Database Backed Web Servers: The “E-Shoe Store” Implementation
Mamadou Diallo, David Schneider

{mdiallo, das}@cs.wisc.edu

Abstract

In this project we created a fictitious online shoe store called “E-Shoe Store” using a database-backed web server. Our focus was on building all of the different elements in such a manner that they work cohesively and seamlessly with one another while doing the job of updating and displaying the database information.

Throughout our implementation, we maintained the notion that this project will be used as a CS-564 project. In this respect, it is our idea that our project would have certain implementation details removed (e.g., generation of SQL queries) and these implementation details would form the basis of the CS-564 project. Additionally, this document could be used to provide background information about database-backed web pages to students.
1 Introduction

Within the past decade, the growth of the Database industry and the Internet has revolutionized the way many people interact with information. This rapid proliferation and the cost effectiveness of new key technologies are creating large opportunities for developing large-scale distributed applications. For example, eCommerce, the leading Web-based application, is projected to exceed $1 trillion over the next several years. Newer companies, such as Amazon.com, as well as traditional ones such as Wal-Mart, all use the Internet to service customers, clients, and business partners. Some of these businesses pay consulting companies (e.g., Accenture) thousands of dollars to do the work of creating dynamic and marketable web pages to attract customers and maintain business-to-business relations. These companies all use an architecture in which the web pages are backed by database servers such as Oracle or DB2 to ensure that their content is up-to-date and to allow the efficient exchange of merchandise and/or information.

This architecture not only encapsulates how the data is stored, but also allows the data representation to be changed easily without affecting clients, queries to be optimized, and hosting thousands of connection requests at the same time. The highest link in the architecture is an HTTP or XML enabled Web browser running on the client side. Between the client and the database residing on a server, another component loosely referred to as the “Web server” serves the client's requests (translated to SQL queries if necessary) by passing them to the database and returning the formatted result appropriately to the client (see figure below). In addition, a CGI engine may be added to support legacy databases, or Java Servlets or CORBA brokers in more recent databases. Apache is such a Web server. These days, connections are generally made via TCP sockets even if both the client and the server are running on the same computer.

2 Background Information

Most of the web pages on the Internet are "static" pages. They are merely HTML or text files, which are downloaded to a browser and displayed immediately. However, many web pages are not static pages at all—they are actually programs which produce HTML as their output, and then send that HTML to a browser.

Architecture of Static Web Pages and Dynamically Generated Web Pages
[image: image1.png]

[image: image2.png]

In order to create web pages dynamically, web servers need to execute a program through some server-side scripting mechanism. The script typically connects to a DBMS, performs a query (or a number of queries), retrieves the results, and formats the results into HTML, which is returned to the web server. A web page, either static or dynamically generated, can retrieve information from the user through HTML forms and pass the information to the web server when requesting a new page. This information is used as parameters for input to the server-side program. The server-side script can either generate the HTML itself or invoke another application to generate the HTML. In either case, a connection to a database can be made in order to obtain or modify information through queries.

One of the most basic ways to implement database-backed web pages is through the Common Gateway Interface (CGI). In fact, CGI was the first approach used for server side scripting, and is still used today. CGI is a simple protocol that specifies the way in which user-defined scripts that run at the web server can communicate with users’ browsers. Scripts that follow the CGI protocol are called CGI scripts. The CGI protocol dictates how form data should be passed from the web server to the script. Specifically, the data passed from an HTML form must be transformed into one long string of name-value pairs as in name1=value1&name2=value2&… When a CGI script is activated, it must parse this long string into name-value pairs. The CGI protocol also mandates that the standard output of the script is forwarded to the user. This means that the CGI script is expected to print the necessary HTTP headers first, followed by the results page in HTML.

The use of CGI, however, has declined considerably due to its significant performance shortcomings—each invocation of the CGI program creates a new CGI process to run the program; when millions of users are attempting to access a web site generated by a CGI program, the number of processes that are created can become a bottleneck for performance. Because of this limitation, many alternatives have been developed such as Microsoft’s Active Server Pages, Sun Microsystem’s JavaServer Pages (using Java Servelets), and PHP (Hypertext Preprocessor).

In addition to being familiar with HTML and CGI (or one of its alternatives), the creation of a database-base backed web page requires that the programmer be knowledgeable about a variety of other things. A database is certainly needed, and therefore knowing how to query the database using SQL (or some other query language) is mandatory. Additionally, web pages can be made to be more sophisticated with the use of JavaScript, applets, etc. If one were using their own web server, they would have to know all about its configurations and where to install the web server such that others can make requests of it. Although we had to learn much of this information for this project, the details are left out of this paper. Rather, we are including the links to websites that hold much information on these topics in the References section.

3 Implementation

3.1 The Different Components

We used Apache HTTP Server Version 2.0 installed on a Dell Optiplex GX1 P6400 computer running Windows NT 4.0. CGI was used as the server-side scripting mechanism, and the CGI programs were written in Perl. Our CGI programs were very small scripts that merely took in the parameters from a web page’s HTML forms and passed them to Java applications, which created the HTML output. The Java applications used the JDBC API to access data within our database. We used MySQL as our underlying database primarily because of its ease of use (its free and can be easily downloaded and installed), and because it is a relational database to which we can pass SQL queries. Here is the architectural design of our implementation.

[image: image3.png]

3.2 The Code

3.2.1 Home Page

The “Home Page” is the main page of the E-Shoe Store. Upon accessing http://tant14.cs.wisc.edu, the eShoeScript.pl script is called with no arguments and this page is generated. The Apache administrator must log onto tant14 and kick-start the Apache server in order to have access to the E-Shoe Store website. The E-Shoe Store’s home page is divided into three areas, a static area at the top (our banner) and two dynamic areas below the banner, one at the left and the other at the right. The left area allows searches to be performed and its field values are built dynamically by reading them in from the database. The right area displays the results of searches and allows selections to be made and added to the shopping cart. This area is also generated dynamically based on the search criteria (see figure below).

[image: image4.png]

3.2.2 Cart Page

The Cart page performs various functions such as adding items to the cart, deleting items from it, or just viewing its content. It is called from the main page after a customer has performed a shoe search and wishes to add the desired shoe to his cart. The cart.pl script handles passing the desired data to the underlying Java program. This includes the selected shoe’s complete information when adding to the cart, no information when viewing the cart, and the selected shoe’s name when deleting from the cart. The Cart.java program writes the items being added or removed from the cart to a local text file named ‘cart’. These items will only be updated in the tables at checkout time, though the information contained therein needs to be kept accessible to the programs.

[image: image5.png]

Check-Out Page

Our Check-Out page performs checking out the customer from the E-Shoe Store. Upon clicking the Proceed to checkout button on the Cart page, the CheckOut.java program is called via the check_out.pl script without any arguments. The program then reads in the content of the cart and displays it to the customer. Underneath these items, a customer information form is generated. This form prompts for first name, last name, address, etc., all of which will be passed to the upd_db.pl script. This script calls UpdateDB.java to update the customer table in the database.

The actual updating of tables happens when the Purchase button on the Check-Out Page is pressed. The program then updates the quantities of the purchased products in the size_qty table. Upon completion of the checkout process, the cart file is emptied and a thank you message displayed.

[image: image6.png]

3.2.3 Thank you page

[image: image7.png]

4 Creating a CS-564 Project

We certainly had to learn a lot in order to carry out the project successfully. At the onset of the project, Java was the only tool with which we had experience. We were compelled to learn everything else. Since this project was undertaken with the hope that it will serve as an assignment in CS-564, we believe that many of the obstacles that we had to go through should be spared from the students. Here are what we propose as potential projects.

Since CS-564 is a database course, we believe that only those things that relate to databases in this project should be assigned to the students. These elements include:

· Using the JDBC API within Java programs to access the back-end database

· Using the mmsql driver for Java (or any other driver)

· Writing SQL queries and passing them to the back-end database

· Building the inv, customer, and size_qty tables in MySQL following relational algebra rules such as normal forms and key constraints

We do not recommend adding dynamic HTML generation to the assignment. This may turn out to be too time consuming and does not focus on databases. Finally, we suggest with reservation that the students perhaps learn how to use the CGI interface to pass data between the HTTP server and the back-end database. This could be easily achieved via Perl scripts.

5 Conclusion

We have learned quite a few points throughout the course of this project. We highlight these points here as a conclusion to spare other implementors the agony of going through them.

First, one must observe that Apache is not easy to install and configure properly and that this task should definitely not be assigned to the students. MySQL for NT was straightforward to install and easy to use once installed. It accepts standard SQL statements and we believe that the students should have no problem using it or learning how to use it. In fact, knowledge of SQL is not essential to the project, as most of the project’s queries dealt with retrieving data or updating tables. This represents only a small portion of the SQL query language.

We also used Perl scripts to handle passing data (more specifically parameters) between the Apache server and our Java programs. Here again we believe that very little knowledge of scripting is required to achieve this. Other CGI scripting languages (Tcl, JavaScript, and so on) can also be used with the same results.

Third, we had to make extensive use of HTML in building our dynamic web pages. This should certainly not be part of a student project, especially if no prior HTML knowledge is given. Doing it otherwise may prove to be overly time consuming.

We did manage to successfully install the server on an isolated NT machine, to which we had administrative access. This will cause problems for the students. CSL does not grant undergraduate students administrative access to any machines. In addition, it does not allow installing and running web servers from university computers for obvious security reasons. We ourselves only learned of this fact two weeks before completing the project. The problem could be solved by requesting CSL to install Apache and MySQL onto a dedicated machine or perhaps on AFS, and allowing the students to access the machine or the AFS location. Since the CSL already maintains the department’s own Apache server, it is hoped that configuring the eventual CS-564 server should be a lot easier for them.

Finally, we suggest perhaps moving away from this more traditional CGI interfacing to more modern approaches such as Java Servlets. Companies in industry are strongly moving towards this direction, using Servlets, Active Server Pages, or CORBA Brokers. These new architectures enhance performance by avoiding the spawn of a process for every CGI request. In contrast, only one process is spawned and multithreading is used within this process to perform multiplexing. In addition, programming in these paradigms is made a lot easier and could lead to writing fewer program modules.

References

Apache

http://httpd.apache.org/
CGI & Perl

http://hoohoo.ncsa.uiuc.edu/cgi/overview.html
http://www.htmlgoodies.com/primers/perl/
http://www.cc.ukans.edu/~acs/docs/other/forms-intro.shtml
HTML & JavaScript

http://www.htmlgoodies.com/primers/basics.html
http://www.htmlgoodies.com/primers/jsp/
http://www.htmlprimer.com/
http://www.webcom.com/html/tutor/forms/
http://www.2kweb.net/html-tutorial/
JDBC

http://java.sun.com/j2se/1.3/docs/guide/jdbc/index.html
MySQL

http://www.mysql.com/documentation/index.html
Figure 1: Static Web Pages

HTML page

Web-Browser

HTML page

Page request via HTTP

Web-Server

Server retrieves page on disk

Disk

HTML page

HTML page

Database

DB

Connection

(e.g., ODBC)

Program:

Server-side script

Page request via HTTP

Web-Server

Web-Browser

Server runs program

Figure 2: Dynamically Generated Web Pages

HTML page

HTML page

�

Database

Application using

JDBC

Server-Side Script:

�

Page request via HTTP

Web Server

�

Server runs program

Figure 3: Implementation Details of E-Shoe Store

[image: image8.png]Efhoe Storel 3

nd My Shoesl
Type[Widw]
Style [Pasketoall |7

Available Shoes

Matches for:
Type: Kid's
Brand [l 3 Style: Basketball
Brand: Fila
Search | Rest
NAME PRICE QTY
° 1183 $69.99 T
@ 1184 $49.99 3
55 5
dd seleationtoOad | OlentSelection

ViewCat
Sleahl

[image: image9.png]4,

Efhoe Store] S

Shopping Cart

Decrease QTY by 1 QOTY | NAME | BRAND | TYPE | STYLE | PRICE | SIZE
sl 6 1105 Fila Men's | Basketball | $159.99 7.0
c 3 1183 Fila Kid's | Basketball | 69.99 7.0
(ot sTopEg)]

(TR

[image: image10.png]Efhoe ftore] 2o

YOUR ORDER
NAME BRAND TYPE STYIE PRICE SIZE
1105 Fila Men's Basketball $15099 70
1183 Fila Kids Basketball 69.99 70

First Name: [David
Last Name: [Dewitt

Street Address: [1210 West Dayton Strest

City: [Madison State: [WI| Zip: [53706

Card Type: [Mastercard -

Card Number: [5895898695407630

Gearorm

Return to Main Page

[image: image11.png]S-bShoe ftorel 3

Transaction completed successfully.

Thanlss for shopping with E-ShoeStore.

