of the number of closed contours a user requires, can
be a powerful form of user guidance as well. Notice that
the adoption of Grabcut type methods suggests that a nom-
inal amount of “interactive scribbles” is readily available in

many applications, and may significantly improve the qual-
ity of solutions. While there are many mechanisms which
incorporate such constraints in region based segmentation,
only a few methods take such information explicitly into
account for edge-based contour completion. In this work,
we leverage a discrete calculus based toolset to incorpo-
rate such topological and seed indications type supervision
within a practical contour completion algorithm.

The primary contributions of the this paper are: (i) We
present a unified optimization model for multiple con-
tour completion/segmentation which incorporates topologi-
cal constraints as well as inclusion/exclusion of foreground
and background seeds. The topological knowledge is in-
cluded by using the Euler characteristic of the edgelet
graph where as inclusion/exclusion constraints utilize con-
cepts from discrete calculus. (ii) For an extensive dataset,
we provide strong evidence that with a small amount of
user interaction, one can obtain high quality segmentations
based on edge contours information alone. We give an
easy to use implementation, as well as user scribble data
corresponding to varying levels of interaction on this large
(∼ 1000) set of images.

2. Preliminaries
The tools of discrete calculus provide a powerful formal-

ism to represent the topological information in an image
[14, 20, 7]. We use conventions of discrete calculus to de-
scribe our problem of finding multiple contour closures. In
this section, we introduce the idea of cell complices which
are the fundamental building blocks of our construction.
The following text also introduces the necessary notations,
which will be used thoughout the rest of the text.

2.1. Discrete Calculus

The domain of an image is decomposed into a set of
cells. If the decomposition is such that (i) the interiors of
the cells are disjoint and (ii) the boundary between any two
p-dimensional cells is a (p − 1)-dimensional cell then we
have a cell complex. As an example, consider a planar graph
G = 〈V,E, F 〉with vertices V , edgesE, and faces F . Such
a graph has incidence relationship between each face and
its bounding edges, and between each edge and its endpoint
vertices. Similarly, each vertex is incident on two or more
edges and each edge is incident on two faces. Notice that
the interior of a pair of faces is disjoint, and the boundary
between any two faces gives an edge, where the dimension
is reduced by one. As a consequence, we get a 2D cell
complex for a planar graph, and also a set of incidence rela-
tionships among simplices of different dimensions.

A cell complex may be oriented such that we can de-
scribe directions on each cell relative to its orientation, see
Fig. 2(a). Each type of cell has a corresponding pair of
possible orientations: a vertex (0-cell) is either a source or



Vertex Edge Face Coherent Anti-coherent

(a) (b)
Figure 2: Visualization of the orientations on cells of different dimen-
sionalities (a). In (b) we show in the left column p-cells with all of their
boundary (p − 1)-cells coherently oriented, and all boundary cells anti-
coherently oriented in the right column.

Node Edge Face

Primal

Dual

Figure 3: Duality relationships between 2D cell complices.

a sink while an edge (1-cell) may be directed toward either
endpoint. Further, each cell induces a corresponding ori-
entation on incident cells; for example, a directed edge has
a source endpoint vertex at one end and sink at the other.
The orientations of a cell and a member of its boundary are
coherent if the induced orientations agree, an example is
shown in Fig. 2(b).

We may represent the two-dimensional image as an ori-
ented complex. All faces are given the same orientation,
while edges and vertices are given arbitrary orientations.
After enumerating its constituent vertices, edges and faces,
a selection of some subset of faces is specified with an in-
dicator vector x ∈ {0, 1}|F |. xi = 1 denotes the candidate
face Fi ∈ F is in the foreground, and xi = 0 otherwise.
Similarly, we represent the edge and vertex configuration of
G by indicator vectors y ∈ {0, 1}|E| and z ∈ {0, 1}|V | re-
spectively. We require that the indicator vectors x,y, z on
each level of cell consistently describe a segmentation. The
key relationship is consistency between the labels on the
incident cells. These relationships can be expressed alge-
braically using the notion of a dimension-appropriate inci-
dence matrix. The edge-face incidence matrix (also called
the boundary operator) C1 ∈ {−1, 0, 1}|E|×|F | is defined
by

C1;ij =


1 if edge i is incident to face j and coherently oriented;
−1 if edge i is incident to face j and anti-coherently oriented;
0 otherwise.

(1)

Here, C1;ij refers to entry (i, j) in C1. Similarly,
by discarding orientation information, we can define the
edge-face corresponding matrix C2 ∈ {0, 1}|E|×|F | which
labels which edges are incident to which face. It can
be calculated as the element-wise absolute value of C1,

such that C2;ij = |C1;ij |. The node-edge incident ma-
trix A1 ∈ {−1, 0, 1}|V |×|E| is defined analogously to (1),
where A1;ij = 1 iff node i is incident to edge j. As
with C2, we define the node-edge corresponding matrix
A2 = |A1| ∈ {0, 1}|V |×|E|. We further use a node-edge de-
gree matrix A3 ∈ R|V |×|E|, where A3;ij = A2;ij/di where
di denotes the degree of node i.

Discrete calculus describes the notion of duality between
cell complices. In a p-complex, each q-cell will have a cor-
responding dual (p−q)-cell (say, q ≤ p). For any given cell
complex, we can construct its dual in a way that preserves
incidence relationships between cells, see Fig. 3. Using
these concepts, in the following sections, we will formalize
the required constraints within a contour completion objec-
tive function.

3. Problem Formulation
As described in Section 2.1, our model works with se-

lections of the cells constituting the foreground. Since the
notion of foreground for a face is self-evident, we will de-
scribe the labeling of vertices and edges, starting from a face
labeling x. We enforce the following condition:

Condition 1. A p-cell is in the foreground if and only if it
is incident to a (p+ 1)-cell in the foreground.

This condition ensures that each connected component
of the foreground is itself a cell complex, a property we will
use shortly.

First, we introduce an auxiliary indicator variable w ∈
{0, 1}|E| which selects the boundary edges. These edges
are those which are incident to both a foreground and a
background face. W.l.o.g., consider edge 1 incident to faces
1 and 2 respectively, then w1 = |x1 − x2| = I(x1 6= x2).
Taken together, the full set of boundary edges precisely rep-
resent the contour of the selected foreground. We can now
use the boundary operator from Section 2.1 to derive the
identity

w = |C1x| (2)

Observe that each edge is incident to exactly two faces,
and we specified that all faces have identical orientation. It
follows that an edge must be coherent with one face and
anti-coherent with the other. Therefore, for all internal
edges (non-boundary edges in the foreground) the C1 oper-
ator when multiplied with x, cancels the contribution from
these two faces, leaving non-zero values only for the bound-
ary edges. The internal edges (which are incident to fore-
ground faces on both sides) can still be computed in a dif-
ferent manner. The vector C2x will count the inside edges
twice and the boundary edges once, as we discard orienta-
tion (and thus sign information). In the preceding, w.l.o.g.
(C2x)1 = x1 + x2. Thus, Condition 1 will be satisfied if
the following identity holds:

2y = w + C2x (3)



Figure 4: A superpixel-based segmentation with the foreground subgraph
consistent under condition 1. Selected faces are shaded, foreground edges
are bold and foreground vertices highlighted in yellow. Internal edges
yi 6= wi = 0 are bold/black, boundary edges yi = wi = 1 are red.

We use the matrices A2, A3 for a pair of linear inequali-
ties which are equivalent to Condition 1 for vertices. Ob-
serve that the vector A2y will be the number of foreground
edges incident to each foreground vertex (or node), where
(A2y)i is the number of foreground edges incident to ver-
tex (or node) i. Similarily, when scaled by the degree di
of vertex i, (A3y)i ∈ [0, 1] will be the proportion of edges
incident to i which are in foreground. Enforcing condition
1 is equivalent to:

A3y ≤ z ≤ A2y (4)

Since zi ∈ {0, 1}, the condition, zi ≥ (A3y)i, will be true
only for zi = 1 if any edge incident to i is in foreground.
Conversely, if no edge incident to i is selected in the solu-
tion, then (A2y)i = (A3y)i = 0 and (4) is satisfied only
for zi = 0.

The expressions introduced above allow the identifica-
tion of whether a user provided seed falls “inside” or “out-
side” the contour completion given by w, and will serve
as constraints for our multiple contour completion model.
Fig. 4 shows an illustrative example for an image, where
the input to the contour completion are edgelets (or edgels)
obtained from boundaries of a globalPb derived superpixels.

Euler Characteristic. Our final requirement is to be
able to specify the number of closed contours desired. The
existing literature on region based image segmentation pro-
vides some ideas on how this can be accomplished for ran-
dom field based models – in the form of so-called connect-
edness constraints. TopologyCuts is an extension of graph-
cuts and utilizes certain levelset ideas to preserve topology
[41]. The DijkstraGC [38] finds a segmentation where two
manually indicated seed points are connected via the fore-
ground where as Nowozin [28] makes use of a LP relax-
ation. Very recently, [8] proposed selectively perturbing
the energy function to ensure topological properties. Here,
we show how a much simpler form can capture the desired
topological properties, as described next.

For any graph we can define the Euler characteristic as

χ = |V | − |E|+ |F |, (5)

where χ = 2 for any planar embedding of a graph. If
we explicitly constrain that the Euler characteristic of an in-
duced subgraph created by selecting any given foreground

is exactly two, this will give a foreground region that is
connected and simple in a geometric sense. For multiple
connected regions, we can use the generalized form of this
formula for arbitrary planar graphs:

|F |+ |V | − |E| = n+ 1 (6)

where n is the number of connected components.)

Lemma 3.1. Let x,y, z denote indicator vectors for the se-
lection of faces, edges, and vertices for planar graph G.
The selected subgraph will satisfy (6) if∑

i

xi +
∑
k

zk −
∑
j

yj = n (7)

Proof. (Sketch) The left-hand side of this formula counts
each relevant quantity for the Euler characteristic of the se-
lected subgraph, but it neglects to count the “outside” face.
Subtract one from the RHS and derive the equality.

This will not count the extra outside faces corresponding
to any “holes”. This was not a problem in our experiments,
but can be explicitly avoided by requiring the background
be connected using the spanning tree constraints of [33].
Using (7) as a constraint in our model will guarantee that
we recover n simply connected foregrounds.

3.1. Optimization Model

Before we introduce the contour completion model, we
briefly describe the procedure for deriving the components
of the graph from an image. This process follows exist-
ing algorithms for contour and boundary detection. First,
we run the globalPb detector on an image which provides
the probability of boundary for each image pixel. Next, we
generate a set of superpixels from the image using the glob-
alPb output in conjunction with TurboPixels (which uses
local information and compactness). Each superpixel cor-
responds to a face, and the boundary of the superpixel cor-
responds to edges in the graph (these are the basic primi-
tives of the closed contours we will derive). If two edges
are connected, we introduce a node in the graph. With this
construction, the problem of finding multiple contour clo-
sures reduces to finding multiple cycles in the graph. To se-
lect the cycles for the strongest contours, we want to weight
the edges appropriately. For this purpose, we calculate two
types of weight measures following [21]. The first, denoted
by N, measures the “goodness” of edges. The better edge i
is, the smaller Ni will be. The second, denoted by D, is the
count of all the pixels on the superpixel boundary. We use
an objective function which is the ratio of these quantities,
N(w)
D(w) . This ends up being the portion of contour w.r.t arc-
length which does not lie on a true image edge. Minimizing
this quantity has been shown to provide a contour that has
strong edge support in the image.

Finally, the user indictations are represented in terms of
indicator vectors x0,x1, where x0;i = 1 if face i contains



a background seed. With the basic components (or con-
straints) in hand, we now have the main optimization model.

min
w,x,y,z

NTw

DTw
,

s.t. w = |C1x|, 2y = w + C2x, (8a,b)

A3y ≤ z ≤ A2y, 1Tx+ 1T z− 1Ty = n, (8c,d)

x1 ≤ x ≤ 1− x0, w,x,y, z ∈ {0, 1}. (8e,f)

3.2. Optimizing Ratio Objective

Since the objective in (8) of the main paper is in ratio
form, we transform it into a linear function with a free vari-
able, t. Our linear ratio cost objective function is solved
by minimizing f(t,u) = (N − tD)Tu, over admissible u
for a sequence of chosen values of t. Here, u denotes the
concatenated vector of all indicator variables in the model.
Assume D ≥ 0 and DTu 6= 0. For an initial finite
bounding interval [tl, tu], let t0 be the initial value. Let
ū = arg minu f(t0,u), the procedure proceeds as follows:

• f(t0, ū) = 0: NT ū/DT ū = t0, stop with solution t0

• f(t0, ū) < 0: NT ū/DT ū < t0, tu ← NT ū/DT ū

• f(t0, ū) > 0: NT ū/DT ū > t0, tl ← t0

Each iteration is easily solved in a few seconds using the
CPLEX IP solver on a standard workstation.

3.3. Spanning Tree Constraint

In Section 3 of the main paper, we stated that the
∑

i xi
term in (7) will not count the “outside” faces. In addition, it
does not count faces introduced due to holes in the selected
foreground. If we denote the number of such holes by H ,
then the actual number of faces of the foreground subgraph
is
∑

i xi + H + 1. Modifying the expression to match (6),
this takes the form(∑

i

xi +H + 1

)
+
∑
k

zk −
∑
j

yj = C + 1

∑
i

xi +
∑
k

zk −
∑
j

yj = C −H
(9)

where C is the number of connected components. There
remains a small ambiguity in the constraint, such that intro-
ducing a new connected component along with a new hole
will maintain the equality. This can be easily eliminated
either via a choice of objective which favors minimum arc
length (and thus will avoid holes), or by explicitly restricting
H = 0.

If the background faces form one connected component,
there are no holes inside the selected foreground cycles,
This is acchievable with the constraints of [33] to require
the existence of a spanning tree on the dual graph of unse-
lected faces.

Denote x̄ = 1 − x as the faces we did not select in
our solution. We introduce auxiliary variables for a face-
simultaneous-selection matrix S, and variable T indicating
which dual edges are in the spanning tree.

Sij =

{
1 if x̄i = x̄j = 1, faces i and j adjacent;
0 otherwise.

(10)

The spanning tree is constructed from S using the following
constraints.

First, if Sij = 0, this cannot be an edge in the tree.

Tij ≤ Sij ∀ i, j (11)

Second, if x̄i = 1, there must be at least one edge incident
on face i ∑

j∼i
Tij ≥ x̄i ∀i (12)

All the background faces should form a tree. A graph is a
tree only if it has one fewer edge than faces∑

i∼j
Tij =

∑
i

x̄i − 1 (13)

Finally, one eliminates cycles by ensuring all subsets of
faces are no more connected than a tree∑

i∼j;i,j∈S
Tij ≤

∑
i∈S

x̄i − 1 ∀ S ⊂ F (14)

this is enforced for all subsets S of faces. If a feasible T
exists, then the background must be connected and there
are no holes in the foreground. We do not use (14) in our
solver, and present it for theoretical completeness. Instead,
we rely in practice on the tendency of our model’s objective
to prefer short, simple boundaries which do not introduce
unnecessary holes.

4. Beyond Superpixel-derived Edgelets
Recall that the model in Section 3.1 constructs a cell

complex using a superpixel decomposition of the image do-
main. While fast algorithms for finding this decomposition
are available [22], it is known that superpixels are not ro-
bust for all types of images. Occlusion or weak boundaries
give cases where the set of superpixel boundary primitives
(the input to our optimization) do not include some valid
edgelets (ones which have not been picked up by either the
contour detector or superpixel method). The natural solu-
tion to this is to supplement the basic set of edgelet prim-
itives with additional contour pieces that bridge the ‘gaps’
and allow a more accurate contour closure even in the pres-
ence of very weak signal variations. Next, we present such
an extension to find completions using a base set of discon-
nected edgelets. But introducing completions between all



Figure 5: Branch-and-bound result on a BSD image.

pairs of edgelets is prohibitive and leads to a problem with a
large number of variables (especially for multiple contours).
The following model, while applicable to the multiple con-
tour setting, is most effective for finding a single contour
which encloses a simply connected foreground region.

Euler Spirals. A key subcomponent of this problem is
how to join two edgelets which will follow each other on
the contour. This is the problem solved by [19] which pro-
poses to use segments of the Euler spiral. This spiral can
be shown to be the curve C with minimal total curvature
TC2 =

∫
C κ(s)2 ds where κ(s) is the curvature at a given

point on the curve parameterized by arc-length. For any pair
of points along with tangents we can construct a segment
of an euler spiral which connects these points with con-
sistent tangents. They show that these completions satisfy
the conditions given by [17] for a “pleasing” curve (invari-
ance to similarity transformations, symmetry, extensibility,
smoothness, roundness).

We parameterize the spiral by the turning angle as in
[39]. To form a completion, we consider the Euler spiral
under a similarity transformation determined by the posi-
tion and Frenet frame (P0,T0,N0) at the spiral’s inflection
point, and a scaling factor a. The transformed spiral is

Q(θ) =

{
P0 + aC(θ)T0 + aS(θ)N0 θ ≥ 0

P0 − aC(−θ)T0− aS(−θ)N0 θ < 0

where S and C are the Fresnel integrals. A choice of in-
terval [θ1, θ2] selects a given segment. [39] gives a set of
equations to determine these free variables, given segment
endpoints P1,P2 and their tangents T1,T2. We solve these
equations using a modified Newton’s method. The most ex-
pensive step, the computation of the Fresnel integrals, is
sped up considerably using [12], but augmented with pre-
computed tables. We can compute an average completion
in 30µs, versus 1ms for [19] on the same machine, making
it an attractive option to calculate a large number of comple-
tions, quickly, within the core contour completion engine.

Euler-Spirals for One Contour Completion. We are
given a set of image edgelets derived from an edge detector
as before, as well as user-provided foreground and back-
ground seeds. The core objective considered by the algo-
rithm is an alternating path p which consists of a sequence
of edgelets joined by Euler Spiral segments. The goal is to
find a closed contour that minimizes an objective function
that increases with the addition of each contour segment.

Our solution strategy is to iteratively build upon the cur-
rent partial path, until we get a cycle that encloses a feasible
region. To do this, we adopt a specialized branch and bound
procedure. Here, each node v of the branch-and-bound tree
corresponds to some alternating path p. If p is a cycle, then
v is a leaf node and thus a candidate solution. In this case,
we check p is checked for feasiblity w.r.t. the seed con-
straints. If p is not a cycle, we may construct the children of
this node by considering each image edglet in sequence and
calculating the euler completion, on the fly. The path for
the a child is then p plus the current completion and edgelet
appended to the end. Children are discarded if they give rise
to a self-intersecting partial path; therefore, entire subtrees
can be discarded directly. Any partial path with objective
worse than the best candidate solution found so far may be
ignored. Otherwise, we descend the tree to each child in
turn, ordered by the cost of their partial contour.

This algorithm implicitly solves a model of the form in
(8), with a linear objective function on w and smoothness
constraints on the solution contour. We can construct a pla-
nar graph for this model using the extensibility property of
Euler spirals and splitting any two intersecting segments.

4.1. Branch-and-Bound Method

We give details on the solver which solves our model
without explicitly constructing the full cell complex.

Construction. The solver is given a set of image edgels
E and seeds. The branch-and-bound algorithm considers
partial solutions p to a contour completion problem. p is
an alternating path which consists of a sequence of edgels
joined by Euler Spiral segments. The children of a branch-
and-bound node are simply those contours which extend p
by a single completion and edgel

children(p) ={concatenate(p, C, e) |
C joins tail(p) and e ∀e ∈ E}

Cost Function. We seek a closed p which minimizes
some integral cost over the contour, for instance the elastica
energy

C(p) =

∫
p

ακp(s)2 + β ds (15)

Note that β > 0 suggests using completions based on gen-
eral elastica [17], though our experiments suggest using
negligible β � α. Note that any cost of this form will
satisfy C(q) ≤ C(p) for any q ∈ children(p).

Overview. In order to allow a flexible node visit order,
we use a priority queue over partial solutions. This pro-
vides an enqueue operation which places an contour in
the queue, and a dequeue operation which removes the
queue element with minimum cost and removes it. If every
time we dequeue a contour we enqueue its children this
will iterate over all possible contours in order of increasing



Figure 6: Additional results for the branch-and-bound algorithm for images from the Berkeley Segmentation Dataset. The input edgels
are shown in black, euler completions in blue. The red segments are input edgels, smoothed for accurate derivative estimation.

cost. As soon as we find a feasible closed contour this is the
solution.

4.2. Pseudocode

function expandnode(p, E, seeds) {
if p is self-intersecting then

return ∅
end

if p is closed then
if p is feasible for seeds then

return p as the solution
end

else
for q ∈ children(p) do enqueue(q)

end

return ∅
}

function contour(E, seeds) {
; Enqueue root nodes
for e ∈ E do enqueue(e)

; Main Loop
while queue non-empty do
p← dequeue()
p← expandnode(p,E, seeds)
if p 6= ∅ then

return p
end

end while

return ∅
}
The contour function will return the minimum-cost

contour for a given set of edgels and seed points. Note that
this is a highly parallelizable algorithm: a set of threads can

all be running the main loop independently with their only
interaction through the node queue.

There is a natural extension of this method to multiple
contours. Each node handles multiple partial contours, and
each child of that node appends an edgel to one of the in-
complete contours. However, the branching factor of this
tree may become large.

5. Experiments

5.1. Dataset and Experiments Setting

We first provide evaluations of the model from Section
3 on images from the Weizmann Horse Database (WHD)
[5], the Weizmann Segmentation Database (WSD) [1], and
the Berkeley Segmentation Data Set (BSDS500) [3]. We
then continue to experiments with a robot user on the ISEG
dataset. These experiments will show that the combination
of interaction with a contour-based method can achieve high
levels of accuracy with a minimum of user effort.

We compare our approach (which we refer as EulerSeg)
with three other contour grouping methods: (i) Ratio Re-
gion Cut (RRC) from [34], (ii) Superpixel Closure (SC)
from [21], and an adaptive grouping method (EJ) [11]. We
note that these are unsupervised whereas our algorithm in-
corporates user interaction, but SC and EJ produce multiple
segmentations of which we select the most favorable. We
compute the F-measure by the region overlapping and re-
port quantitative results in Fig. 10.

The cell complex is generated from superpixels via [22]
and the same number of superpixels as SC in all our exper-
iment. We typically indicate 1 ∼ 2 interior seeds for the
sought objects, but in the presence of ≥ 2 objects, we may
need 3− 7 points including both interior and exterior seeds.
The indicated seeds are shown in the images: green marks
are foreground and red marks are background.

RRC was run using the default parameters λ = 0, α =
1. That method has an additional parameter to indicate an
arbitrary number of objects. However, it frequently fails



to get a second boundary even when the image includes 2
objects. For SC, we use their reported best parameters with
the number of superpixels set to 200 and Te = 0.05. That
algorithm generates K = 10 possible solutions, here we
report results for the best one.

5.2. Qualitative Evaluation on Contour Completion

WHD Results: WHD consists of 328 side-view images
of horses, with exactly one horse in each image. Fig. 7
shows both RRC and SC select large regions of ground be-
tween the horses’ legs due to their large-region bias. As the
examples show, our objective function minimizes gaps in
the closure and leverages user seeds to handle slender ob-
jects better and outperforms both with ≤ 5 seeds.

RRC SC EulerSeg RRC SC EulerSeg

Figure 7: Sample results from WHD. Best viewed in color.

WSD Results: WSD contains 200 images and is divided
into 2 subsets of images with one or two foreground objects.
As shown in Fig. 8, our algorithm is comparable to RRC
and SC when there is one object with only one seed. How-
ever, when the image contains 2 objects, our Euler charac-
teristic constraint fires in and we correctly segment both ob-
jects of interest, while RRC and SC either selects one of the
objects or segments one large region which includes both.

BSDS500 Results: Compared with WSD and WHD, im-
ages in this dataset are more complicated. We note that in
some images of BSDS500, there are no salient objects or

RRC SC EulerSeg RRC SC EulerSeg

Figure 8: Sample results from WSD. Best viewed in color.

 0

 0.2

 0.4

 0.6

 0.8

 1

WHD WSD (1 obj) WSD (2 obj) BSD500

F-
m

e
a
su

re

Region Accuracy

RW
RRC

EJ
SC

EulerSeg

Figure 10: F-measure scores on datasets described in Section 5.

closed contours (e.g., images of sky or street). In these cases
our algorithm cannot find a meaningful closed contour, but
where one is present our model performs at least as well
as any of the compared methods. However, another chal-
lenging class of images in BSD are those that depict a large
number of foreground objects, here our algorithm signifi-
cantly improves upon previous results with a small amount
of user guideline and the topological constraint. An exam-
ple of this can be seen in the bottom row of Fig. 9, where
RRC and SC fail whereas our method is able to find the
correct solution easily.

5.3. Quantitative Evaluation on Contour Comple-
tion

For a region A from an algorithm and a region B from
the ground truth, we define the precision as the ratio of true
points on A:

P =
|Matched(A,B)|

|A|
(16)

and recall as the proportion of detected points on B:

R =
|Matched(B,A)|

|B|
(17)

where |Matched(A,B)| is the intersected pixels of the seg-
mented region and ground truth. We define our F-Measure
as

F =
2PR

P +R
(18)

The average performance of the four algorithms (RRC,
EJ, SC, and ours) is shown in Fig. fig:accuracy. In the
BSD500 truth, as the images are parsed into a few number
of regions (≥ 5), we use our seed points to extract a binary
ground truth, with any regions marked with a foreground
seed placed in the foreground. We also compare here to a
basic supervised method from the region/graph-based set-
ting, Random Walker (RW) [13] using the same seeds. Fig.
10 shows EulerSeg (our algorithm) performs comparably
with SC on the WSD with one object while on the WHD ,
WSD with 2 objects and BSD500, our algorithm performs
significantly better than the four baseline algorithms.



RRC SC EulerSeg RRC SC EulerSeg

Figure 9: Sample results from BSDS500. Best viewed in color.

Figure 11: Example of multiple closures

5.4. Multiple Closures

As mentioned in [34], the authors attempt to solve mul-
tiple contour closures by removing all the edges associated
with the detected one and repeating their single-detection
method. However, this approach is problematic as shown in
Fig. 11. If the single-detection method select two closures
at the very beginning (shown in the middle of Fig. 11) and
removes all the edges related to these two, It is not possible
to get these two closures back in subsequent step of their al-
gorithm. However, our algorithm can select all five closures
in one shot as shown on the right of Fig. 11.

5.5. Results on Interactive Segmentation

ISEG Results: We compare our algorithm with the
state-of-art interactive segmentation methods on the ISEG
dataset[15]. These include Boykov & Jolly (BJ) with no
shape constraints [6], shortest paths method (SP) [4], Ran-
dom Walker (RW) [13], and Geodesic Star Convexity se-
quential system (GSCseq) [15]. We measure the effects of
user interactions using a robot user setting. All the algo-
rithms are set up with the default setting using the robot
engine from [15]. The question we ask is how much user
interaction is required to get a region F-measure score of
0.95 for the ISEG dataset (restricted to cases where all al-
gorithms can achieve F=0.95 within 20 strokes). Table 1

demonstrates that EulerSeg requires the fewest stokes to
reach a reasonable segmentation. On the other hand, as
ISEG already provides a good initialization, which bene-
fits the rest methods for building up an appearance model,
the extra effort needed for a good segmentation is reduced.
It is important to note that seeds in EulerSeg act as a pure
geometric role and enable segmentation with fewer stroked
pixels. These results are shown in Fig. 12.

Table 1: Average interaction efforts required to reach an F=0.95
Method BJ RW SP GSCseq EulerSeg
Avg. Effort 5.51 6.48 4.54 2.30 2.06

ISEG Results without Initialization: As ISEG already
provides a good initialization, which benefits the other
methods for building up an appearance model, the extra ef-
fort needed for a good segmentation is reduced. It is im-
portant to note that seeds in EulerSeg act as a pure geomet-
ric role and enable segmentation with fewer stroked pix-
els. When starting with no initialization, EulerSeg is still
able to segment the object(s). Here we provide additional
results on our algorithm without initialization ( which we
refer as EulerSeg-0). In EulerSeg-0, we start our segmenta-
tion without any seeds, then we use the robot engine to add
seed points iteratively.

Fig. 12 shows the first segmentation found by the robot
user which has a region F-Measure of at least 0.95. The
varying number of strokes seen between different algo-
rithms on the same image shows the amount of additional
input necessary to achieve this level of accuracy. Fig. 12
along with Table 1 in the main paper demonstrates that by
interpreting the seeds topologically, the user interactions
needed to get high-accuracy segmentation can be signifi-
cantly reduced.

Running Time The preprocessing to generate super-



pixels is the primary computational cost, and is the only
resolution-dependent component of our method. The total
number of variables in our ILP typically is about 2000 (with
residuals); on a 3GHz i7 CPU, each iteration of the linear
ratio objective solver takes < 1s. Given superpixels, our
implementation creates a segmentation usually within 15 it-
erations, though for some exceptionally textured images or
those with a large number of components our algorithm may
take more than 1 minute to solve.

6. Discussion

We present a framework based on discrete calculus
which unifies the contour completion and segmentation set-
tings. This is augmented with a Euler characteristic con-
straint which allows us to specify the topology of the seg-
mented foreground. Our model easily accommodates user
indications and multiple foreground regions. Two solvers
specialized toward different aspects of the problem are de-
rived, one based on an ILP over superpixels and the other
a branch-and-bound using completions with spirals to join
edgelets. We demonstrate our model finds salient con-
tours across a large dataset, showing significant improve-
ment over similar methods.

Acknowledgments: This work is funded via grants NIH
R01 AG040396 and NSF RI 1116584. Partial support was
provided by UW-ICTR and Wisconsin ADRC. Collins was
supported by a CIBM fellowship (NLM 5T15LM007359).

References
[1] S. Alpert, M. Galun, R. Basri, and A. Brandt. Image segmentation by

probabilistic bottom-up aggregation and cue integration. In CVPR,
2007. 7

[2] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. From contours to
regions: An empirical evaluation. In CVPR, 2009. 2

[3] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour detection
and hierarchical image segmentation. PAMI, 33(5):898–916, 2011.
7

[4] X. Bai and G. Sapiro. Geodesic matting: A framework for fast inter-
active image and video segmentation and matting. IJCV, 82(2):113–
132, 2009. 9

[5] E. Borenstein and S. Ullman. Class-specific, top-down segmentation.
In ECCV, 2002. 7

[6] Y. Boykov and M. Jolly. Interactive graph cuts for optimal boundary
and region segmentation of objects in N-D images. In ICCV, 2001.
9

[7] A.-L. Chauve, P. Labatut, and J.-P. Pons. Robust piecewise-planar
3d reconstruction and completion from large-scale unstructured point
data. In CVPR, 2010. 2

[8] C. Chen, D. Freedman, and C. Lampert. Enforcing topological con-
straints in random field image segmentation. In CVPR, 2011. 4

[9] P. Dollar, Z. Tu, and S. Belongie. Supervised learning of edges and
object boundaries. In CVPR, 2006. 2

[10] N. Y. El-Zehiry and L. Grady. Fast global optimization of curvature.
In CVPR, 2010. 2

[11] F. J. Estrada and A. D. Jepson. Robust boundary detetion with adap-
tive grouping. In POCV, 2006. 7

[12] O. L. Fleckner. A method for the computation of the fresnel integrals
and related functions. Mathematics of Computation, 22(103):635–
640, 1968. 6

[13] L. Grady. Random walks for image segmentation. PAMI,
28(11):1768–1783, 2006. 8, 9

[14] L. Grady and J. R. Polimeni. Discrete Calculus: Applied Analysis on
Graphs for Computational Science. Springer, 2010. 2

[15] V. Gulshan, C. Rother, A. Criminisi, A. Blake, and A. Zisserman.
Geodesic star convexity for interactive image segmentation. In
CVPR, 2010. 2, 9, 12

[16] B. Hariharan, P. Arbeláez, L. Bourdev, S. Maji, and J. Malik. Seman-
tic contours from inverse detectors. In ICCV, 2011. 2

[17] B. Horn. The curve of least energy. ACM Trans. Math. Soft.,
9(4):441–460, 1983. 6

[18] I. Jermyn and H. Ishikawa. Globally optimal regions and boundaries
as minimum ratio weight cycles. PAMI, 23(10):1075–1088, 2001. 2

[19] B. B. Kimia, I. Frankel, and A.-M. Popescu. Euler spiral for shape
completion. IJCV, 54(1-3):159–182, 2003. 6

[20] V. A. Kovalevsky. Finite topology as applied to image analysis. Com-
puter Vision, Graphics, Image Processing, 46(2):141–161, 1989. 2

[21] A. Levinshtein, C. Sminchisescu, and S. Dickinson. Optimal contour
closure by superpixel grouping. In ECCV, 2010. 4, 7

[22] A. Levinshtein, A. Stere, K. Kutulakos, D. Fleet, S. Dickinson, and
K. Siddiqi. Turbopixels: Fast superpixels using geometric flows.
PAMI, 31(12):2290–2297, 2009. 5, 7

[23] C. Lu, L. Latecki, N. Adluru, X. Yang, and H. Ling. Shape guided
contour grouping with particle filters. In ICCV, 2009. 2

[24] J. Mairal, M. Leordeanu, F. Bach, M. Hebert, et al. Discriminative
sparse image models for class-specific edge detection and image in-
terpretation. In ECCV, 2008. 2

[25] M. Maire, P. Arbeláez, C. Fowlkes, and J. Malik. Using contours to
detect and localize junctions in natural images. In CVPR, 2008. 1

[26] S. Maji, N. Vishnoi, and J. Malik. Biased normalized cuts. In CVPR,
2011. 1

[27] D. R. Martin, C. Fowlkes, and J. Malik. Learning to detect natu-
ral image boundaries using local brightness, color, and texture cues.
PAMI, 26(5):530–549, 2004. 2

[28] S. Nowozin and C. Lampert. Global interactions in random field
models: A potential function ensuring connectedness. SIAM J. Imag.
Sci., 3(4):1048–1074, 2010. 4

[29] P. Parent and S. Zucker. Trace inference, curvature consistency, and
curve detection. PAMI, 11(8):823–839, 1989. 1

[30] X. Ren, C. Fowlkes, and J. Malik. Scale-invariant contour comple-
tion using conditional random fields. In ICCV, 2005. 2

[31] T. Schoenemann and D. Cremers. Introducing curvature into glob-
ally optimal image segmentation: Minimum ratio cycles on product
graphs. In ICCV, 2007. 2

[32] J. Shotton, A. Blake, and R. Cipolla. Contour-based learning for
object detection. In ICCV, 2005. 1

[33] M. Singh and L. C. Lau. Approximating minimum bounded degree
spanning trees to within one of optimal. In STOC, 2007. 4, 5

[34] J. S. Stahl and S. Wang. Edge grouping combining boundary and
region information. TIP, 16(10):2590–2606, 2007. 7, 9

[35] J. S. Stahl and S. Wang. Globally optimal grouping for symmetric
closed boundaries by combining boundary and region information.
PAMI, 30(3):395–411, 2008. 2

[36] Z. Tu, X. Chen, A. Yuille, and S. Zhu. Image parsing: Unifying seg-
mentation, detection, and recognition. IJCV, 63(2):113–140, 2005.
1

[37] S. Ullman and A. Shaashua. Structural saliency: The detection of
globally salient structures using a locally connected network. Tech-
nical report, MIT, 1988. 1

[38] S. Vicente, V. Kolmogorov, and C. Rother. Graph cut based image
segmentation with connectivity priors. In CVPR, 2008. 4



[39] D. J. Walton and D. S. Meek. G1 interpolation with a single cornu
spiral segment. Journal of Computational and Applied Mathematics,
223(1):86–96, 2009. 6

[40] S. Wang, T. Kubota, J. M. Siskind, and J. Wang. Salient closed
boundary extraction with ratio contour. PAMI, 27(4):546–561, 2005.
2

[41] Y. Zeng, D. Samaras, W. Chen, et al. Topology cuts: A novel
min-cut/max-flow algorithm for topology preserving segmentation.
CVIU, 112:81–90, 2008. 4



Original Image Ground Truth BJ SP RW GSCseq EulerSeg EulerSeg-0

Figure 12: Sample results from ISEG. Red strokes are background seeds while green strokes are foreground seeds. Strokes for column 3-7 are the default
setting in the robot engine [15] with brush radius equal to 8 pixels, while strokes feed in EulerSeg-0 are simple point seeds, whose radius is one pixel. We
marked seeds for EulerSeg-0 as crosses just for noticeability. Best viewed in color.


