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1 A combinatorial interpretation of A and B
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In other words, A puts into the left column a sum of the left and right columns, and puts into
the right column a copy of the old left column for future summation. We can call the left column
the “accumulation column” and the right column the “summand column”; for B the opposite is
true. On the other hand, the two rows never intermix. We can make this even more obvious by
beginning every chain of multiplications with the base matrix

(1)

Then the bottom row is always empty, so we don’t even need to worry about it. The sum still
works out to what it was before. Thus, the bottom row is merely an old copy of the top row, so in
some sense, since the individual entries are unnecessary, they are not individually meaningful.

What does switching matrices do exactly? We switch the interpretation of our columns; now
what once was our accumulation column becomes our addition column, and vice versa. But with
the switching of this interpretations comes a price. If we repeatedly multiply the same matrix, the
summand column always holds the previous value of the accumulation matrix, but if we multiply
a different matrix, the summand column’s value remains the same, although the accumulation
column dutifully accumulates the sum of both columns.



2 Cube snake recurrence

Paul and Abby have independently verified that the generating function for the straight cube snake
is the following:

243z —2?

1—3z— 322423

This is represented in Sloane’s Encyclopedia as A003697. The entry contains a note that the values
alternate between squares and twice squares. When we de-multiplex the two sequences, we find:
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where a,, is the number of spanning trees of a 2 by n grid, Sloane’s A001353, and b,, is the number
of perfect matchings of a 3 by 2n grid, Sloane’s A001835. We call this the straight cube matching
theorem.

2.1 Proof of the Straight Cube Matching Theorem

First, we note that both A = (ag,a1,as,...) and B have the same recurrence: a, = 4a,_1 — an—2
and b, = 4b,_1 — b,_o. The only difference is that ag = 0 and a; = 1 versus by = by = 1.
(Intriguingly, even though the b, sequence begins “bigger,” it is actually dominated by the a,

sequence for all n > 0.) Let’s use this to find a homogeneous recurrence for a? (and equivalently
for b2):
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But actually, since we want to interleave these sequences, we really want the following recurrence:
a2 = 15a2_, — 15a2_, + a2 _; This relation will hold true for both interleaved sequences and thus
the sum of them, since doubling the entire sequence does not affect the recurrence. We now use
Wilf’s method to find the generating function for this combined interleaved sequence:
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Solving, we find
2
—3z—2
Fla) =~ " C(a)

5 —3:2—3r+1
as desired.



2.2 A-B Bijection

We would like to find a bijection between members of the interleaved sequence and members of
C. To begin with, it may be helpful to unify A and B. They are related in the following way:
an =Y. by, if n > 1. To prove this, first we show

Ay = 3ap_1 + 2ap_2 + 2ap_3 + - -+ 2a1 + 2a¢ + 1.

Examine a spanning tree 1" of a 2 by n grid graph, which we call G,,. We consider the subgraph of
T induced by columns of G,,, starting from the right and working left, i.e., the rightmost k£ columns
at a time, referring to the graph induced on k columns as Ty (T, = T'). If no Ty for k < n is a
spanning tree, we note that the graph must look like a giant letter C. If there were any vertical
edges earlier than the far left edge, then if we consider the smallest T} that contains a vertical
edge, it must be a C-shaped spanning tree. Otherwise, T}, would not be connected, but this would
imply that T is not connected, violating the assumption that it is a spanning tree. If there is such
a vertical edge, examine the largest Ty (where k < n) is a spanning tree. If K = n — 1, then we have
three possibilities for T;,: either we add a I' (the “Gamma” case), an L (“Ell”), or a = (“Equals”) to
connect the last two unconnected vertices to the tree; these are the only three ways to connect them
which will not add a loop. Otherwise, k < n — 1. In that case, if we examine Ty, there will be
one disconnected vertex, either the upper (“Upper”) or lower (“Lower”). If both are disconnected,
T cannot be connected. In either of these cases, the remainder of T" must look like a giant C, but
since there are two possible extensions to T} to make it a spanning tree, for each spanning tree on
T}, where k < n — 1 there are two possible spanning trees on G,,.

Since we have just identified a way of breaking down any spanning tree on G, into a smaller
case, we have covered all cases. This means that if G,, has a, spanning trees,

ap = 301+ 2ap_2 + 20,3 + - -+ 2a1 + 2ag + 1.

From this, we can easily derive that a,4+1 = an + 3a, — ap—1 = 4ay, — ap_1.

Now we go on to show the bijection. We prove this inductively. We assume we have a bijection
for all cases through n — 1. For the base case, since the starting values are both 1, this is trivial:
the single spanning tree of the 2 by 1 grid corresponds to the single empty matching of the 3 by 0
grid.

We now show the bijection for the n case. We recall

ap = 30,1 + 202 + 2053+ -+ 2a1 + 1.

The first term is different. This corresponds to taking all of the tilings we have which correspond
to ap—1 and tacking onto the left two extra columns worth of irreducible tiling, of which there are
three ways: two vertical dominos atop a horizontal domino, a horizontal domino atop two vertical
dominos, or three horizontal dominos. We can see by exhausting all possibilities that these are the
only tilings of the 2 by 3 rectangle, and that they are all irreducible. We will correspond these
to the Gamma, Ell, and Equals cases, respectively, as the seams between the tiles resemble these
shapes to some degree. The remaining aj terms correspond to taking all of the tilings we have
which correspond to a; and tacking onto the left 2(n — k) irreducible tilings. These tilings have
the following form: either the top two rows begin and end with a vertical domino and the rest is
tiled with horizontal dominos, or the bottom two rows begin and end with a vertical domino and
the rest is tiled with horizontal dominos. We will correspond these to the Upper and Lower cases,
respectively, to correspond to the positions we placed the vertical dominos. To prove that these



are the only two irreducible tilings we could use an argument as we did in problem 1(b) above, but
instead we give a direct argument. Starting from the leftmost column, we note that the tiling cannot
begin with three horizontal dominos, so it must either begin with a vertical domino stacked atop a
horizontal domino, or vice versa. Examining the two rows taken up by the vertical domino, we can
either put a vertical domino or two horizontal dominos. However, if we put a vertical domino, the
tiling is not irreducible because there is now a break after the first two columns. Furthermore, if
we put two horizontal dominos, we must now put a horizontal domino in the remaining row. The
edge of the tiling is now the same as before, so we may repeat the argument all the way to the edge
of the rectangle, where in order to finish off the tiling we must place a vertical domino in the final
column, in the same two rows as the original vertical domino.

We still have one tree remaining. Since all of our constructions above involve adding dominos,
this corresponds to the single construction which consists of no dominos: the empty tiling of the
empty rectangle.

Since we always tack the irreducible tiling of the 2k rectangle onto the leftmost 2k columns, we
can tell by looking at a tiling which case it corresponds to, by selecting the largest irreducible tiling
which includes the leftmost column and then recursing on the remaining part of the tiling. (This
could also be the empty tiling, which we have also covered.) Since every tiling fits this pattern, we
have covered all possible tilings, and based on the recurrence we are following, we have also covered
all possible spanning trees.

Since we have corresponded all of the first n — 1 cases, and from this built a construction which
corresponds the n case, we have completed the proof by induction.

2.3 C Bijection?



