
E-Mobile: A heterogeneous agent-based, remote off-loading framework for efficient energy 
management of mobile devices. 

 
 

Rohit Koul and Raja Bala 
Department of Computer Sciences, 

University of Wisconsin Madison, Madison, WI, USA 
{rkoul,bala}@wisc.edu 

 
 
ABSTRACT 
Web applications are becoming increasingly 
popular on mobile/wireless devices. As more 
desktop applications that are inherently 
computational intensive and resource-demanding 
are being ported to the mobile platforms, the energy 
consumption of the devices is shooting up,  thereby 
decreasing the battery life. An alternate approach is 
to off-load the resource intensive computations to 
remote server(s) and simply work off the results 
returned. However such solutions currently existing 
in the market do not handle multi-media 
applications like video-streaming very well often 
causing sub-optimal user experience. This paper 
proposes a framework for university and office 
settings that works transparently with the existing 
mobile clients and attempts to provide an energy 
efficient and fairly rich user experience by 
offloading computationally intensive tasks to 
desktops in their vicinity. 
 
General Terms Design, Energy, Architecture 
 
Keywords Thin client computing, pervasive web, 
mobile devices, resource-constrained devices, off-
load, remote display, video 
 
1. INTRODUCTION 
The past several years have witnessed a significant 
increase in the usage of mobile platforms for 
connectivity and entertainment on the move. The 
growth of social media has further fueled this 
revolution with multimedia capabilities being the 
norm now-a-days. Users are increasingly using their 
mobile devices for browsing, gaming and rendering 
multi-media applications. However, due to form 
factor constraints, required portability and battery 
lifetime, mobile devices have limited resources.  
Despite the rapid development of smaller and more 
efficient hardware, software requirements on CPU, 
memory and disk space cause significant hardware 
needs and battery drains. Numerous technologies 

have been proposed to prolong the battery life on 
mobile devices notably of which include dimming 
the display when not in use, optimizing the I/O 
devices and even slowing down the CPU. While all 
these technologies focus on the hardware part, 
computation offloading method which uses the 
wireless communication capability of mobile 
devices is a software method to deal with the 
aforementioned problem.  
The idea presented in this proposal is to extend the 
mature thin client technology ([1],[2],[6],[7]) for 
use on not-so-thin mobile devices, where the heavy 
computations are offloaded to a distant server(s) 
over a wireless network and the applications need 
little or no alteration. This way the computation cost 
of mobile devices decreases and thereby the energy 
consumption. Our primary goal is to use the idle 
computation power of the common desktop PCs 
instead of dedicated servers. We have also used 
OpenFlow [14] which enables researchers to run 
experimental protocols in a network, to design and 
evaluate our architecture.  
Our focus is primarily on the multimedia 
technologies like live video streaming, viewing 
PDFs, maps and multimedia gaming. 
The paper is organized as follows: 
The underlying background that has influenced our 
design is presented in Section 2 whereas Section 3 
presents the system architecture of our proposal. In 
Section 4, we describe where we are with respect to 
the implementation of our ideas. Section 5 describes 
work that we intend to do in future whereas Section 
6 enumerates related hardware approaches for 
energy optimization in mobile devices. 
 
 
2. BACKGROUND 
This section focuses initially on some of the 
offloading techniques for mobile devices that have 
influenced the design of our framework. We then 
present a short discussion on why offloading video 
is a very important piece in our architecture.  
 



2.1 CURRENT LITERATURE  
We have come across some stark similarities and 
fundamental differences in various approaches that 
have been proposed in the past. 
Almost all the application level offloading 
frameworks make use of remote display updates 
from the server in response to user input on the 
mobile client ([1],[2],[3],[4] and [6]). Most remote 
display systems  process the user input (sent from 
the client side), perform the display processing, 
encode the pixel data in the framebuffer and send it 
back to the client. Fig(1) represents this scheme.  
                                   

                                    Fig (1)             
THIN-C [1] innovates in this space and provides 
much better quality for multimedia applications 
when compared to other remote display systems like 
VNC (Virtual Network Computing), ICA 
(Independent Computing Architecture by Citrix) 
and the X-Window System. It accomplishes this by 
using a simple virtual display driver that intercepts 
drawing commands, packetizes and then sends them 
over the network. Fig(2) shows the resulting 
scheme. 

            Fig(2) 
 
But THIN-C and its subsequent work ([1],[2] and 
[6]) assume that we have thin 'dumb' clients, which 
rely on remote servers for their applications as well. 
This, however, is not true in the present-day mobile 

devices market, wherein every device comes with a 
bunch of softwares for multimedia playback, 
internet browsing, etc. Clearly, current mobile 
devices, be it laptops, PDAs or mobile phones, 
aren't thin clients. 
 
[3] takes this into account and suggests tweaking 
the Firefox mobile browser to offload multimedia, 
PDF and Flash content requests to a remote server. 
They accomplish this by using a plug-in on both the 
client and remote server side. This removes any 
video format based plug-in dependency on the client 
side, which is very useful for mobile browsers in 
particular. Essentially, the server performs the 
energy-intensive video, PDF or flash decoding 
computation and sends remote display updates to 
the client. The client has thus been relieved of a lot 
of the work and only needs to process these display 
updates, which are mapped to the rectangular space 
in the browser (done by the plug-in).  
The authors present impressive statistics in favor of 
offloading PDF and Flash computation. When Flash 
animation (similar for PDF) is played locally, the 
browser consumes around 40% client CPU 
resources. When the remote plug-in is used, the 
average client CPU utilization is reduced to 15.4% 
in LAN and 4.5% in wireless (802.11g/b) settings. 
The CPU utilization after offloading is mainly a 
result of the amount of display update received and 
parsed. In a LAN setting, more display updates are 
sent to the client and hence the higher utilization 
and quality. When a video file is played locally, it 
consumes very less CPU as mobile devices have 
special chips for video encoding/decoding, thus not 
requiring the CPU to perform these operations. 
When the remote plug-in is used for video playback, 
20.4% CPU utilization is seen. The quality of 
dynamic media (Flash and video) is measured by 
the amount of display update received and at values 
of 41MB for Flash and 102MB for video, it doesn't 
seem a scalable solution.  
We argue that CPU utilization is not a clear 
indicator of energy used as local video processing in 
mobile devices uses specialized DSPs or SoCs 
which are optimized for power, speed and die area. 
Thus, there is a need for energy measurements of 
local video playback versus that of processing the 
numerous display updates to decide if this is a 
viable method. The communication costs must also 
be considered.  
  
[5] focuses in offloading certain functions of the 
encoding pipeline for H.264 compressed videos. 



They take into account the energy cost if encoded 
locally and the communication costs if performed 
remotely. Their findings show that there is a huge 
incentive in actually sending the un-encoded data 
(much bigger size adds in transmission side costs) 
from the client to a server to perform the encoding, 
and receiving the encoded data back (receiver side 
costs). The figures seem exaggerated though, as it 
claims savings of at least 65%. Note that there isn't 
any need for remote display updates here, as we 
require the complete encoded data in the end. 
 
[9] studies the popular video compression codecs 
for playback in mobile devices from an energy 
perspective. The authors find that H.263+ and DivX 
consume the least energy when compared to 
MPEG4 and WMV. They also analyze the effects of 
bit rate, frame rate and frame size (resolution) while 
encoding videos. The authors find that for better 
picture quality, encoding videos with a higher bit 
rate results in just a little increase in energy 
consumption. Increasing the resolution in need of 
quality has the highest increase in energy 
consumed, while frame rate falls in between.  
This study allows us to think in the direction of 
optimizing the video content for a particular energy 
profile of the mobile device before sending it and 
thus adds a new dimension to the tasks that can be 
performed remotely. 
 
[7] suggests that there are essentially two basic 
approaches to handle multimedia data in resource-
constrained devices: proxy-based or end-to-end 
solution. The architecture we propose is a hybrid of 
both.  
 
2.2 The focus on VIDEO traffic 
Video presents a big challenge in offloading, unlike 
static media like PDF. Studies [16] show that 
mobile data traffic will double every year through 
2013, with around 64% of the world's mobile data 
traffic slated to be video by 2013. Thus, even a 
small energy-level optimization in either hardware 
or software will have a big effect. The need for 
power efficient and fast video processing which 
could not be met in the traditional ARM (Advanced 
RISC Machine) processors in mobile phones led to 
specialized SoC (Systems on Chip) and DSPs 
(Digital Signal Processors) being used for video 
encoding and decoding.  They exploit the inherent 
parallelism of video, which at a low level is nothing 
but a bunch of frames. Existing compression 
techniques save tremendous amounts of bandwidth 

by exploiting the innate redundancy in video, with 
ratios approaching 200:1.  
Also, video encoding is more complex than 
decoding and includes most of the decoder. Hence, 
offloading the encoding computation will have 
higher energy benefits.  
 
Any hardware improvement in the energy 
consumption in video processing assumes that the 
video is being played locally. Software offloading 
looks at this problem from the opposite perspective. 
Regardless of hardware advancements, we attempt 
to offload this computation to a resource that is not 
energy constrained. The tradeoff in energy spent in 
communication for offloading versus computation 
for local playback hasn't been comprehensively 
studied to the best of our knowledge.  
 
Statistics show that approximately 75% of online 
video is viewed using Adobe's Flash technology 
[13]. In the context of the web, Flash programs are 
active objects that are embedded within web pages. 
An IDE compiles a Flash program into a .swf 
formatted file which contains the media objects, 
user interface elements and the program bytecode. A 
Flash virtual machine, generally the  Flash player 
plugin in web browsers,  parses and executes the 
.swf file.  
[4] uses a proxy to splice active content [Flash] out 
of web pages and replace it with an AJAX-based 
remote display component. Some of the latest 
mobile devices (phones) still do not have full 
support for Flash, like Windows Mobile which only 
supports FlashLite. The iPhone doesn't have any 
native Flash support yet. [4] allows such devices to 
watch Flash content as it is delivered through a 
proxy and also prevents exploitation of security 
flaws that have plagued Flash. 
 
[12] suggests that for relatively small picture sizes, 
such as QCIF (176×144) videos, video encoding 
consumes about 2/3 of the total power for video 
communication over Wireless LAN. Hence, there is 
a high probability that communication costs 
(energy) incurred for offloading will not exceed the 
local computational cost. 
Thus, we hope that the remote display update 
mechanism for video decoding (of downstream 
data) is a viable option for any kind of video, be it 
hardware accelerated or not. 
 
 
 



3. ARCHITECTURE 
    In Figure 3, we present a high level, conceptual 
illustration of our proposed E-Mobile architecture. 
    Our architecture, at its core, is an agent-based 
model and uses the computation power of common 
desktop PCs (as opposed to a dedicated set of 
machines) for auto-offloading the tasks. We argue 
that an architecture that takes into account the 
energy state (battery level) of a mobile device and 
adapts its responses to it, coupled with various 
optimizations to the already existing and proven 
mechanisms, would give a higher throughput per 
joule of energy spent by the mobile device. Drawing 
from our literature survey and understanding of the 
display systems in mobile devices, we also argue 
that our model is extremely useful in the case of 
video streaming and maps. 
The setup essentially consists of the following 
components:- 
 
Client:   The mobile client (such as a laptop/cell 
phone/PDA), a device that has 802.11a/b/n/g 
capabilities. 
 
Server:  The physical machine that hosts the 
content being requested by the mobile device (hence 
forth also referred as simply ‘client’). 
 
Desktop pool: A set of generic machines in a LAN 
(say a university or a giant corporate office setup) 
which are used by other users on a daily basis.  As 
per the statistics we got from a large university’s 
(University of Wisconsin Madison) distributed, high 
performance computing team, we argue that this 
pool has sufficiently large amount of idle resources 
(CPU power, disk space and memory) at any given 
time, which could be utilized by our architecture for 
its computation tasks without any substantial 
perceivable performance impacts on the users 
working on these machines. 
 
OpenFlow: Since OpenFlow is based on an 
Ethernet switch, with an internal flow-table, and a 
standardized interface to add and remove flow 
entries, we envision OpenFlow to be a key 
component of our architecture, especially for 
selecting the best machine amongst the desktop pool 
and during migration of the computation between 
machines. We, hence are of the opinion that adding 
OpenFlow as a feature to existing switches and 
routers, or using an OpenFlow enabled switch is 
essential for better energy management of the 
mobile clients We describe the OpenFlow usage in 

detail in section 3.1 
 
NOX:  NOX[15] is an open-source controller for 
OpenFlow. It provides a simplified platform for 
writing network control software in C++ or Python. 
The OpenFlow enabled switches are logically 
connected to NOX enabling it to establish flows in 
the switches. 

 
Fig (3):  High level E-Mobile architecture. 

The openflow controller facilitates selection of an 
appropriate desktop for offloading the computation. 
 
Host Agents: A Host Agent is essentially a multi-
threaded application that is run on every 
participating machine in the desktop pool. Host 
Agents act as a light weight proxy and are 
responsible for performing the computations on 
behalf of the mobile client. The interactions of Host 
Agents with other components in our architecture is 
described in sections 3.1, 3.3 and 3.4 
 
Client Agents: A Client Agent is an entity that runs 
on the mobile client and communicates with the 
host agents. It could either be implemented in the 
form of a web-browser plug-in or a packet-
intercepting application altogether. The role of 
client agents is described in detail in section 3.3 
 
Agent Controller:  Agent Controller is an 
application running on the same physical machine 
as the OpenFlow controller and communicates with 
its modules using IPC mechanisms. Agent 
Controller is responsible for fetching host resource 
statistics from the host agents and passing it to the 
controller, thereby facilitating the best proxy 



selection. Agent Controller also helps in content 
migration and flow expiry. Section 3.1 outlines 
these functions in detail. 
 
Migration Controller: Migration Controller is a 
NOX module running alongside the controller. It 
used IPC mechanisms to talk to the Agent 
Controller. It also facilitates the content migration 
between hosts in case of network/host overloads, 
latency and proximity changes and system crashes. 
We describe the functionalities is a little more detail 
in section 3.4 
 
3.1 Agent Controller and Host Agents’ 
Interactions. 
Agent Controller can interact with the Host Agents 
to fetch the host statistics (CPU load, memory 
availability, disk space). Agent Controller uses TCP 
sockets to communicate with the Agents and fetch 
the host statistics. 
In our model, all hosts were running Linux and 
hence we used system command like top, free and 
uptime to gather the host statistics periodically. 
These commands will work for other *nix based 
systems. In a Windows based environment one 
could imagine similar kinds of command line tools 
to be used. Also, a simple C program using the 
glibtop library could essentially be used in such 
systems. 
 
 
 
 
 
 
 
 
 
 
 

Fig (4) Agent Controller and Host Agent 
Interactions. 

 
 
One question that arises is that as to how does the 
Agent Controller know where the Host Agents are? 
In our model we pre-configured the Agent 
Controller with the addresses of the Host Agents 
since there could be desktops in the pool choosing 
not to run an agent. However, one important thing 
to note here is that if it is imperative that any 
desktop in the pool, runs a Host Agent and is 
essentially a potential candidate for off-loading 

computation, one need not pre-configure Agent 
Controller with the addresses of the Host Agents. 
OpenFlow framework allows the controller to get to 
know when a host joined or left the network. Hence 
one could leverage the controller functionality to get 
these addresses and communicate with the Host 
Agents. 
One important design decision that we faced was 
the choice of the frequency of these host statistics 
updates. We initially started with Host Agents 
sending these statistics at a pre-defined frequency 
(say 10s) to the Agent Controller. However this 
quickly flooded the network especially in the wake 
of a large number of such hosts. Hence we 
discarded this approach. Another approach that 
logically followed was to let the Agent Controller 
poll these host agents at a fixed interval. This 
allowed the flexibility of pick-and-choose amongst 
the agents depending on the already existing load. 
However this approach suffered from the potential 
problem of having to work off stale data. There 
could be a case wherein while examining the best 
possible desktop for offloading content, the 
controller could potentially use statistics from the 
last gathered update – which could have 
significantly changed since then for a particular host 
and hence could cause the establishment of sub-
optimal routes to overly loaded servers. In the end, 
we decided to poll for the statistics from Agent 
Controller, but only when a new flow is to be 
established. We made provisions for establishing a 
flow with an infinite expiry time (i.e a dedicated 
route) until the host agent itself explicitly asks for 
expiring the route to it. The Host agent could do this 
if it finds the host getting severely loaded. This 
reduced the number of update packets in the 
network and gave more control to the Host Agents.  
  Apart from the normal _stat packets that are sent 
by the Host Agents to the Agent Controller (in 
response to a STAT command), we have also 
defined three  another types of commands involving 
Host Agents 1) PRUNE with appropriate parameters 
is sent to Agent Controller when the Host Agent 
wants a flow to be expired. 2) MIGRATE is sent 
from the Agent Controller to a Host Controller 
asking it to offload its contents to a new host during 
migration (in case of using a dictionary based 
approach)  3) COPY is sent from one Host Agent to 
another when it detects a migration scenario. 
Migration is discussed in detail in section 3.4 
 
 
 

Host Agent  
 
(Proxy) 
 

    Desktop        OS             NOX 

Migration 
Controller 
 

Agent 
Controller 
 

System 
calls 

   
          Socket calls                
              
               
              TCP/IP  

   
                      IPC                
              



3.2 Interactions between Agent Controller 
and OpenFlow Controller (NOX). 
When a switch (say S0) gets a packet from a mobile 
client (say C0), it checks whether it has a route for 
the packets coming from the interface to which the 
client is connected (say I0). In case the switch has 
no such entry in its forwarding table, it asks the 
OpenFlow controller (NOX). NOX sends a signal to 
the Agent Controller to fetch host level statistics 
from the Host Agents it knows of. NOX 
simultaneously uses its switchstats module to gather 
the switch statistics connecting S0 to all other 
switches to which the desktop PCs are connected to. 
Using these pieces of information NOX is able to 
put together a selection profile for each of the 
desktop PCs running host agents (i.e based on the 
network, host loads and proximity of the desktop 
PCs). It then selects a desktop PC with the best 
selection profile (least load) and installs a flow with 
an infinite expiry time in S0 to route all incoming 
packets from C0 on I0 to the Interface to which the 
next hop for the selected machine is connected.  The 
flows are established in the intermediately switches 
as well. So how long do the packets from the client 
C0 go to the chosen machine? Once an end-to-end 
flow is established, all packets from C0 are routed 
to the selected machine, thereby establishing a 
dedicated route (until an explicit trigger is generated 
to severe the route as explained in the previous 
section.) 
 
3.3 Interactions between Client Agent and 
Host Agent. 
In the model that we propose, we are of the opinion 
that there needs to be an agent at the client side as 
well that could let the framework know its energy 
constraints. We argue, If the mobile device had a 
way of telling the offloading desktop "My battery is 
low, I need you to format the videos/images I ask 
for in a way best suited for my energy profile", it 
could then get energy-aware data responses. We 
also hold that or model could use the idea of energy 
profiling along with optimized versions of some 
other techniques to get a better performance. 
    One such technique is the use of packet caches 
([10],[11]) at the Host agent.  [11] has already 
established that by pushing redundancy elimination 
capacity to the end hosts, one could obtain most of 
the middleboxs’ (host agents’ in our case) 
bandwidth savings. We also argue that one could 
use the same technique for reducing the inbound 
video streaming traffic at the mobile client end. This 
would require the Host Agents to implement a 

finger-printing dictionary and push it to the mobile 
client to which it serves. When a new video stream 
arrives, the host agent just needs to send the 
fingerprint downstream and the client agent 
retrieves the actual payload from its local cache. 
This will lower the inbound traffic and hence save 
considerable energy due to lesser usage of the 
wireless receiver power. We also hold that if the 
payload is stored already in a decoded format, the 
client could save a significant amount of energy 
saved during the decoding phase by simply re-using 
the streams from the payload store. 
Our model is highly adaptive. We, therefore reason 
that by default the clients do not have a packet 
cache turned on instead work via remote-display 
mechanism. It is the Host Agents that make energy 
aware decisions on the basis of the client. 
We also introduce the concept of tolerance at the 
client level. The rationale is that one can trade data 
quality against resource consumption. Tolerance 
limits define the degree to which the client is ready 
to accept the degradation in data. E.g An iPhone 
streaming video application could configure a 
tolerance limit of 20% essentially meaning that the 
Host Agent can serve content with 20% decrease in 
resolution. The tolerance limits can be configured 
per application level.  
The client Agent also lets the Host Agent know its 
current battery levels at specific intervals. There are 
APIs available to get this data. The Host Agent uses 
this information about the current battery level of a 
client and the tolerance limits to make energy aware 
decisions for the client. E.g Host Agent may decide 
to send an image with lossy compression, or reduce 
the size of an image/video depending on these 
parameters.   
One can argue that obtaining the battery levels for 
certain closed-source mobile platforms is not 
possible or the energy used in these calls needs to 
be taken into account. We argue that these calls are 
rather infrequent and are not computation intensive. 
Also, if the need may arise, we could leverage the 
power of OpenFlow to predict battery changes. 
e.g assuming the Client Agent just sends current 
battery level only when it is disconnected from a 
charging source and then sends infrequent half-
hourly / hourly updates, we argue that OpenFlow 
allows us to monitor the network traffic.Depending 
on the incoming and the outgoing traffic to the 
client and standard battery discharge models, we 
can predict with significant accuracy the battery 
level of a client at a given point in time and make 
decisions accordingly. However, for the sake of 



simplicity we may ignore this prediction model for 
now and work off the values sent by the Client 
Agent. 
The Client Agent could be implemented as a 
separate application altogether or a browser plug-in 
(in case of images) For different video players and 
formats, we envision that the Agent essentially 
comprises of a series of modules some of which are 
specific to a player and video format in question. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig (5)  Client Agent and Host Agent Interactions. 
Host Agent acts as a light weight proxy 
 
3.4 Interactions between Migration 
Controller and Host Agents  
The Migration Controller mechanism was first 
highlighted in a SIGCOMM OpenFlow dem [18]. 
In this mechanism, the VM client/ server bindings 
are generated using a wsdl. Zolera SOAP 
Infrastructure (ZSI) modules are used in 
conjunction with the NOX controller to update the 
VM bindings to a host when the VM is to be 
migrated. The demo makes use of VMWare's VM 
migration features. The VMs are hosted on ESX 
server machines which are under the control of a 
Virtual Center server. The MobileVMs code 
communicates with Virtual Center, when 
MobileVMs wants a VM to move it sends a move 
request to Virtual Center via a SOAP call. 
VMWare's mechanism involves a bulk transfer of 
the VM, followed by a series of delta to reflect the 
state changes that have occurred since the bulk 
transfer began, finishing in a switchover between 
the two instances. We argue that a similar kind of 
infrastructure could be leveraged in our case as 
well. The marked difference is that we neither have 
a separate VM virtual control server nor we 
envision dedicated VMs being used for off-loading 
(though such a scenario is also viable). In our case, 

migration can be triggered as follows: 
If the host is down, the controller figures it out 
owing to host_leave / datapath_leave events. In this 
case migration involves updating the flow table 
entries at real time. Since the host is down, no 
dictionary based content can be copied over to the 
migrated host and the computation gains are lost. 
The Host Agents can also trigger a migrate event 
when the statistics indicate that the host is being 
over-loaded. In this case the Host Agent sends a 
PRUNE command to the Agent Controller which 
then passes the appropriate parameters to the 
Migration Controller via IPC mechanisms. PRUNE 
causes updating the flow tables with the interface of 
the migrated host and a MIGRATE command with 
the identity of the new host is sent to the initial Host 
Agent as a response to this PRUNE In case a 
dictionary based redundancy elimination method is 
being used, migration will also involve copying the 
dictionary over from the original host to the 
migrated host. We argue that the Host agent is the 
best place to bundle this functionality. Hence a 
MIGRATE from Agent Controller causes the Host 
Agent to start the dictionary copy over in parallel 
(via a COPY command). One thing to be noted here 
is that this requires the host agent (HA1) of the 
initial server to communicate to the Host Agent 
(HA2) of the migrated server. For the sake of 
simplicity we can assume that all the Host Agents 
listen on a fixed port (say 1337) and hence HA1 just 
requires the IP address of the host running HA2 to 
establish a connection and send the data. If we do 
not mandate this requirement, all the host agents 
need to know the existence of one another in some 
other way. Fig (6) shows the mechanism: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig(6)  HA1 sends a PRUNE. The NOX controller 
UPDATES flow entries, Migration Controller sends 
a MIGRATE back. HA1 COPIES the data to HA2.  

Video 
Player / 
Image via 
browser 
 

Client 
Agent 
 

   
          Socket calls                
              
               
              TCP/IP  Host 

Agent 
(proxy) 

 Internet 

            NOX 

Migration 
Controller 
 

Agent 
Controller 
 

   
          Socket calls                
             TCP/IP  
 
         MIGRATE 
 
               PRUNE 
 

   
                      IPC                
              

Host 
Agent 1 
(proxy) 

Host 
Agent  2 
(proxy) 

COPY 

     UPDATE  
      FLOW 



3.4 Example Scenario: Putting it all together  
A mobile device (client) requests some web page. If 
it is the first time the controller hears about this 
device (in the last 'X" minutes or so), it finds out the 
best desktop (in its pool) to take care of its needs 
based on the factors of i) desktop usage & ii) 
network congestion to reach that particular desktop. 
Once it has found the best match, flow table entries 
are added by NOX to all the OF switches in the path 
between the mobile device and the desktop. 
Essentially, this desktop acts as a light weight proxy 
(no caching of content). If the request is a normal 
web page (no multimedia content), it just forwards 
the request and sends back the reply as any other 
proxy would do. If the request consists of 
multimedia objects/pdf/flash , the desktop decodes 
the response data and sends it back as display 
updates to the mobile device [whether this is a 
viable method for videos is questionable, but it is a 
start nevertheless]. Thus, there is some tweaking in 
the mobile device's browser that is necessary to 
accommodate this which we implement as a client 
side Agent which sends battery statistics and 
application tolerance levels to the Host Agents. We 
think this would be particularly useful in 
applications like Maps and Videos. 
   The Host Agent also keeps track of the replies that 
it receives (for various requests by the mobile 
device) and builds up a small dictionary based on 
the redundancy profile of the received data. If there 
is a good amount of redundancy, it suggests to the 
mobile device that it can save on wireless receiver 
power. Essentially, the Host Agent sends this 
dictionary (containing the encoded fingerprints and 
the payload it points to) to the mobile device. 
Further responses from the desktop now use these 
fingerprints (in a shim layer) to represent redundant 
data. The mobile device will now expand those 
regions based on lookups in the dictionary. So, is 
this computation done by the mobile device worth 
the receiver power saved? We have no idea 
presently. We think that looking to save on the 
transmission side makes lesser sense, as a mobile 
user, you tend to transmit less and receive more data 
while browsing. 
Now, migration comes to the picture assuming the 
dictionary scheme is useful. Suppose the desktop 
that we've offloaded the mobile requests to is no 
longer able to cater to its needs (proximity, disk 
space, computation crunches etc) we would need a 
new desktop with the existing dictionary intact, thus 
using migration. 
 

3.5 Scalability 
With every agent-based distributed model, one 
concern that network researchers generally have is 
whether the model is scalable enough. Our 
contention is that use of OpenFlow inherently 
makes our model scalable. We could also use 
Flowvisor[19] for connecting multiple NOX 
controllers across network slices. Also, one 
extension could be to designate certain desktop 
hosts as intermediate components which would 
collect statistics from the underlying hosts and 
respond to the Agent Controller when queried, 
essentially creating a hierarchy of  Host Agents. 
 
4. CURRENT IMPLEMENTATION 
Owing to a complex architecture with lots of 
moving pieces, we choose to focus on implementing 
in steps, essentially going from simple to complex, 
building the end-to-end model in a systematic 
manner. As of now, we have implemented the 
selection of off-loading server (Host Agent) using 
OpenFlow.  Our setup is depicted in Figure 
 
 

 
 
 

Fig(7)   Implementation of  host selection.. 
 
We essentially created a topology consisting of 3 
switches and 3 desktop hosts. The client used was a 
laptop. So far we have only incorporated the Agent 
Controller and the Host Agents, focusing on 
selecting the least congested host. Although we used 
a VM based setup for testing, in the long run we 
need to have actual OF switched, wireless clients 
and WAP’s. 
One thing to note here is the allocation of IP 
addresses. Since this topology would most likely 
exist in conjunction with the already existing 



campus production network, we are most likely to 
be allocated a block of IP addresses in a subnet for 
mobile clients. Since we cannot have multiple 
DHCP servers in a single broadcast domain, we 
need to somehow distinguish a mobile client which 
is part of the setup from other clients. One can use 
OpenFlow for this distinction. Using OpenFlow we 
can identify all DHCP requests that are from one of 
our wireless APs. If not, then the request is 
broadcast as usual and will be handled by the 
campus wide DHCP server. Otherwise, we could 
check the client against a list of MACs registered 
with us. If the client is registered, the request can be 
forwarded to our own local DHCP server and an IP 
is allocated. Replies are unicast to the client (if 
possible).  
In such a deployment, we could run a DHCP server 
on the same physical server as the NOX controller. 
 
5. FUTURE WORK 
Our present model is purely theoretical with little or 
no statistical evidence of its feasibility. Our future 
work will mainly focus on implementing and 
rigorous testing all possible aspects of the 
architecture.  
Also, our current implementation uses wired 
OpenFlow devices with a NOX controller. 
Deploying this successfully in a university-wide 
setting requires the use of OpenRoads, an 
enhancement of NOX. OpenRoads provides better 
support for alternate handover mechanisms, such as 
bi-casting to  two APs simultaneously, and provides 
a mechanism to ascertain information not normally 
provided via OpenFlow, such as wireless channel 
strength. 
 
6. RELATED WORK 
Section 2 focused purely on the software 
approaches of saving energy in mobile devices.  
"Hardware methods to reduce energy consumption 
in mobile devices” has been a hot topic for more 
than a decade. Video coding is usually the most 
power-hungry application a mobile processor has to 
run. Therefore, minimizing the maximum power 
consumption figure of a chip often concentrates on 
finding the most power-efficient way to implement 
video processing algorithms.   
Some of the techniques used in wireless mobile 
devices include Dynamic Voltage Scaling (DVS) 
and Frequency Scaling, wherein the incoming video 
data always has a jitter component [12]. Since the 
frames do not come at a constant rate, the voltage or 
frequency is reduced when there is a delay in 

receiving the next frame. In conventional system 
design with fixed supply voltage and clock 
frequency, clock cycles, and hence energy, are 
wasted when the CPU workload is light and the 
processor becomes idle. Reducing the supply 
voltage in conjunction with the clock frequency 
eliminates the idle cycles and saves the energy 
significantly. As power has a square dependency on 
voltage, i.e. P = f ( V2 , f ), this gives a huge 
advantage over designs that require a higher clock-
frequency [17].    
  
7. CONCLUSION 
We have proposed an architecture that is suited to 
university and corporate office settings, wherein 
desktops in the vicinity of a mobile device can be 
used to perform energy-intensive tasks like 
decoding PDF, Flash and video, thus allowing for 
energy-savings in the mobile device.  
 
8. REFERENCES. 
[1] R. Baratto, J. Nieh, and L. Kim. THINC: A Remote 
Display Architecture for Thin-Client Computing. 
Technical Report CUCS-027-04, Department of 
Computer Science,Columbia University, July 2004. 
 
[2] J. Kim, R. A. Baratto, and J. Nieh,“pTHINC: A Thin-
Client Architecture forMobile Wireless Web”, In 
Proceedings of the 15th International World WideWeb 
Conference (WWW2006), Edinburgh, Scotland,UK, May 
2006. 
 
[3] Yang Zhang, Xue-tao Guan, Tao Huang andXu 
Cheng, "A Heterogeneous Auto-Offloading Framework 
Based on Web Browser for Resource-constrained 
Devices", Fourth International Conference on Internet 
and Web Applications and Services, 2009 
 
[4] A. Moshchuk, S. D. Gribble, and H. M.Levy, “Flash-
Proxy: Transparently EnablingRich Web Content via 
Remote Execution”,Proceedings of the 6th International 
Conference on Mobile Systems, Applications, and 
Services(MobiSys), pp. 81-93, 2008. 
 
[5] Xiaoli Zhao,  Pin Tao, Shiqiang Yang and Fei Kong, 
"Computation Offloading for H.264Video Encoder on 
Mobile Devices", IMACS Multiconference on 
"Computational Engineeringin Systems Applications" 
(CESA), October 4-6, 2006, Beijing, China 
 
[6] A. Baratto, S. Potter, J. Nieh. MobiDesk: Mobile 
virtual desktop computing, In Proceedings of the 10th 
Annual Conference on Mobile Computing and 
Networking, (Philadelphia, PA,Sept/Oct, 2004 ), pp. 1-16 
 
[7] C. E. Perkins, “Handling Multimedia Data for Mobile 



Computers” Proceedings of the 20th International 
Computer Software and Applications Conference 
(COMPSAC), pp. 147-148, 1996 
  
[8] Xiaohui Gu, Klara Nahrstedt, Alan Messer, Ira 
Greenberg and Dejan Milojicic, " AdaptiveOffloading for 
Pervasive Computing Vol.3, No.3, IEEE Pervasive 
Computing Magazine, July 2004.  
 
[9] Chu-Hsing Lin, Jung-Chun Liu, Chun-Wei Liao, 
"Energy Analysis of Multimedia Video Decoding on 
Mobile Handheld Devices,” 2007 International 
Conference on Multimedia and Ubiquitous Engineering 
(MUE07), Seoul, Korea, April 26-28, 2007, pp.120 – 
125.  
 
[10] A. Anand, A. Gupta, A. Akella, S. Seshan, and S. 
Shenker. Packet Caches on Routers: The Implications of 
Universal Redundant Traffic Elimination. In ACM 
SIGCOMM, Seattle, WA, Aug. 2008. 
 
[11] Redundancy in Network Traffic: Findings and 
Implications 
Ashok Anand, Chitra Muthukrishnan, Aditya Akella and 
Ramjee Ramachandran. SIGMETRICS 2009 Seattle, 
WA. 
 
[12] Wireless Video – Introduction  
http://encyclopedia.jrank.org/articles/pages/6943/Wireles
s-Video.html 
 
[13] Adobe – Solutions: Broadcast and media  
http://www.adobe.com/solutions/broadcast/overview.html 
  
[14] OpenFlow Switch Consortium 
http://www.openflowswitch.org/ 
 
[15] NOX – An OpenFlow controller 
http://noxrepo.org/wp/ 
 
[16] Cisco Visual Networking Index: Forecast and 
Methodology  
http://www.cisco.com/en/US/solutions/collateral/ns341/n
s525/ns537/ns705/ns827/white_paper_c11-
481360_ns827_Networking_Solutions_White_Paper.htm
l 
 
[17] Video/Imaging DesignLine | Anatomy of a hardware 
codec 
http://www.videsignline.com/199500920;jsessionid=IDL
UZT1XPC4TVQE1GHPCKH4ATMY32JVN?pgno=1 
 
[18] SIGCOMM- Openflow poster : 
http://guido.appenzeller.net/pubs/sigcomm-2008-
openflow-poster.pdf 
 
[19] Flowvisor:  A Network Virtualization Layer: 
http://www.openflowswitch.org/downloads/technicalrepo
rts/openflow-tr-2009-1-flowvisor.pdf 

 
 
 
 
 
 
 
 
  
 
 
 
 
 


